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Cutadapt
(clip adapter)

miRDeep2
(preprocess reads)

Clip adapter sequence (command line):

cutadapt -a TGGAATTCTCGGGTGCCAAGG FASTQ_IN -o FASTQ_OUT

Collapse identical reads and translate fo FASTA (command line):

mapper.pl config_file.txt -d -e -h -i -j -l 1 -m -s mergedreads.fa

Detect and quantify expression of known human miRNAs (command line):

quantifier.pl -p hsa_hairpin.fa -m hsa_mature.fa -r mergedreads__minLen17.fa -t hsa

Size-select reads requiring at least 17 nucleotides (command line):

mapper.pl mergedreads.fa -c -l 17 -s mergedreads__minLen17.fa

miRDdeep2
(map and

quantify reads)

Bowtie
(map reads)

PARalyzer
(identify read clusters)

Map reads to human genome (command line):

bowtie hg19 -v 2 -m 10 --best --strata -q clipped_reads.fastq mapped_reads.bwtout

Identitify clusters of reads (i.e.: AGO binding sites) based on T-to-C conversions (command line):

perl PARalyzer PARAMETER_SETTINGS_FILE.ini

Cutadapt
(clip adapter)

Clip adapter sequence (command line):

cutadapt -a TGGAATTCTCGGGTGCCAAGG raw_reads.fastq -O 6 --quality-cutoff=15 -m 13 -o clipped_reads.fastq

Parameters passed to the PARalyzer algorithm for the run (file: PARAMETER_SETTINGS_FILE.ini):

BANDWIDTH=3
CONVERSION=T>C
MINIMUM_READ_COUNT_PER_GROUP=5
MINIMUM_READ_COUNT_PER_CLUSTER=5
MINIMUM_READ_COUNT_FOR_KDE=5
MINIMUM_CLUSTER_SIZE=10
MINIMUM_CONVERSION_LOCATIONS_FOR_CLUSTER=1
MINIMUM_CONVERSION_COUNT_FOR_CLUSTER=1
MINIMUM_READ_COUNT_FOR_CLUSTER_INCLUSION=1
MINIMUM_READ_LENGTH=20
MAXIMUM_NUMBER_OF_NON_CONVERSION_MISMATCHES=0
EXTEND_BY_READ=5
GENOME_2BIT_FILE=hg19.2bit

FILTER_FILE=RepeatMasker.bed=RepeatMasker_ucsc
#repetitive elements annotated by RepeatMasker and downloaded from the UCSC Table Browser

FILTER_FILE=./hg19.annotations.bed=[3UTR,CODING,5UTR,MIRNA_PRECURSOR,INTRONIC,INTERGENIC]
#human genome annotations (hg19) from different sources (UCSC, RefSeqs, miRBase)

FIND_MIRNA_SEEDMATCHES=mirbase20.mature.txt
MAXIMUM_SEED_MATCH_LENGTH=8

Supplemental Figure S1: Outline of data processing procedure and parameters used for the analysis
of small RNA-seq, AGO2-RIP-seq and PAR-CLIP-seq data. (A), Outline of small RNA-seq and AGO2-
RIP-seq data processing. Twenty-four libraries of small RNA-seq and AGO2-RIP-seq were sequenced in this
study, totalling 492,467,645 sequence reads obtained by Illumina HiSeq 2000 sequencing (50nt read length, single-
end). Cutadapt (https://cutadapt.readthedocs.org/en/stable/) was used to clip adapter sequences from raw
small RNAs sequencing data. Modules from miRDeep2 (https://www.mdc-berlin.de/8551903/en/) were then
applied to collapse clipped reads from the different samples, map them to human mature and precursor miRNA
sequences and quantify the expression of miRNAs. Known human miRNA sequence annotations were taken from
miRBase (http://www.mirbase.org/, release 20). A total of 363,259,138 reads were mapped to human miRNAs
and used by miRDeep2 to quantify their expression in our dataset of Total RNA and AGO2-bound RNA samples,
DOX- or vehicle-treated, obtained from HCT116 TP53+/+ and TP53−/− cells. (B), Outline of PAR-CLIP data
processing. Thirty-six libraries of AGO2 PAR-CLIP were sequenced in this study, totalling 481,293,143 sequence
reads obtained by Illumina HiSeq 2000 sequencing (50nt read length, single-end). Cutadapt was used to clip the
adapter sequences from PAR-CLIP sequencing data. Cutadapt was also used to remove low-quality ends of reads
and discard trimmed reads shorter than 13 nucleotides. Reads were mapped to the human genome (hg19) by using
Bowtie (http://bowtie-bio.sourceforge.net) (184,370,514 total mapped reads). AGO2 binding sites were
identified based on T-to-C conversions and read density by using PARalyzer (https://ohlerlab.mdc-berlin.
de/software/PARalyzer_85/).
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Supplemental Figure S2: A subset of miRNAs are regulated by DOX induced DSB DNA damage
either dependent or independent of TP53. (A), Log2 fold change of miRNAs regulated by DOX, specifically
in the presence of TP53, was measured by small RNA-Seq performed with HCT116 TP53+/+ in comparison with
small RNA-seq performed in TP53−/− cells. ∗FDR<0.05, ∗∗FDR<0.01 (Benjamini correction). Dashed lines
represent the chosen cut-off threshold of log2 fold change equal to + or −0.35. (B), Log2 fold change of miRNAs
regulated by DOX, independent of TP53, measured by small RNA-seq performed using HCT116 TP53+/+ in
comparison with small RNA-seq performed using TP53−/− cells. (C), RT-qPCR validating the regulation of
miR-3065-5p by DNA damage independent of TP53. All the analysis performed here come from at least three
replicates.
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Supplemental Figure S3

