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Supplemental Information  

 

Supplemental Methods 

 

Identification of H3K27ac ChIP-seq peaks and super-enhancers 

Among the possibilities of ChIP-seq data for SE identification, H3K27ac ChIP-seq data 

was used here, because this chromatin mark is specifically associated with active 

enhancers (Creyghton et al. 2010) and is available for a wide collection of samples. 

Sequence reads were aligned to the hg19 version of the human genome using Bowtie 

(Langmead et al. 2009) with parameters -k1 -m1 --best. H3K27ac enriched regions were 

called using MACS 1.4.2 (Zhang et al. 2008) with parameters -p 1e-9 keep-dup=auto -w 

-S -space=50. ROSE (https://bitbucket.org/young_computation/rose) (Lovén et al. 2013) 

was then used to identify SEs from the H3K27ac enriched regions as described (Hnisz et 

al. 2013). Briefly, H3K27ac enriched regions were considered as constituent enhancers 

and were stitched together when they occurred within 12.5kb. In order to distinguish the 

H3K27ac enhancer signal from the H3K27ac promoter signal, constituent enhancers that 

were fully contained within +/-1kb of a RefSeq Transcription Start Site (TSS) were 

disregarded for stitching. Enhancer clusters that had a H3K27ac input-subtracted signal 

above a computed threshold defined by ranking the H3K27ac signal at enhancer clusters 

were identified as SEs.  

 

CRC Mapper   

SE to gene assignment  

SEs identified with ROSE (https://bitbucket.org/young_computation/rose) (Lovén et al. 

2013) are assigned to the closest transcript predicted to be expressed, where distance is 
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measured as the distance from the center of the SE to the TSS. As expression data 

does not exist for all cell types examined, H3K27ac read density is used to determine 

expression in each sample. H3K27ac read density in the region +/-1kb around the TSS 

is used to rank each transcript in each sample. Transcripts on this ranked list are then 

assigned to genes. Duplicates from the resulting ranked gene list are removed and the 

list is subsequently used to identify the top 2/3 of ranked genes. The read density value 

corresponding to the last gene in the top 2/3 is used as a threshold value that can then 

be applied back to identify all transcripts considered expressed. The selection of top 2/3 

as a threshold is based on the observation that this threshold allows recovery of the 

highest percentage of expressed genes while minimizing false negatives, when the 

results of this method are compared to microarray and RNA-seq data in H1 ESC. This 

ratio of expressed genes is consistent with the ratio of genes considered expressed 

across cell types (Ramsköld et al. 2009).  

Identification of candidate core TFs 

SE-assigned transcription factors (TF) are then selected from the lists of SE-assigned 

genes using a list of 1253 TFs consisting of the intersection of AnimalTFDB (Zhang et al. 

2012) and TcoF (Schaefer et al. 2011) lists of TFs minus CTCF, GTF2I and GTF2IRD1 

that are not considered as putative core TFs (Table S2). 

Motif analysis 

A database of DNA sequence motifs for 695 TFs - about 60% of known TFs in 

vertebrates - was compiled from the TRANSFAC database of motifs (Matys et al. 2006), 

and from the MEME suite (January 23rd 2014 update), for the following collections: 

JASPAR CORE 2014 vertebrates (Mathelier et al. 2014), Jolma 2013 (Jolma et al. 

2013), Homeodomains (Berger et al. 2008), mouse UniPROBE (Robasky and Bulyk 

2011) and mouse and human ETS factors (Wei et al. 2010). For SE-assigned TFs with 
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identified sequence specific binding motifs, those motifs are used to search the SE 

sequences assigned to the gene encoding that TF. For the motif search, the search 

space in SEs is restricted to extended SE constituents, as these are the regions that 

capture most of the TF binding in SEs (Figure 1C). SE constituent DNA sequences are 

extracted, extended on each side (500 bp by default) and used for motif search with 

FIMO (Grant et al. 2011) with p-value threshold of 1e-4 and a set of background 

sequences generated from the set of extended constituent sequences with fasta-get-

markov.  

