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Methods

1. Samples and data
We analyzed sequences from 24 wolves, three ancient breed dogs (one Tibetan mastiff, one basenji and one dingo), three Chinese indigenous dogs, and the boxer as a modern breed. We used three outgroup species (one coyote, one Kenya golden jackal and one Israeli golden jackal). Within the Old World wolves, five were from Europe (Spain, Croatian, Italy, Portugal and Russia), two were from the Middle East (Iran and Israeli), 13 were from Asia (China (10), India  (1), and Russia (2)) (Fi. 1; Supplemental Table S1). The three Russian wolves were from the Far East Asia (Chukotka), Central Asia (Altai), and Europe (Bryansk). The three Chinese indigenous dogs were also from different locations: Xi’an (Central Asia); Si’mao (close to Laos and Vietnam); and Ya’an (the eastern edge of the Tibetan Plateau) (Fig. 1). There were four New World wolves, including one Mexican wolf and three Yellowstone National Park wolves representing parents and an offspring. We only included the Yellowstone wolf with the highest genome coverage (Yellowstone wolf 1, the father) in some downstream analyses, such as phylogenetic tree.
Genomic DNA was extracted from whole blood using the standard phenol-chloroform method. The whole genome sequencing was performed using an Illumina Hiseq 2000 at Beijing Genomics Institute (BGI). For each sample, two paired-end libraries with insert sizes of ~ 300 to 500 bp were generated. Library preparation and all sequencing runs were performed according to manufacturer’s protocols. Some individuals were sequenced and reported in previous studies (Supplemental Table S1; Wang et al. 2013; Freedman et al. 2014; Zhang et al. 2014). We downloaded the raw short reads of the three Russian wolves, three Chinese indigenous dogs, one Tibetan mastiff, and nine Chinese wolves (Wang et al. 2013; Zhang et al. 2014), and then processed these reads with our genotype pipeline together with the sequences new to this study (Fig. 1, Supplemental Table S1). Freedman et al. (2014) sequenced three wolves (Croatian wolf, Israeli wolf and Chinese wolf), two dogs (basenji and dingo), and an Israeli golden jackal. For these published genomes, we obtained the genotype files as Variant Call Format (VCF) from the authors and combined the VCF files with genotype calls.
2. Post-genotype filters
We applied a series of data quality filters to improve the quality of genotype calls. These filters were designed to minimize the errors from sequencing and alignment, and to exclude regions exhibiting accelerated evolutionary rates that are not caused by positive selection, but reflect a high mutation rate (Fan et al. 2014; Freedman et al. 2014; Zhang et al. 2014). We used two levels of filters, the Genome Filters (GF) and Sample Filters (SF). The GF is based on the features of the reference genome and polymorphism across all the samples, whereas the SF is based on the genotype results of each independent sample. Thus, high quality sites in each sample should pass both GF and the corresponding SF and were the only ones used in the following analyses. Details of these filters were described in our previous studies (Fan et al. 2014; Freedman et al. 2014; Zhang et al. 2014). 
3. Detection of gene flow using the D-statistic
We applied the ABBA-BABA test (D-statistic) between closely related populations by detecting differences in allele sharing between two lineages (P1 and P2) with a third lineage (P3) (Durand et al. 2011). Given an outgroup (O), two allelic configurations of P1-P2-P3-O are informative of gene flow between P3 with either P1 or P2: ABBA (P1 and O share the same allele A, while P2 and P3 share the alternative allele B) and BABA (P1 and P3 share the alternative allele B, while P2 and O share the allele A). The null hypothesis states that the genome-wide frequencies of these two configurations should be approximately equal in the absence of lineage-specific post-divergence gene flow. Rejection of that null hypothesis implies gene flow between P3 and either P1 or P2. We quantified deviations from this null expectation using the D-statistic:



Here, CABBA(i) and CBABA(i) take the value of 0 or 1 depending on the absence or presence of an ABBA or BABA allele configuration at the ith site. For each comparison, we calculated the D statistic in 5Mb windows along the genome, considering only sites passing genome and sample filters and randomly selecting one allele from each genotype for each site. We estimated the standard error of the D-statistic with a jackknife procedure as done in Durand et al. (2011). We calculated the Z-score by dividing the value of the D statistic by its standard error. Z-scores with absolute values ≥3 were considered significant evidence of gene flow between the P3 and one of the two lineages P1 or P2 (P1 for negative Z-scores, P2 for positive values).