miRNAs modulated in AGO2-bound RNA but not in Total RNA samples following DOX-treatment
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Supplemental Figure S3: TP53 regulates the binding of a subset of miRNAs onto AGO2 in response
to DSB DNA damage without changes in miRNA abundance. (A), Comparison of fold change in levels
of miRNA abundance observed in small RNA-seq and AGO2-RIP-seq upon DNA damage induced by DOX
treatment. The miRNAs shown in the barplot exhibit TP53-dependent modulation (i.e.: positive or negative fold
change >= 0.35 and FDR p-value < 0.05) in AGO2 association, but not in their cellular abundance, following
DNA damage. (B), Western blot showing that the levels of AGO2 do not change in TP53+/+ and TP53−/−

HCT116 cells DOX treated or untreated. (C), Time course experiment showing no change in the abundance of
miR-148-5p in HCT116 TP53+/+ cells. Three independent experiments.
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Supplemental Figure S4: AGO2 is imported into the nucleus, independently of TP53, following
DNA damage. (A), Immunofluorescence assay in HCT116 TP53+/+ cells showing that both TP53 and AGO2
are actively imported into the nucleus after 24h of DOX treatment. (B), AGO2 is also actively transported in the
nucleus in HCT116 TP53−/− cells after 24h of DOX treatment, indicating that this effect occurs independently
of its interaction with TP53. Displaying of one of three independent experiments.



TopHat
(map spliced reads)

Cufflinks
(assemble 

transcriptome)

For each sample, assemble individual trancsripts from mapped reads (command line):

cufflinks -p 4 -o cufflinks__output accepted_hits.bam 

Map reads to human genome (command line):

tophat --transcriptome-index refFlat_hg19 --no-mixed -p 4  hg19 R1.fastq R2.fastq

Compare gene abundance in doxorubicin-treated vs vehicle-treated samples (command line):

cuffdiff -b hg19.fa -p 4  -L doxo,vehicle -u merged.gtf rep1_doxo.bam,rep2_doxo.bam  rep1_vehicle.bam,rep2_vehicle.bam

Merge the assemblies from all samples together (command line):

cuffmerge -g refFlat.gtf - s hg19.fa -p 4 assemblies.txt

FastQC
(control read quality)

Perform quality control of raw sequencing data (command line):

perl fastqc --format fastq R1.fastq R2.fastq

Cuffdiff
(differential analysis)

Supplemental Figure S5

Supplemental Figure S5: Outline of data processing procedure and parameters used for the analysis
of RNA-seq and RIP-Seq data. Sixteen libraries of RNA-seq and AGO2-RIP-seq of poly-adenylated RNAs
were sequenced in this study, totaling 1,821,089,514 sequence reads obtained by Illumina HiSeq 2000 sequenc-
ing (100nt read length, paired-end). FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/)
was used to check the quality of the RNA sequencing data. Mapping of the reads to the human genome
(hg19), transcriptome assembly and gene quantification were performed by using TopHat (https://ccb.jhu.
edu/software/tophat/) and Cufflinks (http://cole-trapnell-lab.github.io/cufflinks/) according to a pub-
lished protocol. In total, 1,117,190,551 reads were successfully mapped to human genome by TopHat. Analysis
of differentially expressed genes following the induction of DNA-damage through DOX treatment was assayed
by using CuffDiff (http://cole-trapnell-lab.github.io/cufflinks/cuffdiff/) for the following contrasts:
[i.] Total RNA samples from TP53+/+ [ii.] Total RNA samples from TP53−/− cells; [iii.] AGO2-bound RNA
samples from TP53+/+ cells; [iv.] AGO2-bound RNA samples from TP53−/− cells.
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TP53-dependent gene modulation
induced by DNA damage

Supplemental Figure S6 

Supplemental Figure S6: Signature of DNA damage response obtained by high-throughput se-
quencing of poly-adenylated RNAs. (A), Scatterplot of gene expression levels in HCT116 TP53+/+ cells
for genes showing TP53-dependent modulation based on RNA-seq in DOX-treated versus vehicle-treated cells.
Genes annotated to crucial functional categories in DNA damage response are highlighted with color-codes spec-
ified in the bottom-right inset. Labelled genes represent TP53 effectors from the Pathway Interaction Database
(http://pid.nci.nih.gov/). Molecular gene type (coding or non-coding) is indicated in the top-left inset. (B &
C), KEGG pathways enrichment analysis based on DAVID annotations (http://david.abcc.ncifcrf.gov/) for
lists of up-regulated (B) and down-regulated (C) genes plotted in (A). (D), Scatter plot similar to (A), but relative
to gene expression levels of modulated genes in HCT116 TP53−/− cells. (E & F), Similar to (B & C), but for lists
of up-regulated (E) and down-regulated (F) genes plotted in (D). (G), Scatter plot of TP53-dependent modulation
of AGO2-association observed in AGO2-RIP-seq (y-axis) versus TP53-dependent modulation of gene expression
levels observed in RNA-seq (x-axis) induced by DOX treatment in HCT116 TP53+/+ cells. Different patterns of
gene modulation (i.e. exclusively post-transcriptional or also transcriptional) are color-coded as indicated in the
bottom-right inset.



