

# Supplemental Material

metilene: Fast and sensitive detection of differentially methylated regions from bisulfite sequencing data

Frank Jühling<sup>†,1,2</sup>, Helene Kretzmer<sup>†,1,2</sup>, Stephan H. Bernhart<sup>1,2</sup>, Christian Otto<sup>1,2</sup>, Peter F. Stadler<sup>2–6</sup> & Steve Hoffmann<sup>\*1,2</sup>

## Contents

|          |                                                                                                              |          |
|----------|--------------------------------------------------------------------------------------------------------------|----------|
| <b>1</b> | <b>Supplemental Information</b>                                                                              | <b>2</b> |
| 1.1      | Simulation of Artificial Data . . . . .                                                                      | 2        |
| 1.2      | Tool parameter . . . . .                                                                                     | 2        |
| <b>2</b> | <b>Supplemental Tables</b>                                                                                   | <b>3</b> |
| 2.1      | TPR, PPV Artificial Data – WGBS . . . . .                                                                    | 3        |
| 2.2      | TPR, PPV Artificial Data – RRBS . . . . .                                                                    | 4        |
| 2.3      | Runtime and Memory . . . . .                                                                                 | 5        |
| 2.4      | Simulation parameter . . . . .                                                                               | 7        |
| <b>3</b> | <b>Supplemental Figures</b>                                                                                  | <b>8</b> |
| 3.1      | Distribution of Background and DMR Methylation . . . . .                                                     | 8        |
| 3.2      | Boundary Detection – WGBS . . . . .                                                                          | 9        |
| 3.3      | Noisy Data – WGBS . . . . .                                                                                  | 10       |
| 3.4      | TPR, PPV Artificial Data – RRBS . . . . .                                                                    | 11       |
| 3.5      | Boundary Detection – RRBS . . . . .                                                                          | 12       |
| 3.6      | Low Number of Samples . . . . .                                                                              | 13       |
| 3.7      | Missing Data . . . . .                                                                                       | 14       |
| 3.8      | The algorithm implemented in <code>metilene</code> for <i>de-novo</i> DMR prediction as pseudocode . . . . . | 15       |

# 1 Supplemental Information

## 1.1 Simulation of Artificial Data

For benchmarking purposes we simulated DMRs on the human chromosome 10 (hg19). To do this we used the chromatin segmentations of the GM12878 cell line. The scripts for simulating the DMRs from the scratch are given in an additional Supplemental File. This file also contains the chromatin annotations used here.

In brief, we simulated the background and methylation rates for 20 input WGBS input files using the beta distributions given in (Tab. 11) calling the script

```
>Rscript simulate_background.R  $\alpha$   $\beta$  chromatin_annotation_chr10.txt
```

where the parameter  $\alpha$  and  $\beta$  refer to the shapes of the beta distribution and the txt file annotates pro-motor and non-promotor CpGs. To simulate the DMRs inside these backgrounds we used the same beta distributions (cf. Tab. 11). To obtain four different classes of DMRs the mixture factors in (Tab.12) were used.

```
>Rscript simulate_DMRs_WGBS.R  $\alpha$   $\beta$   $c$  <path-to-background-files> <outputpath>
```

where  $c$  is the mixture factor. The script will write the input files for BSmooth and metilene to <outputpath>. We provide an additional script to convert the BSmooth input to MOABS input.

For the RRBS data simulation we extract the RRBS regions using bedtools intersect and finally call

```
>Rscript simulate_DMRs_RRBS.R  $\alpha$   $\beta$   $c$  <path-to-background-files> <outputpath>
```

to generate the DMRs.

## 1.2 Tool parameter

The calls to the benchmarked tools are given below. In case of the R-tools BiSeq and BSmooth the parameters of the used functions are stated instead.