In this study, we focused on gene flow between Old World wolves and the closest dog populations in our dataset. Consequently, we tested whether Asian wolves had gene flow with the Chinese indigenous dogs, Tibetan mastiff and dingo. For the European and Middle Eastern wolves, we tested whether these populations had gene flow with the basenji and boxer. We also tested whether Mexican wolf and Yellowstone wolf had gene flow with Chinese indigenous dogs, boxer and dingo. In the calculations for all the pairwise combinations, we assigned the above wolves as P1 and the dogs as P3.  We used the Israeli golden jackal as outgroup in all the runs. The Indian wolf was used as P2 in all the Old World runs. For the New World wolf runs, we set the Mexican wolf and Yellowstone wolf as P1 and P2 and then switched them. Since domestic dogs are closer to Old World wolves than to New World wolves we did not use the Indian wolf as P2 because of potential bias due to higher allele sharing between the Indian wolves and domestic dogs. 
Under the assumption of one gene flow event that is recent compared to the divergence of dogs and wolves, we further used the Durand et al. (2011) equation to estimate the proportion of dog ancestry in the wolf genomes. The original equation was applied to estimate the proportion of Neanderthal ancestry in non-Africans (Green et al. 2010):
Dog ancestry proportion in wolf 
The S statistics were the average value of the different combinations of wolf 1 and wolf 2 samples. Here, wolf 1 is always the Indian wolf, and wolf 2 is the wolf population that had gene flow with dog detected from above ABBA-BABA runs. For the Asian wolf, we used three Chinese indigenous dogs as dog 1 and dog 2. For the European and Middle Eastern wolves, boxer and basenji were used as dog 1 and dog 2 as the latter represents an ancient African-Middle East lineage, and the former represents the lineage leading to modern European breeds. Additional dog references might increase the number of observed admixture events, but this would be computationally challenging to undertake.
4. Inference of population size changes through time with PSMC
In order to validate the confidence in PSMC findings, we ran 100 bootstrap replicates for each genome. To sample a bootstrap replicate, we divided the genome into segments of 5Mb, sampled with replacement from those segments until we obtained a sequence with approximately the same length as the original genome defined by using the “-b” option in the PSMC software, and re-ran the EM-based effective population size estimation procedure.
5. Demographic inference with G-PhoCS
Neutral loci were selected to be short (1 kb) interspersed (> 30 kb apart) genomic segments that are >10 kb from protein coding genes and avoiding regions with low map ability, high sequencing error rate, or CpG dinucleotides (see Freedman et al. 2014 for more details).
We assumed an exponential distribution with mean of 0.0001 for the mutation-scaled population size () and divergence time () parameters, and a Gamma (= 0.002, = 0.00001) prior for migration rate parameters (m). The Markov Chains exploring the space of parameter values were ran for 75,000 burn-in iterations and an additional 125,000 iterations, in which values of the model parameters were sampled every 50 iterations, resulting in a total of 2,501 samples from the approximate posterior distribution. For each parameter, we recorded the mean sampled value and the 95% Bayesian credible interval (CI). Population size estimates (Ne) were obtained from the mutation-scaled samples () by assuming a mutation rate per generation of 1.0×10-8, and divergence times were calibrated by assuming the same rate and an average generation time of three years. We also examined the influence of uncertainty on mutation rates on timing of key events (Skogland et al. 2015). Gene flow was measured by the total migration rate, which is the per-generation rate times the number of generations in which migration was allowed.
Given the large number of sequences and computational limits, we ran separate analyses on different subsets of sequences, which generated separate inferences that we then integrated into a unified demographic history. In each run, we assumed a population phylogeny consistent with the genome-wide ML tree (Fig. 3), and augmented this tree with various migration bands to model gene flow. To obtain a high level view of global history, we analyzed a subset of six wolf genomes from Europe, the Middle East, East Asia and North America, together with three dog genomes and the golden jackal outgroup (Supplemental Table S6). In this case, we considered also an alternative structure to the population phylogeny, in which dogs are an outgroup to all wolf populations, in addition to the scenario implied by the genome-wide tree, in which New World wolves branched before dogs. To obtain population-specific information on effective population size and migration rates, we ran additional analyses focusing on different geographic regions. One analysis considered the four European and Middle Eastern wolves, basenji and dingo representing dogs, and the Israeli golden jackal as an outgroup. Two additional analyses were done where each considered eight East Asian wolf samples from four populations, the dingo, two Chinese indigenous dogs, and the golden jackal. The two runs differ in the samples chosen to represent lowland Chinese wolves. In all runs, we allowed gene flow between the golden jackal population and all other sampled wolf and dog populations as well as the population ancestral to all dogs and wolves. In the three local runs we allowed gene flow between all sampled dog populations and all sampled wolf populations, but not within wolf populations. In the global run we allowed gene flow between basenji and the Eurasian and Middle Eastern wolves and between dingo and Chinese indigenous dogs and the East Asian wolves. In addition, we modeled gene flow between the two East Asian wolf populations and the two West Eurasian wolf populations. 

