Supplemental Information

Supplemental Methods

Identification of H3K27ac ChlIP-seq peaks and super-enhancers

Among the possibilities of ChIP-seq data for SE identification, H3K27ac ChlP-seq data
was used here, because this chromatin mark is specifically associated with active
enhancers (Creyghton et al. 2010) and is available for a wide collection of samples.
Sequence reads were aligned to the hg19 version of the human genome using Bowtie
(Langmead et al. 2009) with parameters -k1 -m1 --best. H3K27ac enriched regions were
called using MACS 1.4.2 (Zhang et al. 2008) with parameters -p 1e-9 keep-dup=auto -w
-S -space=50. ROSE (https://bitbucket.org/young_computation/rose) (Lovén et al. 2013)
was then used to identify SEs from the H3K27ac enriched regions as described (Hnisz et
al. 2013). Briefly, H3K27ac enriched regions were considered as constituent enhancers
and were stitched together when they occurred within 12.5kb. In order to distinguish the
H3K27ac enhancer signal from the H3K27ac promoter signal, constituent enhancers that
were fully contained within +/-1kb of a RefSeq Transcription Start Site (TSS) were
disregarded for stitching. Enhancer clusters that had a H3K27ac input-subtracted signal
above a computed threshold defined by ranking the H3K27ac signal at enhancer clusters

were identified as SEs.

CRC Mapper
SE to gene assignment
SEs identified with ROSE (https://bitbucket.org/young_computation/rose) (Lovén et al.

2013) are assigned to the closest transcript predicted to be expressed, where distance is



measured as the distance from the center of the SE to the TSS. As expression data
does not exist for all cell types examined, H3K27ac read density is used to determine
expression in each sample. H3K27ac read density in the region +/-1kb around the TSS
is used to rank each transcript in each sample. Transcripts on this ranked list are then
assigned to genes. Duplicates from the resulting ranked gene list are removed and the
list is subsequently used to identify the top 2/3 of ranked genes. The read density value
corresponding to the last gene in the top 2/3 is used as a threshold value that can then
be applied back to identify all transcripts considered expressed. The selection of top 2/3
as a threshold is based on the observation that this threshold allows recovery of the
highest percentage of expressed genes while minimizing false negatives, when the
results of this method are compared to microarray and RNA-seq data in H1 ESC. This
ratio of expressed genes is consistent with the ratio of genes considered expressed
across cell types (Ramskdld et al. 2009).

Identification of candidate core TFs

SE-assigned transcription factors (TF) are then selected from the lists of SE-assigned
genes using a list of 1253 TFs consisting of the intersection of AnimalTFDB (Zhang et al.
2012) and TcoF (Schaefer et al. 2011) lists of TFs minus CTCF, GTF2l and GTF2IRD1
that are not considered as putative core TFs (Table S2).

Motif analysis

A database of DNA sequence motifs for 695 TFs - about 60% of known TFs in
vertebrates - was compiled from the TRANSFAC database of motifs (Matys et al. 2006),
and from the MEME suite (January 23rd 2014 update), for the following collections:
JASPAR CORE 2014 vertebrates (Mathelier et al. 2014), Jolma 2013 (Jolma et al.
2013), Homeodomains (Berger et al. 2008), mouse UniPROBE (Robasky and Bulyk

2011) and mouse and human ETS factors (Wei et al. 2010). For SE-assigned TFs with



identified sequence specific binding motifs, those motifs are used to search the SE
sequences assigned to the gene encoding that TF. For the motif search, the search
space in SEs is restricted to extended SE constituents, as these are the regions that
capture most of the TF binding in SEs (Figure 1C). SE constituent DNA sequences are
extracted, extended on each side (500 bp by default) and used for motif search with
FIMO (Grant et al. 2011) with p-value threshold of 1e* and a set of background
sequences generated from the set of extended constituent sequences with fasta-get-
markov.