GO:0043066 (negative regulation of apoptosis)

Apoptosis related genes that increase in association with 
AGO2 following DNA damage 

DNA repair related genes that decrease in association with 
AGO2 following DNA damage 

GO:0006281 (DNA repair) and GO:0006974 (response to DNA damage 
stimulus)

A

B

Supplemental Figure S7 

Supplemental Figure S7: A subset of genes important for the DNA damage response are either
more associated or less associated with AGO2 following DOX treatment. (A), Table from Gene
ontology (GO) annotation analysis performed by using DAVID (http://david.abcc.ncifcrf.gov/) identifying
8 genes that negatively regulate apoptosis (GO terms GO:0043066), which are more associated with AGO2 (more
repressed) upon DNA damage. (B), As in (A) but identifying 9 genes that are involved in DNA repair and response
to DNA damage stimulus (GO terms GO:0006281 and GO:00069874, respectively), which are less associated with
AGO2 (their repression is released) upon DNA damage.



A

B

C

 A T C G 

CDS 26.18% 21.78% 25.51% 26.52% 

3 UTR 27.52% 29.68% 21.32% 21.43% 

5 UTR 22.75% 22.08% 27.15% 28.03% 

 

Supplemental Figure S8 

Supplemental Figure S8: Genomic characteristics of AGO2 binding sites. (A), Pie chart indicating rel-
ative abundances of genomic regions (3’UTRs, 5’UTRs, coding and non-coding exons, introns, intergenic regions,
repetitive elements and miRNA hairpins) overlapped by PAR-CLIP clusters (AGO2 binding sites) identified by
PARalyzer (https://ohlerlab.mdc-berlin.de/software/PARalyzer_85/) analysis. (B), Table listing nucleotide
frequencies (% of As, Cs, Ts and Gs) in human CDSs, 3’UTRs and 5’UTRs based on RefSeq annotations. (C),
Frequency of AGO2 binding sites (%) landing in different categories of exonic site (5’UTR, CDS, 3’UTR), before
(lighter shading) and after (darker shading) adjustment for nucleotide frequencies, to correct for the propensity
of PAR-CLIP clusters to land in T-rich AGO2 binding sites. After adjustment, levels of AGO2 binding to CDS
and 3’UTRs are very similar.



Supplemental Figure S9

Frequency of 7mers (matching nucleotides 2 to 8 in miRNA mature sequence)

Frequency of 8mers (matching nucleotides 1 to 8 in miRNA mature sequence)

A

B

Supplemental Figure S9: Specific windows upstream to T>C conversion mode location are enriched
for 7- and 8-mer miRNA seed sequences. (Top), Considering the position of maximum T>C conversion
(mode location) of a cluster as 0, positions −2 to +4 are enriched for 7-mer (matching nucleotides 2-8 of the
mature miRNA sequence) seed matches. (Bottom), Similarly, positions −2 to +5 are enriched for 8-mer (matching
nucleotides 1-8 of the mature miRNA sequence) seed matches.
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Supplemental Figure S10

Supplemental Figure S10: Global miRNA-target interaction networks driven by DNA damage.
Views of the complete network of miRNA-target interactions, and selected sub-networks therein, based on PAR-
CLIP AGO2-binding sites and their mapping to miRNAs. Network were visually rendered by using Cytoscape
(http://www.cytoscape.org/). The complete network accounts for both canonical and non-canonical (i.e. in-
volving or not-involving perfect complementary to the miRNA seed region, respectively) predicted interactions
differently color-coded as indicated in the ’edge color mapping’ inset. Different shapes identify miRNA and target
gene nodes in the network, as indicated in the ’node color mapping’ inset.
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Supplemental Figure S11 

Supplemental Figure S11: CCND1 and POGZ are direct targets of let-7 family members, miR-23a
and miR-34a. (Top), TargetScan mapped locations of conserved miRNA binding sites on 3’UTRs of CCND1
and POGZ are shown. (Middle), Relative luciferase activity levels were measured 48h after co-transfection of
HCT116 TP53+/+ cells with CCND1 or POGZ 3’UTR-constructs (pLightSwitch 3UTR GoClone vectors from
SwitchGear Genomics) and the indicated miRNA precursors. (Bottom), Locations and identities of mutations in
3’UTR of CCND1 and POGZ for target sites of miR-23a, miR-34a and let-7 family members. Data represents
the mean of three independent experiments ± s.e.m.
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Supplemental Figure S12: Sub-networks of miR-34a and miR-185 predicted targets. (A), Sub-
network of miR-34a’s first neighbors nodes (i.e. miR-34a predicted targets) extracted from the complete PAR-
CLIP network of miRNA-target interactions (Supplemental Figure S9 and Supplemental Table S5) inferred from
mapping of the AGO2-binding sites to targeting miRNAs. The ’edge color mapping’ inset specifies different colors
adopted in the network for canonical and non-canonical miRNA recognition elements (MREs). Different shapes
identify miRNA and target gene nodes in the network, as indicated in the ’node color mapping’ inset. (B), As
previously stated, but for the miR-185 subnetwork of predicted functional interactions.
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Supplemental Figure S13: Analysis of miRNA-target site interactions inferred from the computa-
tional analysis of chimic reads in identified in PAR-CLIP-seq data. Cartoon illustrating the analysis of
unmapped reads in our PAR-CLIP data to unveil chimera reads (ie: fusion reads composed of part of the mature
miRNA and part of its binding site sequence).