Results

1. Alignments, PCR duplicates, coverage and genotyping accuracy
The alignments were done in Bowtie2. PCR duplicates were marked in Picard, and from 4.2% to 64.35% of the reads (mean: 15.8%) represented PCR duplicates that were excluded from downstream analyses. The Italian wolf, Yellowstone wolf 3 and Israeli golden jackal had > 50% PCR duplicates, whereas the rest of the genomes had much lower rates (Supplemental Table S2). After running our genotyping pipeline (Fan et al. 2014; Zhang et al. 2014), the average coverage was 21-fold with most sequences (75%) having more than 20-fold effective coverage (Supplemental Table S1). Of the 24 gray wolves, the Italian wolf, Yellowstone wolf 3, Inner Mongolia wolf 2, and the three Russian wolves had lower than 20-fold coverage. As sequencing was not done at the same time or by the same groups, we assessed the potential for batch effects by examining discordance in geographic clusters using principal component analysis (PCA; see Fig. 4) and more directly by comparing the genotype calls from the sequence data with those using the Illumina CanineHD BeadChip. We did not find clusters in the PCA suggesting batch effects such as a grouping of the sequences from Wang et al. (2013)(Fig. 4). The genotyping accuracy of the new genomes generated in this study was assessed with Illumina CanineHD BeadChip for the Indian wolf and Portugal wolf. Both wolves showed > 99.85% concordance. In addition, another three wolves (Israeli wolf, Croatian wolf, and Inner Mongolia wolf 1) and two dogs (basenji and dingo) were compared previously to the Illumina CanineHD BeadChip, and showed > 99.6% concordance (Freedman et al. 2014). 
2. Useable sites
All the high coverage (> 20-fold) individuals had > 1.2 billion total useable sites, which covered more than 60% of the reference genome. The numbers of total SNPs varied between different canids. As expected, the number of SNPs increased with divergence from the boxer reference with dogs having the fewest at ~ 2 million SNPs (from 1,744,052 to 2,212,090, average: 2,000,320, also reflecting the domestication bottleneck, Freedman et al. 2014), wolves having ~ 3 million SNPs (from 1,986,246 to 3,595,813, average: 3,033,017) and the three outgroups having > 4 million SNPs (from 4,240,145 to 4,752,396, average: 4,427,268) (Supplemental Table S2).
3. Heterozygosity
We only used SNPs to calculate heterozygosity for the following reasons: 1) Misalignment is possible when short reads containing novel CNVs are mapped to the reference genome and can lead to false SNP calls; and 2) Short reads are prone to misalignment near indels and the local realignment around indels in our genotyping pipeline may not fully fix this problem, thus we excluded any SNPs near indels (5bp, either up or downstream).
The lower coverage genomes, especially those with lower than 12-fold coverage (Inner Mongolia wolf 2, Russian wolf (east), Yellowstone wolf 3, and Chinese indigenous dog 3, had very high heterozygosity (Supplemental Figure S5) possibly due to more genotyping error at heterozygous sites. Consequently, we assessed the heterozygosity of exons and neutral regions only for the samples with > 20-fold genome coverage (Supplemental Figure S6). The pattern of heterozygosity of exons and neutral regions is consistent with the pattern of genome wide heterozygosity in the samples. The samples having higher genome wide heterozygosity tended to have higher heterozygosity in exons and neutral regions (Supplemental Figure S6). However, the neutral regions had the highest heterozygosity, whereas the exonic regions had consistently lower heterozygosity in all the samples (Supplemental Figure S6) consistent with the action of purifying selection. The heterozygosity of exonic regions is only 41.6% to 52.6% of the corresponding genome wide heterozygosity.
4. PCA of different geographical regions
[bookmark: _GoBack]The PCA for Asia of this dataset showed that the highland Chinese wolves were the most distinct populations (Supplemental Figure S9a and S9c). For Europe, dogs and wolves were separated on PC1, and Spanish wolf and Portugal wolf were separated from the Croatian wolf, Italian wolf and Western Russian wolf on PC2 (Supplemental Figure S10a). For the Middle Eastern wolf samples, PC1 separated the dogs and wolves, and then PC2 separated the Israeli wolf from the Indian wolf and Iranian wolf (Supplemental Figure S10c). For North American wolves, dogs and wolves separated from each other on PC1 (Supplemental Figure S11).
5. Demographic inference with G-PhoCS
Notable are the very high values of Ne inferred for Qinghai wolf (93,700 individuals), which is also suggested by the peak in their PSMC plot (Fig. 5) and might in part, reflect ancestral population structure. The Israeli wolf had the largest Ne within the European-Middle Eastern wolves (16,600 individuals), which was 3.6-fold and 2.7-fold higher than Croatian wolf (4,600 individuals) and the ancestral population of Iranian and Indian wolf (6,200 individuals), respectively.
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