Identification of fully interconnected auto-regulatory loops  

SE-assigned TFs whose set of constituents contains at least 3 DNA sequence motif 

instances for their own protein products are defined as autoregulated TFs. If multiple 

motifs for the same TF matched an identical location, it is counted as only one motif 

instance. From the set of autoregulated TFs, the TFs predicted to bind to the SEs of 

other autoregulated TFs, using the same criteria as described above, are identified and 

all possible fully interconnected autoregulatory loops of TFs are then reconstructed 

through recursive identification. When multiple possibilities of fully interconnected 

autoregulatory loops are identified, the most representative fully interconnected 

autoregulatory loop of TFs is selected as the model of CRC. This loop is defined as the 

loop containing the TFs that occur the most frequently across all possible loops.  

 

Metagenes 

Genome-wide meta-representations of ChIP-seq density (in units of reads per million per 

base pair) were created by mapping aligned reads to SE constituents +/- 5kb using 

bamToGFF (https://github.com/bradnerComputation/pipeline/blob/master/bamToGFF.py) 

(Lin et al. 2012). 
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Transcription factor binding analysis 

H1 hESC ChIP-seq data (Kunarso et al. 2010; Hawkins et al. 2011) were used to 

quantify the binding of TFs to the region +/- 1kb around cognate motifs found in SE 

constituents which are extended 500 bp on each side, or, as a control, in the same 

number of randomly selected genomic regions of the same size. The number of 

sequences containing motifs that overlapped with the ChIP-seq peaks identified by 

MACS 1.4.2 (Zhang et al. 2008) ran with parameter -p 1e-9 keep-dup=auto -w -S -

space=50 were quantified. The true positive rates of TF binding was calculated by 

dividing the number of motif containing sequences that were bound by the TF from the 

ChIP-seq data analysis, over the total number of motif containing sequences.  

 

Gene set enrichment analysis (GSEA) 

GSEA (Mootha et al., 2003) analyses were performed using the tool available at 

http://www.broadinstitute.org/gsea/. Mean z-scores for either OCT4-GFP protein level 

reduction or cell nuclei count reduction (Chia et al. 2010) were used to rank the lists of all 

TFs and H1 hESC candidate core TFs were used as the query. The Pre-Ranked function 

of the GSEA software was used with 1000 iterations to generate the plots. 

 

CRC target gene analysis 

For the CRC target gene analysis, two groups of target genes were considered: 

expressed genes and SE-assigned genes. Expressed genes correspond to the top 2/3 

genes ranked based on H3K27ac signal in the region +/-1kb around the TSS. SE-

assigned genes were identified from the list of expressed genes as described above. 
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For H1, in each group, genes that had motif instances predicting the binding of at least 5, 

6, 7, 8, 9 or 10 candidate core TFs in their combined enhancer and promoter sequences 

were quantified. For other cell types, genes that had motif instances predicting the 

binding of at least half or all candidate core TFs in their combined enhancer and 

promoter sequences were quantified. The region +/-1kb around the TSS and associated 

super or typical enhancer constituents extended 500 bp on each side were used for the 

motif search when all expressed genes were considered, and SE constituents extended 

500 bp on each side and corresponding region +/-1kb around the TSS sequence of the 

SE-assigned gene were used for the motif search when SE assigned genes were 

considered. For the maps in Figure 3, 30 target genes selected from the CRC targets are 

displayed as examples. These were selected based on the number of Pubmed literature 

entries for each target gene associated to search terms relative to the cell type in which 

it was identified.  

 

ChIP-seq tracks 

Sequence reads were aligned to the hg19 version of the human genome using Bowtie 

(Langmead et al. 2009) with parameters -k1 -m1 --best. Wiggle tracks were created from 

ChIP-seq data with MACS 1.4.2 (Zhang et al. 2008) with parameters -p 1e-9 keep-

dup=auto -w -S -space=50, normalized to the total number of mapped reads in the 

sample, and visualized in UCSC Genome Browser.  

 

ChIP-seq 

Chomatin immunoprecipitation experiments were performed in Jurkat cells (ATCC), as 

described (Kwiatkowski et al. 2014), with the following antibodies: anti-H3K27ac 

(ab4729, Abcam), anti-RUNX1 (ab23980, Abcam) and anti-GATA3 (Sc-22206X, Santa 
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Cruz). Purified immunoprecipitated DNA was prepared for sequencing according to a 

modified version of the Solexa Genomic DNA protocol, and sequenced with an Illumina 

HiSeq sequencer. 