Identification of fully interconnected auto-regulatory loops

SE-assigned TFs whose set of constituents contains at least 3 DNA sequence motif
instances for their own protein products are defined as autoregulated TFs. If multiple
motifs for the same TF matched an identical location, it is counted as only one motif
instance. From the set of autoregulated TFs, the TFs predicted to bind to the SEs of
other autoregulated TFs, using the same criteria as described above, are identified and
all possible fully interconnected autoregulatory loops of TFs are then reconstructed
through recursive identification. When multiple possibilities of fully interconnected
autoregulatory loops are identified, the most representative fully interconnected
autoregulatory loop of TFs is selected as the model of CRC. This loop is defined as the

loop containing the TFs that occur the most frequently across all possible loops.

Metagenes

Genome-wide meta-representations of ChlP-seq density (in units of reads per million per
base pair) were created by mapping aligned reads to SE constituents +/- 5kb using
bamToGFF (https://github.com/bradnerComputation/pipeline/blob/master/bamToGFF.py)

(Lin et al. 2012).



Transcription factor binding analysis

H1 hESC ChIP-seq data (Kunarso et al. 2010; Hawkins et al. 2011) were used to
quantify the binding of TFs to the region +/- 1kb around cognate motifs found in SE
constituents which are extended 500 bp on each side, or, as a control, in the same
number of randomly selected genomic regions of the same size. The number of
sequences containing motifs that overlapped with the ChlP-seq peaks identified by
MACS 1.4.2 (Zhang et al. 2008) ran with parameter -p 1e-9 keep-dup=auto -w -S -
space=50 were quantified. The true positive rates of TF binding was calculated by
dividing the number of motif containing sequences that were bound by the TF from the

ChlIP-seq data analysis, over the total number of motif containing sequences.

Gene set enrichment analysis (GSEA)

GSEA (Mootha et al., 2003) analyses were performed using the tool available at
http://www.broadinstitute.org/gsea/. Mean z-scores for either OCT4-GFP protein level
reduction or cell nuclei count reduction (Chia et al. 2010) were used to rank the lists of all
TFs and H1 hESC candidate core TFs were used as the query. The Pre-Ranked function

of the GSEA software was used with 1000 iterations to generate the plots.

CRC target gene analysis

For the CRC target gene analysis, two groups of target genes were considered:
expressed genes and SE-assigned genes. Expressed genes correspond to the top 2/3
genes ranked based on H3K27ac signal in the region +/-1kb around the TSS. SE-

assigned genes were identified from the list of expressed genes as described above.



For H1, in each group, genes that had motif instances predicting the binding of at least 5,
6, 7, 8, 9 or 10 candidate core TFs in their combined enhancer and promoter sequences
were quantified. For other cell types, genes that had motif instances predicting the
binding of at least half or all candidate core TFs in their combined enhancer and
promoter sequences were quantified. The region +/-1kb around the TSS and associated
super or typical enhancer constituents extended 500 bp on each side were used for the
motif search when all expressed genes were considered, and SE constituents extended
500 bp on each side and corresponding region +/-1kb around the TSS sequence of the
SE-assigned gene were used for the motif search when SE assigned genes were
considered. For the maps in Figure 3, 30 target genes selected from the CRC targets are
displayed as examples. These were selected based on the number of Pubmed literature
entries for each target gene associated to search terms relative to the cell type in which

it was identified.

ChIP-seq tracks

Sequence reads were aligned to the hg19 version of the human genome using Bowtie
(Langmead et al. 2009) with parameters -k1 -m1 --best. Wiggle tracks were created from
ChIP-seq data with MACS 1.4.2 (Zhang et al. 2008) with parameters -p 1e-9 keep-
dup=auto -w -S -space=50, normalized to the total number of mapped reads in the

sample, and visualized in UCSC Genome Browser.