### MOABS

For MOABS (v1.2.9) we used the following calls:

```
>mcomp -p <threads> -r <list-of-files-groupA> -r <list-of-files-groupB> -m <mergedratios-groupA> -m <mergedratios-groupB> -c <compfile> -maxDistConsDmcs 300 > <outfile>
```

### metilene

For metilene (v0.2-4) we used:

```
>metilene -maxdist 300 -t <threads> -a <prefix_groupA> -b <prefix_groupB> <inputfile> > <outfile>
```

### BSmooth

We loaded BSmooth (v.1.0.0) input into R using `read.lister` function and combined data using the `combine` function.

```
BSmooth.tstat: estimate.var="same", local.correct=T (for RRBS data local.correct=F)  
dmrFinder: cutoff=NULL, qcutoff=c(0.025, 0.975), maxGap=300, stat="tstat.corrected"
```

## BiSeq

For BiSeq (v1.2.5), we loaded BSsmooth input into R using `read.table` function and combined data using `BSraw` and `GRanges`.

```
clusterSites: perc.samples=1, min.sites=10, max.dist=300
limitCov: maxCov used 90%-quantile
betaRegression: link="probit", type="BR"
smoothVariogram: sill=0.9
testClusters: FDR.cluster=0.1
trimClusters: FDR.loc=0.05
findDMRs: max.dist=300, diff.dir=TRUE
```

## 2 Supplemental Tables

### 2.1 TPR, PPV Artificial Data – WGBS

| background | DMR class | TPR      |          |       | PPV      |          |       |
|------------|-----------|----------|----------|-------|----------|----------|-------|
|            |           | metilene | BSsmooth | MOABS | metilene | BSsmooth | MOABS |
| 1          | 1         | 0.999    | 0.485    | 0.999 | 1        | 0.356    | 0.953 |
| 1          | 2         | 0.999    | 0.472    | 0.999 | 1        | 0.369    | 0.953 |
| 1          | 3         | 0.999    | 0.414    | 0.970 | 1        | 0.419    | 0.984 |
| 1          | 4         | 0.998    | 0.090    | NA    | 0.999    | 0.651    | NA    |
| 2          | 1         | 0.999    | 0.446    | 0.985 | 1        | 0.386    | 0.969 |
| 2          | 2         | 0.999    | 0.397    | 0.963 | 1        | 0.428    | 0.989 |
| 2          | 3         | 0.999    | 0.250    | 0.380 | 0.999    | 0.522    | 1     |
| 2          | 4         | 0.526    | 0.011    | NA    | 0.989    | 0.702    | NA    |

Table 1: TPR and PPV values based on the CpG-wise comparisons of predicted and simulated DMRs in the human chromosome 10 of a WGBS data set.

| background | DMR class | TPR      |          |       | PPV      |          |       |
|------------|-----------|----------|----------|-------|----------|----------|-------|
|            |           | metilene | BSsmooth | MOABS | metilene | BSsmooth | MOABS |
| 1          | 1         | 1        | 0.116    | 0.995 | 1        | 0.231    | 0.998 |
| 1          | 2         | 1        | 0.112    | 0.995 | 1        | 0.233    | 0.998 |
| 1          | 3         | 1        | 0.116    | 0.996 | 1        | 0.289    | 1     |
| 1          | 4         | 1        | 0.081    | NA    | 1        | 1        | NA    |
| 2          | 1         | 1        | 0.112    | 0.997 | 1        | 0.259    | 1     |
| 2          | 2         | 1        | 0.114    | 0.988 | 1        | 0.305    | 1     |
| 2          | 3         | 1        | 0.127    | 0.375 | 1        | 0.587    | 1     |
| 2          | 4         | 0.527    | 0.010    | NA    | 1        | 0.500    | NA    |

Table 2: TPR and PPV values based on the segment-wise comparisons of predicted and simulated DMRs in the human chromosome 10 of a WGBS data set.

## 2.2 TPR, PPV Artificial Data – RRBS

| back-ground | DMR class | TPR      |         |       |       | PPV      |         |       |       |
|-------------|-----------|----------|---------|-------|-------|----------|---------|-------|-------|
|             |           | metilene | BSmooth | MOABS | BiSeq | metilene | BSmooth | MOABS | BiSeq |
| 1           | 1         | 0.993    |         |       | 1     | 0.998    |         |       | 0.696 |
| 1           | 2         | 0.993    |         |       | 1     | 0.998    |         |       | 0.700 |
| 1           | 3         | 0.993    |         |       | 1     | 0.999    |         |       | 0.714 |
| 1           | 4         | 0.992    |         |       | 0.954 | 0.999    |         |       | 0.768 |
| 2           | 1         | 0.998    |         |       | 0.997 | 0.998    |         |       | 0.747 |
| 2           | 2         | 0.999    |         |       | 0.995 | 0.999    |         |       | 0.762 |
| 2           | 3         | 0.998    |         |       | 0.980 | 0.999    |         |       | 0.810 |
| 2           | 4         | 0.533    |         |       | 0.274 | 0.991    |         |       | 0.933 |