Supplemental Figure S14
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Supplemental Figure S14: Analysis of chimeric reads from PAR-CLIP libraries. (A), Analysis
of nucleotide frequency at the last nucleotide preceding the miRNA- to target-part fusion point in chimeric
reads confirmed previously reported enrichment for a guanosine. Abbreviations: A=Adenosine, C=Cytosine,
G=Guanosine, T=Thymidine. (B) Pie chart indicating relative abundances of assayed genomic regions (3’UTRs,
5’UTRs, coding and non-coding exons, introns, intergenic regions, repetitive elements and miRNA hairpins) over-
lapped by genuine AGO2-binding sites identified by the re-analysis of the PAR-CLIP reads that initially failed
head-to-tail mapping against the human genome due to their composite nature (i.e. part of the mature miRNA
and part of its binding site sequence). (C) Analysis of miRNA seed match in target sites derived from chimeric
reads. The identified chimeras were analyzed for the presence, in the target-part, of a region of complementarity to
the seed region (5 to 7 nucleotides, starting at position 2 in the mature miRNA sequence) of the cognate miRNA.
This was done by extending target-part sequences (ranging in size 15 to 39 nucleotides) up to 50 nucleotides
upstream and downstream of their mid point by filling in their known genomic sequence (ie: creating a set of
target sites of fixed - 101 nucleotides - size). The frequency of chimera sequences with a canonical seed match
was then analysed as a function of the number of extra-nucleotides added 3’ and compared to the frequency of
matches observed when target sites were extended with random sequence (ie: a random set of sequences obtained
by scrambling the order of nucleotides in each sequence from the real set, yet preserving its length).



Supplemental Figure S15

Supplemental Figure S15: Match distribution for 4-mer substrings extracted from miRNA mature
sequences against the collection of target sites derived from chimeric reads. Short substrings of 4
nucleotides starting at all positions in mature miRNA sequences where analyzed for complementarity in reverse
orientation to the whole dataset of chimera target sites. The same analysis was repeated on shuffled target sites
sequences for estimating null profiles. The analysis was performed on miRNAs found in chimeric reads obtained
from PAR-CLIP libraries.



Supplemental Figure 14

Supplemental Figure S16

Supplemental Figure S16: Collection of target mRNAs for members of the let-7 family as identified
in 3’UTR chimeric reads were analysed for motif enrichment by using CentriMo (http://meme.ebi.
edu.au/centrimo.html) (A & B), Analysis of nucleotidic frequency from the top enriched motif identified by
MEME (http://meme.ebi.edu.au/meme/tools/meme) versus the mature sequence of the related miRNA sequence
(let-7b and let-7i, respectively). (C & D), Analysis of positional distribution for the best match instances of each
identified motif within the collection of miRNA target sites, for let-7c and let-7b respectively. Target sites of fixed
- 101 nucleotides - size were obtained by extending target-part in chimeric reads 50 nucleotides upstream and
downstream from their mid point using their known genomic sequence.



Supplemental Methods

Reverse transcription quantitative real-time PCR.

Reverse transcription of mature miRNAs was performed using 10ng of total RNA and the TaqMan Mi-

croRNA Reverse Trascription Kit (Applied Biosystems). Reverse transcription reactions were performed

by incubating the samples in a 7900Ht Thermal Cycler (Applied Biosystems). After RT cycles, the cDNAs

samples were placed in ice and then prepared for quantitative real-time PCR. To amplify mature miRNAs

for a single reaction, 1 ng of relative cDNA template was distributed in a Fast Optical 96-well reaction

plate (Applied Biosystems), followed by the appropriate volume of TaqMan R© Universal PCR Master Mix,

No Amperase R© UNG and the relative 20x Real Time TaqMan probe (both Applied Biosystems). Quanti-

tative real-time PCR (qPCR) was performed with an ABI Prism 7900HT sequence detection system (Ap-

plied Biosystems). Data were analysed using qBasePlus software (biogazelle). Co-Immunoprecipitation

Plasmid transfected cells were treated with doxorubicin at a concentration of 0.2ug/ml for 24 hours, then

washed, scraped and lysed with a buffer containing 20mMTris HCl pH 8, 137 mM NaCl, 1% Nonidet

P-40, 2 mM EDTA and inhibitors of proteases and phosphatases. 10% of total lysate was removed and
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kept as the input samples and the remainder used for immunoprecipitation. 3ug of appropriate antibodies

were bound to sepharose beads in the presence of heparin. Lysates were pre-cleared and then incubated

with the appropriate antibody-bound beads and the immunoprecipitated proteins were then washed and

eluted using 2X SDS buffer without DTT. SDS PAGE was then performed.

Plasmid transfection.

pCMV-Neo-Bam p53 R175H, pCMV-Neo-Bam p53 R248W, pCMV-Neo-Bam p53 R273H, pCMV-Neo-

BAM null plasmids were purchased from Addgene (kindly supplied by Bert Vogelstein). HCT 116 TP53-/-

cells were transfected using Lipofectamine 2000 (Invitrogen) as per the manufactures instructions.

3’UTR luciferase reporter assays.

The 3’UTRs of gene targets identified in the PAR-CLIP were cloned into pLightSwitch 3UTR Go-

Clone vectors (SwitchGear Genomics, Menlo Park, CA). Cells (80% confluent) were co-transfected with

pLightSwitch 3UTR luciferase reporters (50 ng/well) and the relevant pre-miR (100 nmol/L) or a non-

targeting negative control using Lipofectamine R© 2000 (Invitrogen, Carlsbad, CA). Each transfection

was performed in triplicate in three independent experiments. Luciferase assays were performed using

the LightSwitch Luciferase assay reagent system (SwitchGear Genomics, Menlo Park, CA). Twenty-four

hours after transfection, HCT116 cells were lysed with 50µl per well of the Cell Culture Passive Lysis

Buffer (5x) (Promega, Madison, WI, USA) diluted fivefold in ddH2O and placed on an agitator for 30

minutes at a constant speed. These lysates were then transferred to an Opti-plate 96-well plate and

mixed with 50µl of 1X LightSwitch assay reagent per well (SwitchGear Genomics, Menlo Park, CA). The

plate was then covered to protect the reagents from the light, and left to stand for 30 minutes. Following

this, the 96-well plate was sealed and the firefly luciferase activity was measured using a luminometer.