 

Microarray expression analysis 

Microarray data displayed on Figure 5 were downloaded from GEO (references in Table 

S1). Expression values were processed using MAS5 normalization from the “affy” R 

package (Gautier et al. 2004). Signals for probes corresponding to the same transcript 

were aggregated using the standard probe assignment method (hgu133plus2cdf”). 

Normalized log2(expression+1) of the transcripts for the set of candidate core TFs or for 

all TFs considered expressed with the metric described above, are displayed for each 

sample. P-values were calculated using a Wilcoxon test. Affymetrix HG U133 2.0 plus 

microarray data performed in Jurkat cells after knock-down of either MYB, RUNX1, TAL1 

and GATA3 with shRNAs were downloaded from Sanda et al., 2011. Mean of log 2 fold-

change (knock-down/control) for two biological replicates using two target shRNAs per 

TF and two shRNAs control were extracted for either the set of Jurkat cell candidate core 

TFs represented on Figure 4A or for the full set of TFs considered expressed in Jurkat 

cells. 

 

DNA-binding domain structure analysis 

Candidate core TFs for all samples, and the compiled list of housekeeping TFs 

(Ramsköld et al. 2009) considered expressed in at least one of the samples, were 

overlapped with lists of TFs classified by DNA-binding domains (Vaquerizas et al. 2009). 

Percentages of DNA-binding domain containing TFs were compared between candidate 

core TFs and housekeeping TFs for each type of DNA-binding domain. Percentages of 
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TFs that were significantly different between the two groups of TFs are displayed (z-test 

p-value < 5e-2). 

 

Hierarchical clustering of CRCs 

A matrix of distances was calculated based on Pearson correlations between the 

candidate core TFs lists and plotted using R. For this analysis, we required the samples 

had greater than 7 TFs in their CRC for improved robustness of clustering. 

 

Disease or trait-associated gene analysis 

Disease or trait-associated gene lists were downloaded from the NHGRI catalog of 

published Genome-Wide Association Studies (12/5/15 update). The disease or trait-

associated genes overlapping with the list of core or non-core TFs were quantified. For 

each disease or trait, the proportion of the overlapping candidate core TFs and non-core 

TFs were compared with a z-test. The disease or traits for which z-test p-value < 5e-2, 

are displayed and -log(p-values) values are plotted on the radar plot. 

 

Comparison of networks 

For the set of TFs in the CRC that are represented in the transcriptional network for a 

corresponding cell type (Neph et al. 2012), we extracted the set of TF-TF interactions 

predicted in the CRC, where interactions are defined as predicted TF binding to the 

regulatory sequences of another TF. We then computed the number of TF-TF 

interactions predicted in the CRC which are also predicted in the transcriptional network 

for a corresponding cell type (Neph et al. 2012). As a control, we did the same analysis, 

for each sample, using a set of the same number of randomly selected TFs that are not 

part of the CRC, but that are represented in the network for a corresponding cell type 



	
   8	
  

(Neph et al. 2012). We then compared the percentage of overlap obtained for the CRC 

set of interactions, with the percentage of overlap obtained for the control set of 

interactions, with a z-test. 

 

Supplemental Figure Legends 

 

Figure S1. Example of CRC model selection out of multiple CRCs. The TF content of 

each possible Interconnected autoregulatory loop (IAL) in H1 hESC is plotted in each 

column. The TFs were ranked vertically by decreasing fraction of their occurrences 

across all the possible IALs. The loops are ranked from left to right by average fraction of 

TF occurrence in the loops. The CRC model corresponds to the leftmost loop.  

 

Figure S2. Effect of H1 hES candidate core TF depletion on pluripotency and 

proliferation. (A) Rank of each candidate core TF among all TFs for mean of z-score for 

OCT4-GFP fluorescence reduction and nuclei number reduction from 2 experimental 

replicates, from siRNA screen data in H1 hES (Chia et al. 2010). (B) Gene-Set 

Enrichment Analysis (GSEA) for the candidate core TFs compared to all TFs for 

POU5F1/OCT4-GFP expression values. (C) GSEA analysis for the candidate core TFs 

compared to all TFs for nuclei number values. 