ChIP-seq
Chomatin immunoprecipitation experiments were performed in Jurkat cells (ATCC), as
described (Kwiatkowski et al. 2014), with the following antibodies: anti-H3K27ac

(ab4729, Abcam), anti-RUNX1 (ab23980, Abcam) and anti-GATA3 (Sc-22206X, Santa



Cruz). Purified immunoprecipitated DNA was prepared for sequencing according to a
modified version of the Solexa Genomic DNA protocol, and sequenced with an lllumina

HiSeq sequencer.

Microarray expression analysis

Microarray data displayed on Figure 5 were downloaded from GEO (references in Table
S1). Expression values were processed using MAS5 normalization from the “affy” R
package (Gautier et al. 2004). Signals for probes corresponding to the same transcript
were aggregated using the standard probe assignment method (hgui33plus2cdf’).
Normalized log2(expression+1) of the transcripts for the set of candidate core TFs or for
all TFs considered expressed with the metric described above, are displayed for each
sample. P-values were calculated using a Wilcoxon test. Affymetrix HG U133 2.0 plus
microarray data performed in Jurkat cells after knock-down of either MYB, RUNX1, TAL1
and GATAS3 with shRNAs were downloaded from Sanda et al., 2011. Mean of log 2 fold-
change (knock-down/control) for two biological replicates using two target shRNAs per
TF and two shRNAs control were extracted for either the set of Jurkat cell candidate core
TFs represented on Figure 4A or for the full set of TFs considered expressed in Jurkat

cells.

DNA-binding domain structure analysis

Candidate core TFs for all samples, and the compiled list of housekeeping TFs
(Ramskdld et al. 2009) considered expressed in at least one of the samples, were
overlapped with lists of TFs classified by DNA-binding domains (Vaquerizas et al. 2009).
Percentages of DNA-binding domain containing TFs were compared between candidate

core TFs and housekeeping TFs for each type of DNA-binding domain. Percentages of



TFs that were significantly different between the two groups of TFs are displayed (z-test

p-value < 5e).

Hierarchical clustering of CRCs
A matrix of distances was calculated based on Pearson correlations between the
candidate core TFs lists and plotted using R. For this analysis, we required the samples

had greater than 7 TFs in their CRC for improved robustness of clustering.

Disease or trait-associated gene analysis

Disease or trait-associated gene lists were downloaded from the NHGRI catalog of
published Genome-Wide Association Studies (12/5/15 update). The disease or trait-
associated genes overlapping with the list of core or non-core TFs were quantified. For
each disease or trait, the proportion of the overlapping candidate core TFs and non-core
TFs were compared with a z-test. The disease or traits for which z-test p-value < 5e?,

are displayed and -log(p-values) values are plotted on the radar plot.

Comparison of networks

For the set of TFs in the CRC that are represented in the transcriptional network for a
corresponding cell type (Neph et al. 2012), we extracted the set of TF-TF interactions
predicted in the CRC, where interactions are defined as predicted TF binding to the
regulatory sequences of another TF. We then computed the number of TF-TF
interactions predicted in the CRC which are also predicted in the transcriptional network
for a corresponding cell type (Neph et al. 2012). As a control, we did the same analysis,
for each sample, using a set of the same number of randomly selected TFs that are not

part of the CRC, but that are represented in the network for a corresponding cell type



(Neph et al. 2012). We then compared the percentage of overlap obtained for the CRC
set of interactions, with the percentage of overlap obtained for the control set of

interactions, with a z-test.

Supplemental Figure Legends

Figure S1. Example of CRC model selection out of multiple CRCs. The TF content of
each possible Interconnected autoregulatory loop (IAL) in H1 hESC is plotted in each
column. The TFs were ranked vertically by decreasing fraction of their occurrences
across all the possible IALs. The loops are ranked from left to right by average fraction of

TF occurrence in the loops. The CRC model corresponds to the leftmost loop.

Figure S2. Effect of H1 hES candidate core TF depletion on pluripotency and
proliferation. (A) Rank of each candidate core TF among all TFs for mean of z-score for
OCT4-GFP fluorescence reduction and nuclei number reduction from 2 experimental
replicates, from siRNA screen data in H1 hES (Chia et al. 2010). (B) Gene-Set
Enrichment Analysis (GSEA) for the candidate core TFs compared to all TFs for
POU5SF1/0CT4-GFP expression values. (C) GSEA analysis for the candidate core TFs

compared to all TFs for nuclei number values.