Table 3: TPR and PPV values based on the CpG-wise comparisons of predicted and simulated DMRs in the human chromosome 10 of a RRBS data set.

| back-ground | DMR class | TPR      |         |       |       | PPV      |         |       |       |
|-------------|-----------|----------|---------|-------|-------|----------|---------|-------|-------|
|             |           | metilene | BSmooth | MOABS | BiSeq | metilene | BSmooth | MOABS | BiSeq |
| 1           | 1         | 1        |         |       | 0.949 | 1        |         |       | 0.960 |
| 1           | 2         | 1        |         |       | 0.955 | 1        |         |       | 0.965 |
| 1           | 3         | 1        |         |       | 0.955 | 1        |         |       | 0.965 |
| 1           | 4         | 1        |         |       | 1     | 1        |         |       | 0.945 |
| 2           | 1         | 1        |         |       | 0.952 | 1        |         |       | 0.975 |
| 2           | 2         | 1        |         |       | 0.957 | 1        |         |       | 0.980 |
| 2           | 3         | 1        |         |       | 0.978 | 1        |         |       | 0.975 |
| 2           | 4         | 1        |         |       | 0.987 | 0.530    |         |       | 0.280 |

Table 4: TPR and PPV values based on the segment-wise comparisons of predicted and simulated DMRs in the human chromosome 10 of a RRBS data set.

## 2.3 Runtime and Memory

|           | cores | metilene | MOABS     | BSmooth  | speedup  |
|-----------|-------|----------|-----------|----------|----------|
| real time | 1     | 0h4m7s   | 65h35m11s | 2h20m3s  | 34x–956x |
|           | 10    | 0h1m14s  | 9h11m51s  | 0h23m19s | 19x–447x |
| RAM       | 1     | 0.7 GB   | 5.4 GB    | 10.7 GB  |          |
|           | 10    | 1.2 GB   | 6.8 GB    | 90.2 GB  |          |

Table 5: **WGBS** running time and memory requirements for `metilene`, `MOABS`, and `BSmooth` for calling DMRs on the human chromosome 10 (hg19) with 10 vs. 10 **simulated** samples. In the simulations a total of 2.7M CpG positions was evaluated.

|           | cores | metilene | MOABS   | BSmooth | BiSeq    | speedup     |
|-----------|-------|----------|---------|---------|----------|-------------|
| real time | 1     | 4s       | SF*     | 2m20s   | 8h21m35s | 35x–7.524x  |
|           | 10    | 2s       | 20m27s  | 0m52s   | 8h19m18s | 26x–14.979x |
| RAM       | 1     | 0.08 GB  | SF*     | 1.12 GB | 1.42 GB  |             |
|           | 10    | 0.75 GB  | 7.54 GB | 7.31 GB | 1.42 GB  |             |

Table 6: **RRBS** running time and memory requirements for `metilene`, `MOABS`, and `BSmooth` for calling DMRs on the human chromosome 10 (hg19) with 10 vs. 10 **simulated** samples. In the simulations a total of 57,8k CpG positions was evaluated. SF\*: `MOABS` did not finish any of several test runs (segmentation faults) on one core while we observed no problems for the same input data when running on more than one core. E.g., the running time of `MOABS` on two cores was 73m35s with 7.03 GB RAM.

|                       | metilene | MOABS    | BSmooth  | speedup  |
|-----------------------|----------|----------|----------|----------|
| <u>chromosome 10:</u> |          |          |          |          |
| real time             | 0h0m52s  | 5h29m35s | 0h17m25s | 20x–380x |
| RAM                   | 0.02 GB  | 6.8 GB   | 73.3 GB  |          |
| <u>whole genome:</u>  |          |          |          |          |
| real time             | 0h9m55s  | NA       | NA       |          |
| RAM                   | 0.09 GB  | NA       | NA       |          |

Table 7: **WGBS** running time and memory requirements for `metilene`, `MOABS`, and `BSmooth`, each running on **10 cores**, for calling DMRs on the human chromosome 10 and the whole human genome (hg19) with 8 vs. 12 **real** samples. Due to missing values this data set is not directly comparable to the simulations. For chromosome 10 a total of 1.1M CpG positions was evaluated for all samples.