 

Figure S3. ChIP-seq data for TFs in the CRC support the predicted binding interactions 

for 3 additional cell types. ChIP-seq data showing binding of the TFs to the SEs of the 

candidate core TF for (A) CD20+ B-cell, (B) HCT-116 colon cancer cell line, and (C) 

MCF-7 breast cancer cell line. Red lines on top of the tracks depict SE genomic 

locations. 
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Figure S4. TF associated with the indicated diseases through GWAS in the CD20+ B-

cell CRC model. Genes associated with a given disease through GWAS are colored 

according to the key. SEs that overlap SNPs associated with a given disease or trait 

through GWAS are colored according to the key. 
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Supplemental Tables 

 

Table S1. List of samples and GEO accession nimbers for the ChIP-seq and expression 

datasets.  

 

Table S2. List of TFs and associated motifs.   

 

Table S3. Lists of SE-assigned TFs, autoregulated TFs, CRC models and extended 

regulatory circuitry for 84 samples.  

 

Table S4: List of H1 CRC SE-assigned target genes whose expression is modified after 

POU5F1/OCT4 knock-down in H1 hESCs. 

 

Table S5. H1 CRC SE-assigned target gene examples. 

 

Table S6. Results for MIR371 target genes for TargetScan, miRDB and PITA miRNA 

target predictor software. 

 

Table S7. Functions of the candidate core TFs for five well-studied cell types. 

 

Table S8. Comparison of CRC models with Neph et al. networks. 
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Table S5. H1 CRC SE-assigned target gene examples 

 Targets Role in ESC biology References 

Transcription 
factors     

GLI2 Involved in mESC self-renewal. Li et al., 2013 

PBX1 Required for the maintenance of hESC identity. Chan et al., 2009 

PRDM14 Required for the maintenance of hESC identity. Chia et al., 2010 

SALL4 Required for the maintenance of mESC identity. Zhang et al., 2006 

ZNF281/ZFP281 Required for proper differentiation in mESCs.  

Seo et al., 2013; Wang 
et al., 2008; Fidalgo et 
al., 2011; Fidalgo et al., 
2012 

ZSCAN10/ZFP206 Required to maintain pluripotency and for differentiation in mESC.  Yu et al., 2009 

miRNA 
machinery    

LIN28B 

RNA binding protein. Represses let-7 miRNA expression, tightly 
regulated during differentiation. Can be used to reprogram fibroblasts 
into iPSCs. May directly promote the translation of various cell cycle 
regulators. 

Viswanathan et al., 
2010; Hagan et al., 
2009; Melton et al., 
2010; Yu and Thomson 
et al., 2007; Xu et al., 
2009 

MIR371 

Human homolog of murine mir290, the most abundant miRNA in 
mESCs, essential for their survival. Functional assays in human 
cancer cells support reciprocal expression regulation of MIR371 and 
SOX2, which is a highly predicted target of miR-371. 

Medeiros et al., 2011; 
Calabrese et al., 2007; 
Sinkkonen et al., 2008; 
Marson et al., 2008 

TRIM71/mLin41 miRISC-interacting protein. Promotes ESC self-renewal by facilitating 
the G1-S transition. Target of let-7 mi-RNA. Chang et al., 2012 

chromatin 
regulators    

DNMT3B DNA methyltransferase required at the ESC differentiation step to 
silence POU5F1 and NANOG gene expression. 

Jackson et al., 2004; 
Feldman et al., 2006 

DPPA4 Chromatin binding protein involved in ESC self-renewal. Ivanova et al., 2010 

JARID2 
Polycom (PcG) protein. Helps silence genes encoding key regulators 
of development, yet allowing them to remain in a “poised” state for 
activation. 

Bernstein et al., 2006; 
Lee et al., 2006, Young 
et al. 2011; Das et al., 
2014 

KDM2B 
H3K36me2 demethylase. Promotes recruitment of the PcG proteins 
to establish a  poised chromatin state on genes encoding key 
regulators of development. 