Figure S3. ChIP-seq data for TFs in the CRC support the predicted binding interactions
for 3 additional cell types. ChlP-seq data showing binding of the TFs to the SEs of the
candidate core TF for (A) CD20+ B-cell, (B) HCT-116 colon cancer cell line, and (C)
MCF-7 breast cancer cell line. Red lines on top of the tracks depict SE genomic

locations.



Figure S4. TF associated with the indicated diseases through GWAS in the CD20+ B-
cell CRC model. Genes associated with a given disease through GWAS are colored
according to the key. SEs that overlap SNPs associated with a given disease or trait

through GWAS are colored according to the key.



Figure S1
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Figure S2
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Supplemental Tables

Table S1. List of samples and GEO accession nimbers for the ChlP-seq and expression

datasets.

Table S2. List of TFs and associated motifs.

Table S3. Lists of SE-assigned TFs, autoregulated TFs, CRC models and extended

regulatory circuitry for 84 samples.

Table S4: List of H1 CRC SE-assigned target genes whose expression is modified after

POU5F1/0CT4 knock-down in H1 hESCs.

Table S5. H1 CRC SE-assigned target gene examples.

Table S6. Results for MIR371 target genes for TargetScan, miRDB and PITA miRNA

target predictor software.

Table S7. Functions of the candidate core TFs for five well-studied cell types.

Table S8. Comparison of CRC models with Neph et al. networks.
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Table S5. H1 CRC SE-assigned target gene examples

Targets Role in ESC biology References
Transcription
factors
GLI2 Involved in mESC self-renewal. Lietal., 2013
PBX1 Required for the maintenance of hESC identity. Chan et al., 2009
PRDM14 Required for the maintenance of hESC identity. Chia et al., 2010
SALL4 Required for the maintenance of mMESC identity. Zhang et al., 2006
Seo et al,, 2013; Wang
. . T et al., 2008; Fidalgo et
ZNF281/ZFP281 Required for proper differentiation in mESCs. al., 2011; Fidalgo et al.,
2012
ZSCAN10/ZFP206 Required to maintain pluripotency and for differentiation in mESC. Yu et al., 2009
miRNA
machinery
Viswanathan et al.,
RNA binding protein. Represses let-7 miRNA expression, tightly 2010; Hagan et al.,
LIN28B regulated during differentiation. Can be used to reprogram fibroblasts  2009; Melton et al.,
into iPSCs. May directly promote the translation of various cell cycle 2010; Yu and Thomson
regulators. et al., 2007; Xu et al,,
2009
Human homolog of murine mir290, the most abundant miRNA in Medeiros et al., 2011;
MIR371 mESCs, essential for their survival. Functional assays in human Calabrese et al., 2007;

TRIM71/mLin41

cancer cells support reciprocal expression regulation of MIR371 and
SOX2, which is a highly predicted target of miR-371.

miRISC-interacting protein. Promotes ESC self-renewal by facilitating
the G1-S transition. Target of let-7 mi-RNA.

Sinkkonen et al., 2008;
Marson et al., 2008

Chang et al., 2012

chromatin
regulators
DNMT3B DNA methyltransferase required at the ESC differentiation step to Jackson et al., 2004;
silence POU5F1 and NANOG gene expression. Feldman et al., 2006
DPPA4 Chromatin binding protein involved in ESC self-renewal. Ilvanova et al., 2010
Polycom (PcG) protein. Helps silence genes encoding key regulators Bernstein et al., 2006;
JARID2 of development, yet allowing them to remain in a “poised” state for Lee et al,, 2006, Young
L ’ etal. 2011; Das et al.,
activation.
2014
H3K36me2 demethylase. Promotes recruitment of the PcG proteins
KDM2B to establish a poised chromatin state on genes encoding key He et al.,, 2013
regulators of development.
H3K9me3 methylase. Promotes recruitment of the PcG proteins to Bilodeau et al, 2909;
. . . . Yeap et al., 2009; Yuan
SETDB1 establish a poised chromatin state on genes encoding key L 2009: K
regulators of development etal., 2009; Kagey et
) al., 2010
long ncRNA
Promotes cellular proliferation by modulating the expression and pre- E:p:m: z: ::" 2812 Li
MALATA mRNA processing of cell cycle-regulated transcription factors in P e ’

various cancer cells.