Luminescence measurements were then calculated, and averages of triplicates were determined.
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Overview of high-throughput sequencing data produced in the present study.

HCT116 human colon cancer cell lines wild-type or null for TP53 were stimulated with the DNA damag-

ing agent doxorubicin (DOX) for 24 hours and assayed with different high-throughput techniques. Deep

sequencing was used to profile the abundance of small RNAs and poly-adenylated RNAs extracted from

total RNA samples (RNA-seq) or from RNA samples purified from immunoprecipitated AGO2 (AGO2-

RIP-seq) obtained from either TP53+/+ or TP53-/- HCT116 cells.

All small RNA sequencing experiments (small RNA-seq and AGO2-RIP-seq performed for DOX-treated

and vehicle-treated HCT116 cells with TP53+/+ or TP53-/-) were conducted in 3 biological replicates,

totalling 492,467,645 sequenced reads obtained from 24 libraries (2 RNA sample types x 4 conditions x

3 biological replicates). All poly-adenylated RNA sequencing experiments (RNA-seq and AGO2-RIP-seq

performed for DOX-treated and vehicle-treated HCT116 cells with TP53+/+ or TP53-/-) were conducted

in 2 biological replicates, totalling 1,821,089,514 sequenced reads obtained from 16 libraries (2 RNA sam-

ple types x 4 conditions x 2 biological replicates).

Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation followed by deep se-

quencing (PAR-CLIP) method (Hafner et al., 2010) followed by high-throughput sequencing (PAR-CLIP-

seq) was used to identify AGO2 binding sites and infer miRNA targets. Each AGO2 PAR-CLIP exper-

iment of the four performed (i.e. for DOX-treated and vehicle-treated HCT116 cells with TP53+/+ or

TP53-/-) was ran in 3 biological replicates, each sequenced in 3 technical replicates, totalling 481,293,143

sequenced reads obtained from 36 libraries (4 conditions x 3 biological replicated x 3 technical replicates).

All sequencing data produced in this study have been deposited in the European Nucleotide Archive

(ENA; http://www.ebi.ac.uk/ena) where they are accessible through the following study identifiers:

PRJEB3157 and PRJEB3233, for small and long RNAs sequencing data, and PRJEB3396, for PAR-CLIP

data.
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Processing of small RNAs sequencing data (RNA-seq and AGO2-RIP-seq).

Read preprocessing. Raw sequences obtained from Illumina HiSeq 2000 sequencing (50nt length) of

24 libraries of small RNA-seq and AGO2-RIP-seq (492,467,645 total sequences) were cleaned of any

sequence belonging to the sequencing library adapters by using cutadapt (Martin, 2011) - version 1.2.1.

Read processing. Clipped reads were size selected to remove sequences shorter than 17 nucleotides and

identical reads collapsed by using the miRDeep2 software (Friedländer et al., 2008). Read mapping.

Collapsed reads from all samples were then mapped to the human collection of mature and precursor

miRNA sequences by using the miRDeep2 software (Friedländer et al., 2008) and miRNA sequence

annotations from miRBase (Griffiths-Jones, 2004) - release 20 - and the mapped reads used to quantify

the expression of miRNAs. Supplemental Fig. 1A summarizes the aforementioned steps. Overall, in

the small RNAs sequencing data analysis 363,259,138 reads were mapped by miRDeep to 2578 mature

miRNA sequences annotated in miRBase (Griffiths-Jones, 2004) - release 20, and used to quantify the

abundance of these miRNAs across our dataset of Total RNA and AGO2-bound RNA samples, DOX- or

vehicle-treated, obtained from HCT116 TP53+/+ and TP53-/- cells.

In order to focus the analysis on miRNAs expressed in at least one sample condition, we first restricted the

dataset to miRNAs having at least six raw read counts in at least two samples [N=1322 mature miRNAs,

including redundant identifiers corresponding to multiple stem-loops yielding the same mature sequence;

N=1185 unique mature miRNAs]. The DESeq Bioconductor package (Anders and Huber, 2010) was used

to estimated library size factors and normalize read counts across samples accordingly.

Analysis of miRNA modulation following DNA-damage

To find miRNAs that showed differential expression following DOX-induced DNA-damage, mean log-fold

changes (mean of 3 biological replicates) were computed for all miRNAs for the following four comparator

groups of DOX-treated vs. vehicle-treated cells: [i.] Total RNA from DOX-treated cells vs. Total RNA

from vehicle-treated cells, from HCT116 TP53+/+ cells; [ii.] Total RNA from DOX-treated cells vs. Total

4



RNA from vehicle-treated cells, from HCT116 TP53-/- cells; [iii.] AGO2-bound RNA from DOX-treated

cells vs. AGO2-bound RNA from vehicle-treated cells,from HCT116 TP53+/+ cells; [iv.] AGO2-bound

RNA from DOX-treated cells vs. AGO2-bound RNA from vehicle-treated cells, from HCT116 TP53-/-

cells;

A moderated t-test (Smyth, 2005) was used to evaluate the significance of observed modulation. To reduce

the number of tests, we restricted statistical significance analysis to the top-abundant and modulated

miRNAs in each given comparator group by setting arbitrary thresholds for minimum average abundance

(log2-scale) and absolute log-fold change to 5 and 0.35, respectively. For comparator groups involving

AGO2-bound RNA samples, we further required miRNAs to match the above abundance threshold also

in the cognate total RNA samples (Supplemental Table 1). A Benjamini-Hochberg (Benjamini and

Hochberg, 1995) adjusted p-value of the moderated t-test < 0.05 was taken as significant.