He et al., 2013 

SETDB1 
H3K9me3 methylase. Promotes recruitment of the PcG proteins to 
establish a  poised chromatin state on genes encoding key 
regulators of development. 

Bilodeau et al., 2009; 
Yeap et al., 2009; Yuan 
et al., 2009; Kagey et 
al., 2010 

long ncRNA   

MALAT1 
Promotes cellular proliferation by modulating the expression and pre-
mRNA processing of cell cycle-regulated transcription factors in 
various cancer cells. 

Tripathi et al., 2010; 
Tripathi et al., 2013; Li 
et al., 2009; Gutschner 
et al., 2012 
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Table S7. Functions of the candidate core TFs for five well-studied cell types 

TF Role in cell identity References 

 B-cell (CD20+)  
CREB1 Involved in B cell activation and proliferation via the 

B cell receptor signaling pathway  Yasuda et al., 2008; Blois et al., 2004 

EBF1 Required for normal B cell differentiation Lin and Grosschedl, 1995 

EGR3 Required with EGR2 for antigen receptor-induced 
proliferation Li et al., 2012 

ELF1 Regulates production of diverse lymphocyte 
repertoire 

Grant et al., 1995; Akbarali et al., 
1996; Ernst et al., 1996 

ETS1 Required for normal B and T cell differentiation 
Bories et al., 1995; Eyquem et al., 
2004a; Eyquem et al., 2004b; 
Andersson et al., 1999 

FLI1 Required for expression of B cell receptor Maier et al., 2003; Bradshaw et al., 
2008; Zhang et al., 2008 

HIF1A Required for normal B cell differentiation Kojima et al., 2002 
HIVEP2 Involved in regulation of MHC class I genes van't Veer et al., 1992 

IKZF1 Involved in B and T cell differentiation Georgopoulos et al., 1994; Wang et al., 
1996 

IRF2 Regulates proliferation and antibody production Matsuyama et al., 1993; Minamino et 
al., 2012 

IRF5 Required for normal B cell differentiation Lien et al., 2010 

IRF8 Required for normal B cell differentiation Lu et al., 2003; Ma et al., 2006; Wang 
et al., 2008 

KLF13 Required for normal B cell differentiation Outram et al., 2008; Gordon et al., 
2008 

KLF6   
KLF7   

MEF2C Regulates proliferation and antibody production 
Rao et al., 1998; Swanson et al., 1998; 
Wilker et al., 2008; Khiem et al., 2008; 
Gekas et al., 2009 

MEF2D   
NFATC1 Required for normal B cell differentiation Peng et al., 2001; Berland and Wortis, 

2003; Bhattacharyya et al., 2011 
NR4A2 Regulates immune homeostasis Sekiya et al., 2011; Sekiya et al., 2013 
PAX5 Required for normal B cell differentiation Urbanek et al., 1994; Nutt et al., 1999 
POU2F2 Required for normal B cell differentiation Corcoran et al., 1993 
PRDM4   
REL Regulates proliferation and survival in response to 

activation 
Kontgen et al., 1995; Harling-McNabb 
et al., 1999; Tumang et al., 2002) 

RELA Required for proliferation of developing B cells Prendes et al., 2003 
RREB1   
SMAD3 Regulates antibody production Stavnezer and Kang, 2009; Coffman et 

al., 1989; Sonoda et al. 1989 
SP3 Required for normal hematopoiesis van Loo et al., 2003 
SREBF2   
TCF4/E2-2 Required for normal B cell differentiation Zhuang et al., 1996 

YY1 Required for normal antibody production Liu et al., 2007; Green et al., 2011; 
Pan et al., 2013 

ZBTB16 Required for normal hematopoiesis Savage et al., 2008; Kovalovsky et al., 
2008; Raberger et al., 2008 

  Heart (Left Ventricule)   

ETS1 Required for normal heart development Gao et al., 2010; Ye et al., 2010; Lie-
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Venema et al., 2003 

FOXK1 Regulates cardiac and skeletal myogenic 
progenitors Shi et al., 2012 

FOXO3 Regulates cardiac hypertrophy 
Skurk et al., 2005; Sengupta et al., 
2009; Sengupta et al., 2011; Schips et 
al., 2011 