et al., 2009; Gutschner
et al., 2012
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Table S7. Functions of the candidate core TFs for five well-studied cell types

TF Role in cell identity References
B-cell (CD20+)
CREB1 Involved in B ceI.I actlyatlon and proliferation via the Yasuda et al., 2008: Blois et al., 2004
B cell receptor signaling pathway
EBF1 Required for normal B cell differentiation Lin and Grosschedl, 1995
EGR3 Req.wred. with EGR2 for antigen receptor-induced Lietal, 2012
proliferation
ELF1 Regulates production of diverse lymphocyte Grant et al., 1995; Akbarali et al.,
repertoire 1996; Ernst et al., 1996
Bories et al., 1995; Eyquem et al.,
ETS1 Required for normal B and T cell differentiation 2004a; Eyquem et al., 2004b;
Andersson et al., 1999
. . Maier et al., 2003; Bradshaw et al.,
FLI1 Required for expression of B cell receptor 2008; Zhang et al., 2008
HIF1A Required for normal B cell differentiation Kojima et al., 2002
HIVEP2 Involved in regulation of MHC class | genes van't Veer et al., 1992
IKZF1 Involved in B and T cell differentiation ?:;égomu'os etal., 1994; Wang et al.,
IRF2 Regulates proliferation and antibody production xatzg¥gma etal,, 1993; Minamino et
IRF5 Required for normal B cell differentiation Lien et al., 2010
. . o Lu et al., 2003; Ma et al., 2006; Wang
IRF8 Required for normal B cell differentiation et al., 2008
KLF13 Required for normal B cell differentiation g(;g;am etal,, 2008; Gordon et al,
KLF6
KLF7
Rao et al., 1998; Swanson et al., 1998;
MEF2C Regulates proliferation and antibody production Wilker et al., 2008; Khiem et al., 2008;
Gekas et al., 2009
MEF2D
. . - Peng et al., 2001; Berland and Wortis,
NFATCA Required for normal B cell differentiation 2003; Bhattacharyya et al., 2011
NR4A2 Regulates immune homeostasis Sekiya et al., 2011; Sekiya et al., 2013
PAX5 Required for normal B cell differentiation Urbanek et al., 1994; Nutt et al., 1999
POU2F2 Required for normal B cell differentiation Corcoran et al., 1993
PRDM4
REL Regulates proliferation and survival in response to Kontgen et al., 1995; Harling-McNabb
activation et al., 1999; Tumang et al., 2002)
RELA Required for proliferation of developing B cells Prendes et al., 2003
RREB1
. . Stavnezer and Kang, 2009; Coffman et
SMAD3 Regulates antibody production al., 1989: Sonoda et al. 1989
SP3 Required for normal hematopoiesis van Loo et al., 2003
SREBF2
TCF4/E2-2 Required for normal B cell differentiation Zhuang et al., 1996
. . . Liu et al., 2007; Green et al., 2011;
YY1 Required for normal antibody production Pan et al.,, 2013
. - Savage et al., 2008; Kovalovsky et al.,
ZBTB16 Required for normal hematopoiesis 2008: Raberger et al., 2008
Heart (Left Ventricule)
ETS1 Required for normal heart development Gao et al., 2010; Ye et al., 2010; Lie-
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Regulates cardiac and skeletal myogenic