|           | samples   | metilene | MOABS       | BSmooth      | speedup     |
|-----------|-----------|----------|-------------|--------------|-------------|
| real time | 2 vs. 2   | 04m21s   | 1d01h54m32s | 2h01m26s     | 28x–357x    |
|           | 4 vs. 4   | 05m18s   | 3d04h30m28s | 2h24m10s     | 27x–866x    |
|           | 8 vs. 8   | 08m21s   | 4d10h47m05s | 18d18h29m33s | 726x–3,065x |
|           | 16 vs. 16 | 14m12s   | NA          | NA           | NA          |
|           | 50 vs. 50 | 50m15s   | NA          | NA           | NA          |
| RAM       | 2 vs. 2   | 0.12 GB  | 17.85 GB    | 67.99 GB     |             |
|           | 4 vs. 4   | 0.09 GB  | 17.85 GB    | 176.34 GB    |             |
|           | 8 vs. 8   | 0.08 GB  | 17.85 GB    | 300.00 GB    |             |
|           | 16 vs. 16 | 0.12 GB  | NA          | NA           |             |
|           | 50 vs. 50 | 0.08 GB  | NA          | NA           |             |

Table 8: **WGBS** running time and memory requirements for `metilene`, `MOABS`, and `BSmooth`, each running on **10 cores**, for calling DMRs on the human genome (hg19) with different sample sizes, i.e., 2 vs. 2, 4 vs. 4, 8 vs. 8, 16 vs. 16, and 50 vs. 50 **real** samples. All “NA” entries were not evaluated due to run time/memory issues. Test input data sets with more than 8 vs. 8 samples contained duplicates.

|                   | $t_{dist}$ | WGBS      |          | RRBS      |         |
|-------------------|------------|-----------|----------|-----------|---------|
|                   |            | real time | memory   | real time | memory  |
| (default setting) | 50         | 1m12s     | 0.08 GB  | 3s        | 0.08 GB |
|                   | 100        | 1m35s     | 0.21 GB  | 3s        | 0.08 GB |
|                   | 250        | 3m06s     | 0.27 GB  | 3s        | 0.08 GB |
|                   | 300        | 4m07s     | 0.66 GB  | 4s        | 0.08 GB |
|                   | 500        | 9m49s     | 2.18 GB  | 4s        | 0.08 GB |
|                   | 750        | 25m55s    | 4.30 GB  | 4s        | 0.08 GB |
|                   | 1.000      | 1h10m13s  | 31.92 GB | 4s        | 0.08 GB |

Table 9: Running time and memory requirements for `metilene` with different  $t_{dist}$  settings.

|                   | $t_{min}$ | WGBS      |         | RRBS      |          |
|-------------------|-----------|-----------|---------|-----------|----------|
|                   |           | real time | memory  | real time | memory   |
| (default setting) | 3         | 6m28s     | 0.74 GB | 6s        | 0.08 GB  |
|                   | 5         | 4m11s     | 0.73 GB | 5s        | 0.08 GB  |
|                   | 7         | 3m49s     | 0.73 GB | 4s        | 0.08 GB  |
|                   | 10        | 3m55s     | 0.73 GB | 4s        | 0.08 GB  |
|                   | 15        | 6m21s     | 0.73 GB | 3s        | 0.08 GB  |
|                   | 25        | 14m41s    | 0.73 GB | 3s        | 0.08 GB  |
|                   | 50        | 13m39s    | 0.73 GB | 3s        | 0.08 GB  |
|                   | 100       | 28m14s    | 0.73 GB | 2s        | 0.08 GB  |
|                   | 150       | 24m13s    | 0.73 GB | 2s*       | 0.08 GB* |
|                   | 200       | 21m41s    | 0.73 GB | 2s*       | 0.08 GB* |

Table 10: Running time and memory requirements for `metilene` with different  $t_{min}$  settings. No DMRs were found anymore for settings flagged with \*.

## 2.4 Simulation parameter

|              | non-promoter |         | promoter |         |
|--------------|--------------|---------|----------|---------|
|              | $\alpha$     | $\beta$ | $\alpha$ | $\beta$ |
| background 1 | 40           | 3       | 3        | 40      |
| background 2 | 15           | 5       | 5        | 15      |

Table 11: Parameters for the beta distributions to simulate background methylation rates.

| DMR class | Mixture factors $c$ |
|-----------|---------------------|
| 1         | 1                   |
| 2         | 0.87                |
| 3         | 0.73                |
| 4         | 0.60                |

Table 12: Mixture factors of random variables sampled from beta distributions for the simulation.