IRF1 Regulates cardiac hypertrophy Jiang et al., 2014 
KLF13 Required for normal heart development Lavallee et al., 2006 

KLF15 Pleiotropic regulator of cardiac function and 
metabolism 

Fisch et al., 2007; Noack et al., 2012; 
Prosdocimo et al., 2014; Jeyaraj et al., 
2012; Leenders et al., 2010;  

KLF7   
MEIS1 Required for normal heart development Stankunas et al., 2008; Mahmoud et 

al., 2013 

NKX2-5 Required for normal heart development Lyons et al., 1995; Komuro and Izumo, 
1993; Lints et al., 1993 

NR2F2 Required for normal heart development Pereira et al., 1999; Al Turki et al., 
2014 

NR4A1 Regulates cardiac hypertrophy and apoptosis Wang et al., 2009; Cheng et al., 2011; 
Wang et al., 2013 

PBX1 Required for normal heart development Stankunas et al., 2008; Chang et al., 
2008; Arrington et al., 2012 

RARA Contributes to normal heart development 
Kastner et al., 1997; Lee et al., 1997; 
Luo et al., 1996; Mendelsohn et al., 
1994 

RARB Contributes to normal heart development Luo et al., 1996 
RREB1   

RXRA Contributes to normal heart development 
Kastner et al., 1997; Sucov et al., 
1994; Gruber et al., 1996; Kastner et 
al., 1994 

SMAD3 Regulates antibody production Stavnezer and Kang, 2009; Coffman et 
al., 1989; Sonoda et al. 1989 

SOX18 Required for normal heart development Zhang et al., 2005; Sakamoto et al., 
2007;  

TBX20 Required for normal heart development 

Stennard et al., 2003; Reim et al., 
2005; Singh et al., 2005; Stennard et 
al., 2005; Takeuchi et al., 2005; Cai et 
al., 2005; Qian et al., 2005; Miskolczi-
McCallum et al., 2005; Brown et al., 
2005 

TBX5 Required for normal heart development 
Li et al., 1997; Basson et al., 1997; 
Ieda et al., 2010; Nam et al., 2014; 
Song et al., 2012 

TEF Contributes to normal heart function Wang et al., 2010 

THRA Contributes to normal heart function 

Forrest and Vennstrom, 2000; 
Fraichard et al., 1997; Gauthier et al., 
2001; Gauthier et al., 1999; Kahaly et 
al., 2002 

  Pancreas   

BHLHE41   
HES1 Required for normal pancreas development Jensen et al., 2000; Kageyama et al., 

2000 
KLF13   
NR2F6   
NR4A1 Required for beta-cell proliferation and insulin 

secretion 
Briand et al., 2012; Tessem et al., 
2014 

PDX1 Required for normal pancreas development Jonsson et al., 1994; Horb et al., 2003; 
Zhou et al., 2008 

PKNOX2   
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RARA Required for normal pancreas development 
Chen et al., 2004; Ostrom et al., 2008; 
Matthews et al., 2004; Chertow et al., 
1987 

RREB1   

RXRA Required for normal pancreas development 
Chen et al., 2004; Ostrom et al., 2008; 
Matthews et al., 2004; Chertow et al., 
1987 

SMAD3 Required for normal pancreas development Wandzioch and Zaret, 2009; Lin et al., 
2009; El-Gohary et al., 2013 

SOX13   
TEF     

 Adipocytes (Adipose Nuclei)  
CREB3L2   
EBF1 Required for normal adipocyte differentiation Akerblad et al., 2002 
ELK3   
ETS1   
FLI1   
FOXO1 Regulates normal adipocyte differentiation Nakae et al., 2003 
HBP1   
IRF1   
KLF11 Contributes to regulation of lipid metabolism Zhang et al., 2013; Yamamoto et al., 

2010 
MEF2D Contributes to regulation of glucose metabolism Sparling et al., 2007 
NFIA Required for normal adipocyte differentiation Waki et al., 2011 
NR2F2 Regulates normal adipocyte differentiation Xu et al., 2008;  