Venema et al., 2003

FOXK1 . Shi et al., 2012
progenitors
Skurk et al., 2005; Sengupta et al.,
FOXO3 Regulates cardiac hypertrophy 2009; Sengupta et al., 2011; Schips et
al., 2011
IRF1 Regulates cardiac hypertrophy Jiang et al., 2014
KLF13 Required for normal heart development Lavallee et al., 2006
Pleiotropic regulator of cardiac function and Fisch et al., 2007; Noack et al., 2012;
KLF15 metaboIFi)sm 9 Prosdocimo et al., 2014; Jeyaraj et al.,
2012; Leenders et al., 2010;
KLF7
MEIS1 Required for normal heart development iltazlgtiréas etal., 2008; Mahmoud et
. Lyons et al., 1995; Komuro and Izumo,
NKX2-5 Required for normal heart development 1993: Lints et al., 1993
NR2F2 Required for normal heart development zg:ilra etal., 1999; Al Turki et al.,
. . Wang et al., 2009; Cheng et al., 2011;
NR4A1 Regulates cardiac hypertrophy and apoptosis Wang et al., 2013
. Stankunas et al., 2008; Chang et al.,
PBX1 Required for normal heart development 2008; Arrington et al., 2012
Kastner et al., 1997; Lee et al., 1997;
RARA Contributes to normal heart development Luo et al., 1996; Mendelsohn et al.,
1994
RARB Contributes to normal heart development Luo et al., 1996
RREBH1
Kastner et al., 1997; Sucov et al.,
RXRA Contributes to normal heart development 1994; Gruber et al., 1996; Kastner et
al., 1994
. . Stavnezer and Kang, 2009; Coffman et
SMAD3 Regulates antibody production al., 1989: Sonoda et al. 1989
SOX18 Required for normal heart development Sgg;g etal., 2005; Sakamoto et al.,
Stennard et al., 2003; Reim et al.,
2005; Singh et al., 2005; Stennard et
. al., 2005; Takeuchi et al., 2005; Cai et
TBX20 Required for normal heart development al.. 2005: Qian et al.. 2005: Miskolczi-
McCallum et al., 2005; Brown et al.,
2005
Li et al., 1997; Basson et al., 1997;
TBX5 Required for normal heart development leda et al., 2010; Nam et al., 2014;
Song et al., 2012
TEF Contributes to normal heart function Wang et al., 2010
Forrest and Vennstrom, 2000;
. . Fraichard et al., 1997; Gauthier et al.,
THRA Contributes to normal heart function 2001; Gauthier et al., 1999; Kahaly et
al., 2002
Pancreas
BHLHE41
HES1 Required for normal pancreas development ;gggen etal., 2000; Kageyama et al.,
KLF13
NR2F6
Required for beta-cell proliferation and insulin Briand et al., 2012; Tessem et al.,
NR4A1 )
secretion 2014
. Jonsson et al., 1994; Horb et al., 2003;
PDX1 Required for normal pancreas development Zhou et al., 2008
PKNOX2
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Chen et al., 2004; Ostrom et al., 2008;