Lists of regulated miRNAs were further grouped based on dependency of modulation on the TP53-status,

according to the following rules:

miRNAs regulated in a TP53-dependent manner: [i] significant modulation (i.e.: adjusted p-value

< 0.05) in TP53+/+ DOX-treated samples compared to untreated controls, but not in TP53-/- back-

ground; [ii] mean log fold-change in TP53+/+ DOX-treated vs untreated samples exceeding that of

TP53-/- background; [iii] either absolute mean log fold-change in TP53-/- cells below the minimum

change threshold (0.35) or to a significantly different extent of modulation in TP53+/+ compared

to TP53-/- cells (i.e.: t-test pvalue < 0.05 when comparing log fold-change values of DOX-treated

vs untreated samples between TP53+/+ and TP53-/- HCT116 cells).

miRNAs regulated in a TP53-independent manner: [i] significant modulation (i.e.: adjusted p-

value < 0.05) in TP53+/+ DOX-treated samples compared to untreated controls; [ii] as previously

stated, but for TP53-/- cells; [iii] comparable extent of modulation in TP53+/+ and TP53-/- cells

(i.e.: no significant difference when comparing log fold-change values of DOX-treated vs untreated

samples between TP53+/+ and TP53 knockout HCT116 cells).
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Subsets of differentially expressed miRNAs falling into each of the above-listed subcategories (i.e.: TP53-

dependent and TP53-independent) were evaluated separately for Total RNA and AGO2-bound RNA

samples.

Processing of poly-adenilated RNAs sequencing data (RNA-seq and AGO2-
RIP-seq).

Read preprocessing. The quality of processed reads was assayed using FastQC - version 0.10.1 (http:

//www.bioinformatics.babraham.ac.uk/projects/fastqc/). Raw sequences obtained from Illumina

HiSeq 2000 sequencing (100nt length, paired-end) of 16 RNA-seq and AGO2-RIP-seq libraries (1,821,089,514

total sequences) were processed by using TopHat and Cufflinks and according to a published protocol

(Trapnell et al., 2012). Briefly, paired-end reads were mapped to the human genome (hg19) by using

TopHat (Trapnell et al., 2009) - version 2.0.9. In total, 1,117,190,551 reads were successfully mapped to

the human genome. Individual trascripts obtained from mapped reads were assembled into a reference

transcriptome and quantified by using Cufflinks (Roberts et al., 2011) - version 2.1.1. Supplemental Fig.

5 summarizes the above procedure.

Analysis of gene modulation following DNA-damage.

Differences in gene expression levels between DOX-treated and control samples (two biological replicates

for each experiment) were compared by using the Cuffdiff tool, that is included in the Cufflinks suite of

software (Roberts et al., 2011). The differential expression analysis was repeated for the same aforemen-

tioned comparator groups of DOX-treated vs. vehicle-treated cells performed in the miRNA sequencing

data analysis (see section Analysis of miRNA modulation following DNA-damage). Genes included in the

Cufflinks transcriptome assembly (N=29888 Cufflinks identifiers) were filtered to remove those marked by

extremely low-abundance. In particular, we required a Cufflinks flag status of ”OK” and fragments per

kilobase of exon per million fragments (FPKM) values above zero for genes to be considered in the next

analyses (Supplemental Table 2). Next we focused the analysis of differential expression on those Cuf-

flinks identifiers annotated to a gene symbol and made the datasets unique based on gene annotation (i.e.
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for each gene symbol, we retained only its first occurrence in the dataset sorted by decreasing absolute

value of mean log fold change). For each comparison of DOX-treated vs untreated cells, we identified lists

of modulated genes based on Z-score transformed log2 fold changes of equal to or exceeding 1.5. Z-score

standardization of log2 fold changes was used to be able to set a cut-off level that would account for

different variance in the different groups of samples (i.e. Total and AGO2-bound RNA samples obtained

from TP53+/+ and TP53-/- HCT116 cells).

Lists of regulated genes were further grouped based on the dependency of modulation on TP53-status,

according to the following rules:

genes regulated in a TP53-dependent manner: [i] modulated (i.e.: z-score transformed fold-change

value equal to or exceeding 1.5) in TP53+/+ DOX-treated samples compared to untreated controls,

but not in TP53-/- background; [ii] either unchanged (i.e.: z-score transformed fold-change value

below 1) in TP53-/- cells or showing in TP53+/+ cells an outstanding modulation compared to

that observed in TP53-/- cells (i.e.: z-score transformed fold-change value equal to or exceeding 2

in TP53+/+ cells and ratio for the z-score computed in TP53+/+ cells to that computed in TP53-/-

cells equal to or exceeding 1.5).

genes regulated in a TP53-independent manner: [i] modulated (i.e.: z-score transformed fold-change

value equal to or exceeding 1.5) in TP53+/+ DOX-treated samples compared to vehicle-treated

controls; [ii] same as before, but for TP53-/- cells; [iii] comparable amount of modulation in the

presence or absence of wild-type TP53 (i.e.: ratio for the z-score computed in TP53+/+ cells to

that computed in TP53-/- cells below 1.5)

Subsets of differentially expressed genes falling into each of the above-listed subcategories (i.e.: TP53-

dependent and TP53-independent) were evaluated separately for Total RNA and AGO2-bound RNA

samples, as well as for upregulated and downregulated genes (Supplemental Table 2). Selected gene

sublists were tested for enriched functional categories by using either the DAVID bioinformatic resources
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(Dennis et al., 2003) or the R/Bioconductor package clusterProfiler (Yu et al., 2012).