### 3 Supplemental Figures

#### 3.1 Distribution of Background and DMR Methylation

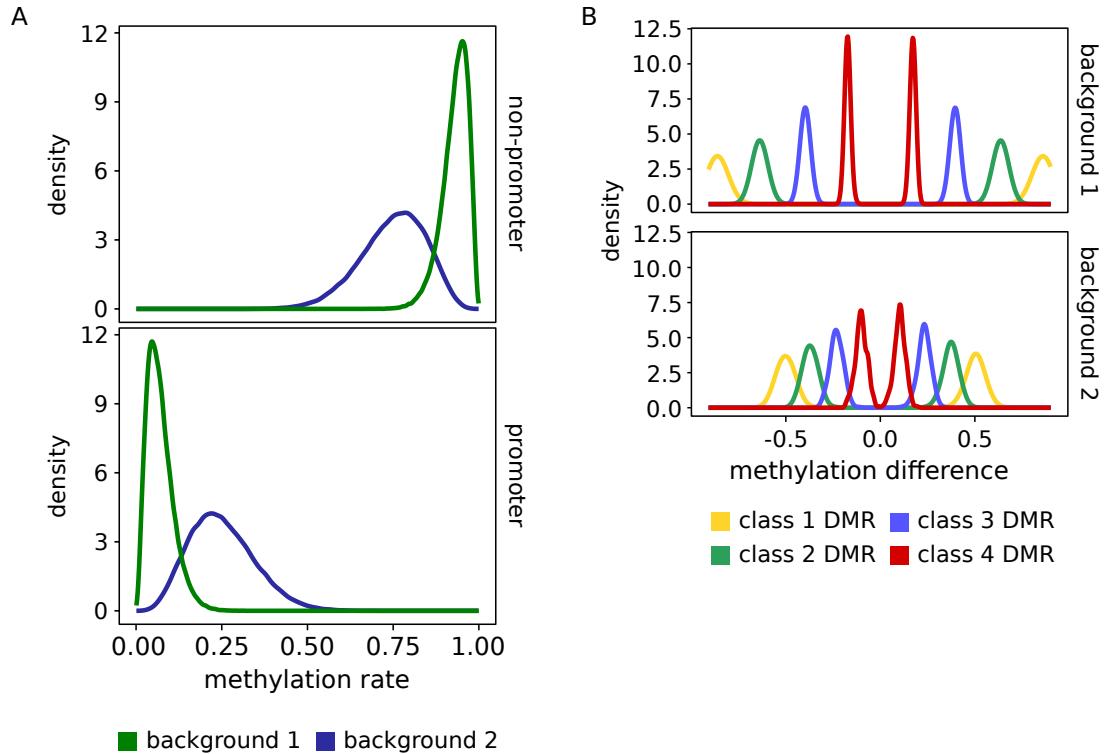



Figure 1: Distributions of methylation rates for backgrounds and DMRs. A) Two different background distributions were used to simulate non-promoter (top) and promoter (bottom) regions. B) The distributions of mean methylation differences in DMR regions for the combination of the two simulated backgrounds with four different mixture ratios. This allows to simulate a comprehensive grading set of DMRs between easily (class 1 DMRs – background 1, top – yellow) and difficultly (class 4 DMR on background 2, bottom – red) distinguishable.