RARA Required for normal pancreas development Matthews et al., 2004; Chertow et al.,
1987
RREB1
Chen et al., 2004; Ostrom et al., 2008;
RXRA Required for normal pancreas development Matthews et al., 2004; Chertow et al.,
1987
SMAD3 Required for normal pancreas development %%g?gigoig?yzgrgrj’i%gg Lin etal.,
SOX13
TEF
Adipocytes (Adipose Nuclei)
CREB3L2
EBF1 Required for normal adipocyte differentiation Akerblad et al., 2002
ELK3
ETSH
FLI
FOXO1 Regulates normal adipocyte differentiation Nakae et al., 2003
HBP1
IRF1
KLF11 Contributes to regulation of lipid metabolism ggfgg etal,, 2013; Yamamoto et al,
MEF2D Contributes to regulation of glucose metabolism Sparling et al., 2007
NFIA Required for normal adipocyte differentiation Waki et al., 2011
NR2F2 Regulates normal adipocyte differentiation Xu et al., 2008;
NR3C1 Regulatgs normal adipocyte differentiation and lipid Chapman et al., 1985; Hauner et al.,
metabolism 1987
PBX1 Regulates normal adipocyte differentiation Monteiro et al., 2011
PPARG Required for normal adipocyte differentiation Tontonoz et al., 1994
Murray and Russell, 1980; Kuri-
RARA Regulates normal adipocyte differentiation :ﬁr?;g;’; ggrz]éc;iztgémjgﬁflfggét
Kamei et al., 1994
RFX2
RREB1
RUNX1
Murray and Russell, 1980; Kuri-
RXRA Regulates normal adipocyte differentiation :ﬁr?;g;’; ggrz]éc;iztgémjgﬁflfggét
Kamei et al., 1994
SMAD3 Regulates normal adipocyte differentiation ggggg;&;ﬁ:g?;ﬁ?&?d Derynck,
STAT3 Required for normal adipocyte differentiation \ISV;Z%;; :i.;’oggéhang etal. 2011;
STAT5B Regulates normal adipocyte differentiation gg%itﬁ?;gg;t al, 2002; Floyd and
TCF7L2 Regulates normal adipocyte differentiation Ross et al., 2000
ZNF217
Brain (Hippocampus Middle)
ATF1
ERF Required for normal neuronal differentiation Janesick et al., 2013
IRF1 Regulates response to cerebral inflammation and Jarosinski and Massa, 2002; ladecola
damage et al., 1999; Park et al., 1998
IRF2 ngrglL;;;es response to cerebral inflammation and Park et al., 1998
KLF13
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MEF2D

NKX6-2

NR2F2

NR4A1

POUS3F3

RARA

RXRA

SOX13

SOX2

SOX8
SREBF1

TCF4

TEF

ZBTB16

Required for normal neuronal differentiation;
regulates neuron plasticity; neuronal survival factor

Neuronal survival factor; required for normal CNS
development

Required for normal CNS development

Regulates synaptic function

Contributes to normal CNS development

Regulates synaptic function; contributes to normal
neuronal differentiation; contributes to normal
memory function

Regulates synaptic function; contributes to normal
neuronal differentiation; contributes to normal
memory function

Contributes to normal neuronal differentiation
Required for normal neuronal differentiation;
mutations associated with hippocampal
malformations; required for maintenance of neural
progenitors

Required for normal oligodendrocyte differentiation
Regulates fatty acid homeostasis during neuronal
differentiation

Required for normal neuronal differentiation;
mutations associated with neurological disorders

Component of circadian clock; mutations associated
with neurological disorders

Required for normal neuronal differentiation

Flavell et al., 2006; Smith et al., 2006;
Salma and McDermott, 2012; Chen et
al., 2012; Gong et al., 2003
Hashimoto et al., 2004; Southwood et
al., 2004; Ma et al., 2013; Dichman
and Harland, 2011;

Kim et al., 2009; Tang et al., 2012;
Naka et al., 2008; Kanatani et al.,
2008; Tripodi et al., 2004

Bridi and Abel, 2013; McNulty et al.,
2012

Dominguez et al., 2013; Sugitani et al.,
2002

Nomoto et al., 2012; Chen and Napoli,
2008; Aoto et al., 2008

Nomoto et al., 2012; Chen and Napoli,
2008; Aoto et al., 2008

Pla et al., 2008

Ferri et al., 2004; Graham et al., 2003;
Sisodiya et al., 2006; ; Lujan et al.,
2012

Stolt et al., 2004; Stolt et al., 2005
Tabernero et al., 2001; Pai et al., 1998;
Velasco et al., 2003

Flora et al., 2007; Fu et al., 2009;
Brockschmidt et al., 2007; Zweier et
al., 2007; Amiel et al., 2007; Brzozka
etal., 2010

Gachon et al., 2004; Hua et al., 2012a;
Hua et al., 2012b

Gaber et al. 2013; Sobieszczuk et al.,
2010
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