Seed enrichment analysis.

A miRNA is functional when loaded into an RNA-protein complex called the RNA-induced silencing

complex (RISC), which the miRNA component directs to target mRNAs via sequence-specific patterns

of base pairing with partially complementary sites in their 3’-untranslated regions (3’UTRs) (Bartel,

2009). RISC targets are largely dictated by complementarity between the seed region ( nucleotides 2-

7 at the 5́-end of the mature miRNA sequence) of the loaded miRNA and one or more sites in the

mRNA 3’UTR (Bartel, 2009). This principle of seed primacy is accounted for by the most popular target

prediction algorithms (Lewis et al., 2005; John et al., 2004; Krek et al., 2005). To evaluate whether the

observed remodelling of AGO-bound mRNAs following induction of DNA damage can be attributed to an

association with modulated miRNAs, we used human target predictions from the Targetscan algorithm

(Lewis et al., 2005) and tested each AGO-enriched (and AGO-depleted) miRNA for an enriched proportion

of their predicted targets among AGO-enriched (and AGO-depleted) transcripts. We limited the database

of miRNA target predictions downloaded from the targetscan website (http://www.targetscan.org/) -

release 6.1 - to the union set of gene symbols included in our filtered gene datasets (Supplemental Table

2, sheet named ”all genes”). Gene redundancy in the prediction database due to alternative transcripts

was removed by retaining only the first occurrence of each gene symbol after sorting the database by

decreasing 3’UTR length. Results of the seed enrichment analysis are reported in Supplemental Table 4.

Processing of AGO2 PAR-CLIP data.

Read preprocessing. Illumina HiSeq 2000 sequencing (50nt length, single-end) of 36 AGO2 PAR-CLIP

libraries yielded a total of 481,293,143 sequence reads. We used cutadapt (Martin, 2011) - version 1.2.1

- to remove adapter sequences from raw PAR-CLIP-seq data. In addition to adapter trimming, we also

used cutadapt to remove low-quality ends of reads and discard trimmed reads shorter than 13 nucleotides.

Trimmed reads were mapped against the human genome (hg19) allowing up to 2 mismatches by using
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Bowtie (Langmead et al., 2009) - version 1.0.0 - and requiring mapped locations to be reported only for

reads with at most 10 different genomic hits and limiting the reported output for each mapped read to its

optimal mismatch-stratum. In total, 184,370,514 were successfully mapped against the human genome.

PARalyzer (Corcoran et al., 2011) - version 1.1 - was used to group mapped reads and identify ”clusters”

(i.e.: AGO2 binding sites) based on T-to-C conversions. Supplemental Fig. 1B reports the parameters

passed to PARalyzer for the runs (.ini file settings).

PARalyzer clusters were annotated by using the BEDTools software suite (Quinlan and Hall, 2010)

to known genomic features obtained from different sources - RefSeq (Pruitt et al., 2014), RepeatMasker

(http://www.repeatmasker.org/), miRBase (Griffiths-Jones, 2004), UCSC (Kent et al., 2002), Homer

(Heinz et al., 2010) - and mapped to assembly hg19 of the human genome. If a cluster mapped to a

genomic location that could be linked to multiple annotations, it was assigned based on the following

annotation priority: 3’UTR, coding exon, non-coding exon, miRNA precursor, 5’UTR, intron, intergenic

region, repetitive elements. Overall, PARalyzer (Corcoran et al., 2011) identified a total of 111,841

AGO2-binding sites across our 36 PAR-CLIP libraries (4 conditions x 3 biological replicated x 3 technical

replicates). These were then grouped based on identical genomic coordinate for the maximum of T-to-

C conversion (mode location), resulting in 54,256 AGO2-binding sites falling in different categories of

annotated genomic regions. Specifically, we found 20,995 AGO2-binding sites falling in 3’UTRs, 19,704

in protein coding exons, 2,885 in introns, 1,829 in repetitive regions, 1,541 in intergenic regions, 1,367 in

miRNA hairpin precursors, 588 in 5’UTRs and 413 in exons of non-coding RNAs. There were also 4,934

falling into currently unannotated genomic regions (Supplemental Table 5).

Inference of miRNA-Target gene interactions from PAR-CLIP data.