NR3C1 Regulates normal adipocyte differentiation and lipid 
metabolism 

Chapman et al., 1985; Hauner et al., 
1987 

PBX1 Regulates normal adipocyte differentiation Monteiro et al., 2011 
PPARG Required for normal adipocyte differentiation Tontonoz et al., 1994 

RARA Regulates normal adipocyte differentiation 

Murray and Russell, 1980; Kuri-
Harcuch, 1982; Castro-Munozledo et 
al., 1987; Stone and Bernlohr, 1990;  
Kamei et al., 1994 

RFX2   
RREB1   
RUNX1   

RXRA Regulates normal adipocyte differentiation 

Murray and Russell, 1980; Kuri-
Harcuch, 1982; Castro-Munozledo et 
al., 1987; Stone and Bernlohr, 1990;  
Kamei et al., 1994 

SMAD3 Regulates normal adipocyte differentiation Choy et al., 2000; Choy and Derynck, 
2003; Epperly et al., 2005 

STAT3 Required for normal adipocyte differentiation Wang et al., 2009; Zhang et al. 2011; 
Derecka et al., 2012 

STAT5B Regulates normal adipocyte differentiation Nanbu-Wakao et al., 2002; Floyd and 
Stephens, 2003 

TCF7L2 Regulates normal adipocyte differentiation Ross et al., 2000 
ZNF217     

 Brain (Hippocampus Middle)  
ATF1   
ERF Required for normal neuronal differentiation Janesick et al., 2013 

IRF1 Regulates response to cerebral inflammation and 
damage 

Jarosinski and Massa, 2002; Iadecola 
et al., 1999; Park et al., 1998 

IRF2 Regulates response to cerebral inflammation and 
damage Park et al., 1998 

KLF13   
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MEF2D Required for normal neuronal differentiation; 
regulates neuron plasticity; neuronal survival factor 

Flavell et al., 2006; Smith et al., 2006; 
Salma and McDermott, 2012; Chen et 
al., 2012; Gong et al., 2003 

NKX6-2 Neuronal survival factor; required for normal CNS 
development 

Hashimoto et al., 2004; Southwood et 
al., 2004; Ma et al., 2013; Dichman 
and Harland, 2011;  

NR2F2 Required for normal CNS development 
Kim et al., 2009; Tang et al., 2012; 
Naka et al., 2008; Kanatani et al., 
2008; Tripodi et al., 2004 

NR4A1 Regulates synaptic function Bridi and Abel, 2013; McNulty et al., 
2012 

POU3F3 Contributes to normal CNS development Dominguez et al., 2013; Sugitani et al., 
2002 

RARA 
Regulates synaptic function; contributes to normal 
neuronal differentiation; contributes to normal 
memory function 

Nomoto et al., 2012; Chen and Napoli, 
2008; Aoto et al., 2008 

RXRA 
Regulates synaptic function; contributes to normal 
neuronal differentiation; contributes to normal 
memory function 

Nomoto et al., 2012; Chen and Napoli, 
2008; Aoto et al., 2008 

SOX13 Contributes to normal neuronal differentiation Pla et al., 2008 

SOX2 

Required for normal neuronal differentiation; 
mutations associated with hippocampal 
malformations; required for maintenance of neural 
progenitors 

Ferri et al., 2004; Graham et al., 2003; 
Sisodiya et al., 2006; ; Lujan et al., 
2012 

SOX8 Required for normal oligodendrocyte differentiation Stolt et al., 2004; Stolt et al., 2005 

SREBF1 Regulates fatty acid homeostasis during neuronal 
differentiation 

Tabernero et al., 2001; Pai et al., 1998; 
Velasco et al., 2003 

TCF4 Required for normal neuronal differentiation; 
mutations associated with neurological disorders 

Flora et al., 2007; Fu et al., 2009; 
Brockschmidt et al., 2007; Zweier et 
al., 2007; Amiel et al., 2007; Brzozka 
et al., 2010 

TEF Component of circadian clock; mutations associated 
with neurological disorders 

Gachon et al., 2004; Hua et al., 2012a; 
Hua et al., 2012b 

ZBTB16 Required for normal neuronal differentiation Gaber et al. 2013; Sobieszczuk et al., 
2010 
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