### 3.2 Boundary Detection – WGBS

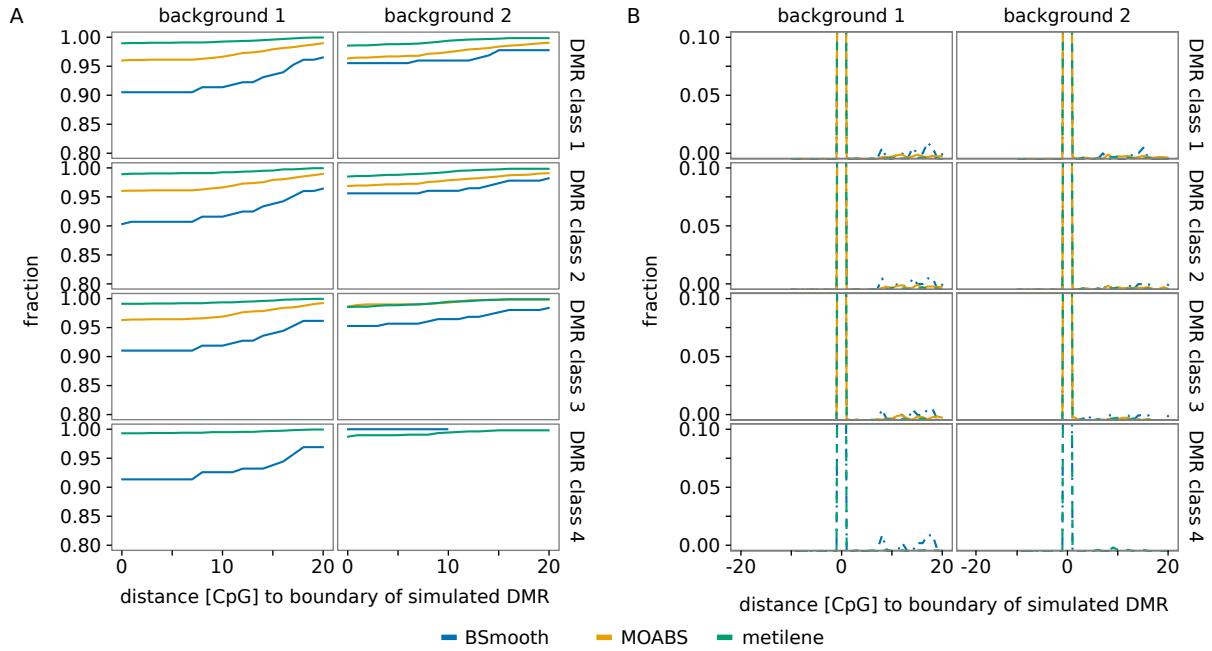



Figure 2: **WGBS** boundary detection analyses for background 1+2 and DMRs of class 1-4. MOABS did not predict any class 4 DMR and is therefore missing in the corresponding figures. The fraction of predicted DMR boundaries of metilene, MOABS, and BSmooth within different maximum absolute distances, ranging from 0 (no difference between simulated and predicted boundary) to 20 CpGs. B) The fraction of distances (in CpGs) between predicted and simulated boundaries for the three tools. Negative distances indicate that the predictions were too short compared to the simulated ones while positive values indicate predictions extending beyond the simulated DMRs.