AGO2-binding sites identified from the PAR-CLIP data analysis were searched for putative miRNA

recognition elements (MREs) responsible for AGO2 interaction with the observed target sites. To this

end, we scored conserved and non-conserved short sites matching the reverse-complement sequence of

canonical miRNA seeds (Lewis et al., 2005). Specifically, we scored matches to the following seed types:
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“6mer” (exact match to nucleotides 2 to 7 in the mature miRNA sequence), “7mer” (exact match to

nucleotides 2 to 8), “7mer-A1” (exact match to nucleotides 2 to 7 followed by an Adenine), “8mer” (exact

match to nucleotides 1 to 8), “8mer-A1” (exact match to nucleotides 2 to 8 followed by an Adenine). To

evaluate MRE conservation, multi-species alignment across human, mouse, rat, dog and chicken genomes

for 54,256 AGO2-binding sites were extracted from Galaxy (Blankenberg et al., 2011). To lower the

number of spurious miRNA seed matches, we restricted our analysis to 181 miRNAs among the top

300 abundant miRNAs in our samples and modulated upon DOX treatment at any tested condition

(Supplemental Table 1). Distribution of the position of the first MRE nucleotide in the AGO2-binding

site showed a clear preference to positions from -2 to +5 with respect to mode location for T-to-C

conversion (Supplemental Figure 9), in agreement with previous reports (Hafner et al., 2012). With

respect to AGO2-binding sites with matches to multiple miRNAs from different miRNA families (i.e.:

with different nucleotides at positions 2 to 8 in the mature sequence) the given AGO2-binding site was

assigned to a single miRNA (or miRNA family) by applying the following priority rule: (i) select top

conserved MRE; (ii) in case of multiple MREs with same conservation, select the longest one (considering

8mer > 8mer-1A > 7mer > 7mer-1A > 6mer); (iii) in case of multiple MREs with same conservation and

length, select the closest to T-to-C conversion mode location. The full set of miRNA-target interactions

inferred from the above procedure based on canonical MREs is listed in Supplemental Table 5. However,

since it has been shown that miRNAs can also interact with their target mRNAs beyond canonical

MREs (e.g.: with partial complementary sites including G:U wobble base pairing and/or involving 3’

compensatory pairing) we furthered our analysis by including recently published interactions from CLIP-

Seq data (Clark et al., 2014) obtained with the CLIPSim-MC algorithm (Xia et al., 2012) and overlapping

our catalogue of AGO2-binding sites. Figure 4A shows a Cytoscape (Smoot et al., 2011) rendering of the

full network of putative miRNA-target interactions - including both seed and seed-less MREs - relative

to 37,840 exonic AGO2-binding sites (541 found in 5’UTRs, 17,652 in protein coding exons and 19,647

in 3’UTRs), with a zoomed-in view of the sub-network for let-7 family members. These same networks
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of miRNA-target interactions are listed in two separated sheets (for the full network and the let-7 family

sub-network) in Supplemental Table 5.

Analysis of miRNA-target site interactions from chimera reads in PAR-CLIP
data.

As per Grosswendt and coworkers (Grosswendt et al., 2014), we reanalyzed unmapped reads in our PAR-

CLIP data to unveil chimera reads (ie: fusion reads composed of part of the mature miRNA and part of

its binding site sequence) resulted from endogenous ligation reactions (Supplemental Fig. 13). To this

end, we implemented a multi-step procedure based on well-established alignment tools - Blat (Kent, 2002)

and Bowtie (Langmead et al., 2009) - together with ad-hoc R (R Core Team, 2014) and Perl scripts for

alignment refinement and applied it to the analysis of collapsed reads from all PAR-CLIP samples that

failed to align to the human hg19 genome (unmapped reads) (see section Processing of AGO2 PAR-CLIP

data). The procedure is outlined as followed:

step 0 - collect unmapped reads from all PAR-CLIP samples: We used the FASTX-Toolkit to

create a collapsed fasta dataset of unique sequences from all PAR-CLIP samples that failed to align

to the human hg19 genome, each identified by a two-fields identifier in the format: [unique sequence

index]-[total sequence counts]

step 1 - identification of complete and truncated miRNA sequences (miRNA part): We used

the Blat (Kent, 2002) software to locally align unmapped reads against mature miRNA sequences

obtained from miRBase (Griffiths-Jones, 2004) by requiring at least a shared substring of 8 nu-

cleotides for a match to be reported (run parameters: -tileSize=8 -minIdentity=100 -minMatch=1).

step 2 - refinement and filtering of intermediate results: We selected a subset of valid chimera

candidates based on: Blat match orientation (sense); match size (>=11nt); match location with

respect to the candidate chimera sequence (boundary match - either at the 5’ or 3’ end); miRNA

matched part (5’-end of the miRNA mature sequence included in the match); remaining sequence
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size outside the miRNA-matching part (>=15nt); mismatches in Blat alignment (none or T>C

mutation).

step 3 - identification of binding site sequences (target part): To identify the binding site sec-

tion of candidate chimera sequences, the set of remaining sequence outside the chimera miRNA

part were mapped against the human genome (hg19) by using the Bowtie (Kent, 2002) aligner -

version 1.0.0 - allowing up to 3 mismatches to the reference sequences but discarding sequences

with multiple genomic hits.

step 4 - final refinement and filtering of results: Alignment results were selected based on: mis-

matches in Bowtie alignment (none or T>C mutation); binding site match location in chimera

read (accept only matches accounting for the whole remaining part of the chimera read outside the

miRNA part); evidence supporting the observed target site across PAR-CLIP libraries (require a

cumulative value of at least 5 for the normalized read counts of the given genomic interval).

step 5 - scoring of miRNA seed match: The identified chimera reads were annotated for the pres-

ence of seed matches (5 to 7 nucleotides, starting at position 2 in the mature miRNA sequence) for

the cognate miRNA in the chimera target-part. To this end, target-part sequences (ranging in size

15 to 39 nucleotides) were extended up to 50 nucleotides upstream and downstream the mid point

(ie: creating a set of target sites of fixed - 101 nucleotides - size) to avoid loss of genuine miRNA

matching positions possibly due to RNAse activity (Grosswendt et al., 2014).

The list of miRNA-target pairs recovered from the analysis of chimera reads is reported in Supple-

mental Table 6.
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