### 3.3 Noisy Data – WGBS

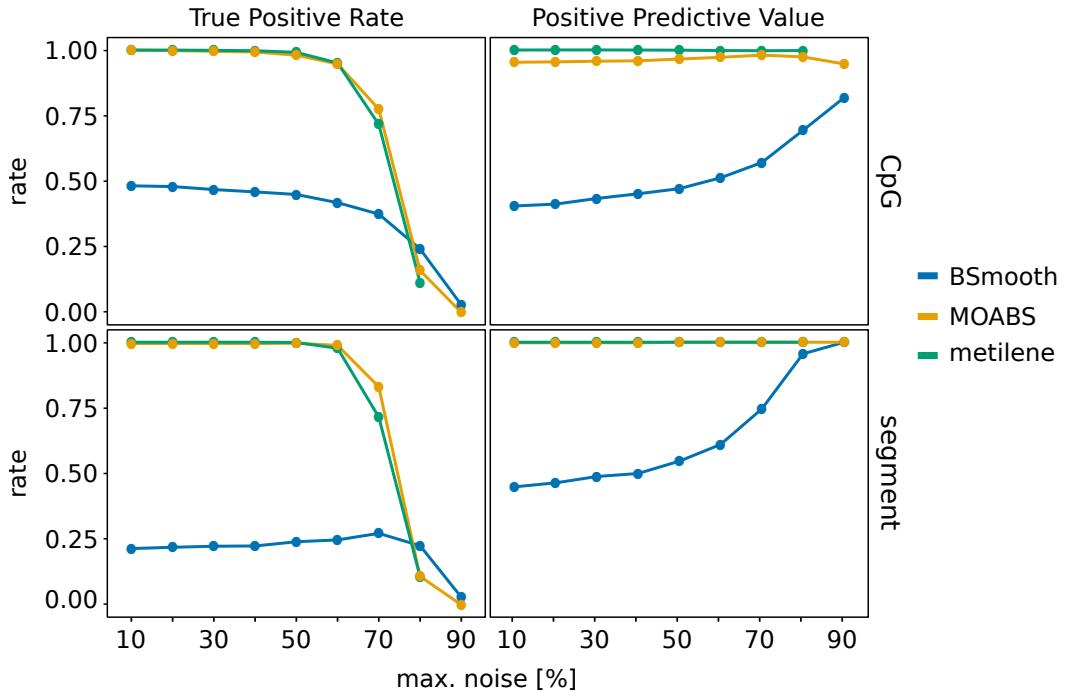



Figure 3: Simulations with different percentages of noise introduced into **WGBS** DMR regions. TPRs and PPVs on the CpG level (top) and the DMR level (bottom) were measured. metilene and MOABS showed a very stable detection of DMRs also with high levels of noise. For DMRs with almost  $\frac{2}{3}$  noise and only  $\frac{1}{3}$  signal both tools miss DMRs. BSmooth reports less than  $\frac{1}{3}$  DMRs in general.

### 3.4 TPR, PPV Artificial Data – RRBS

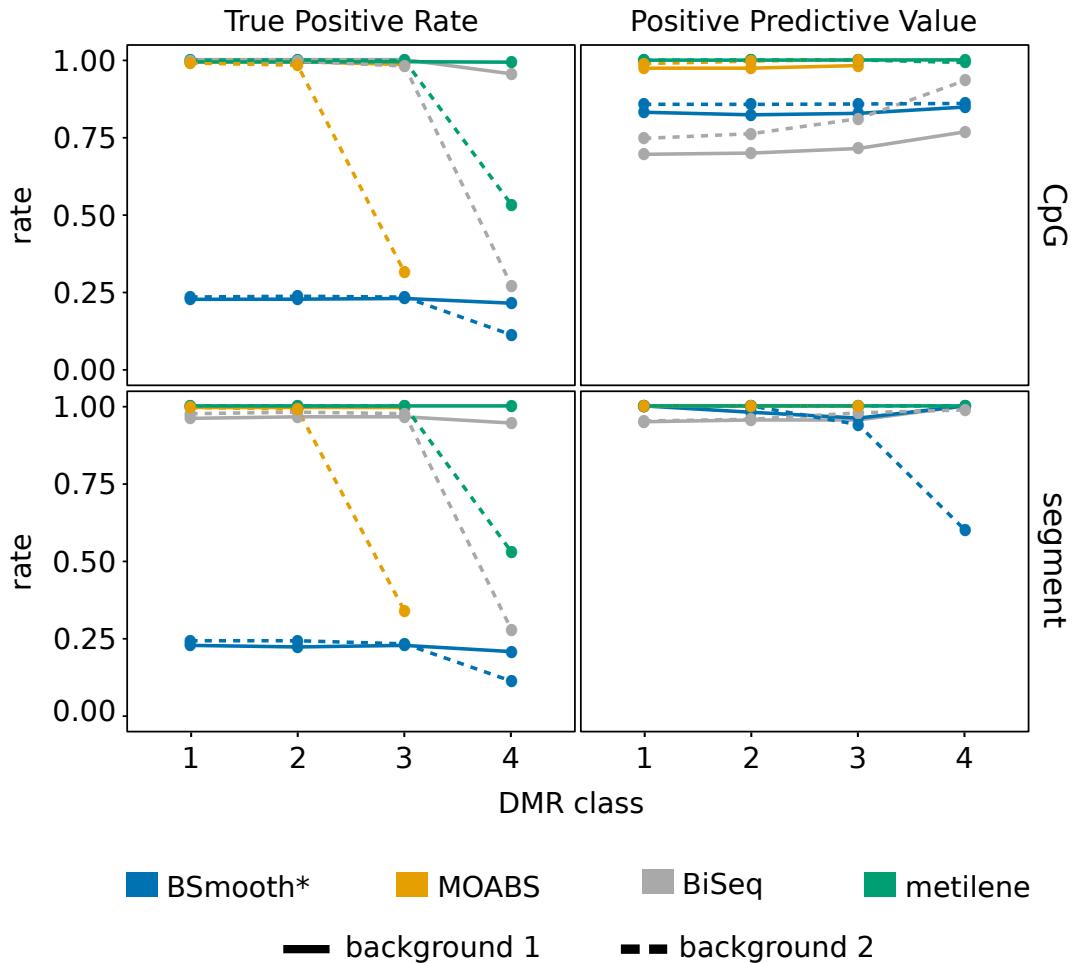



Figure 4: The performance of metilene, MOABS, BSmooth, and BiSeq in terms of true positive rates and positive predictive values (PPVs) for different classes of DMRs on the RRBS simulations.

### 3.5 Boundary Detection – RRBS

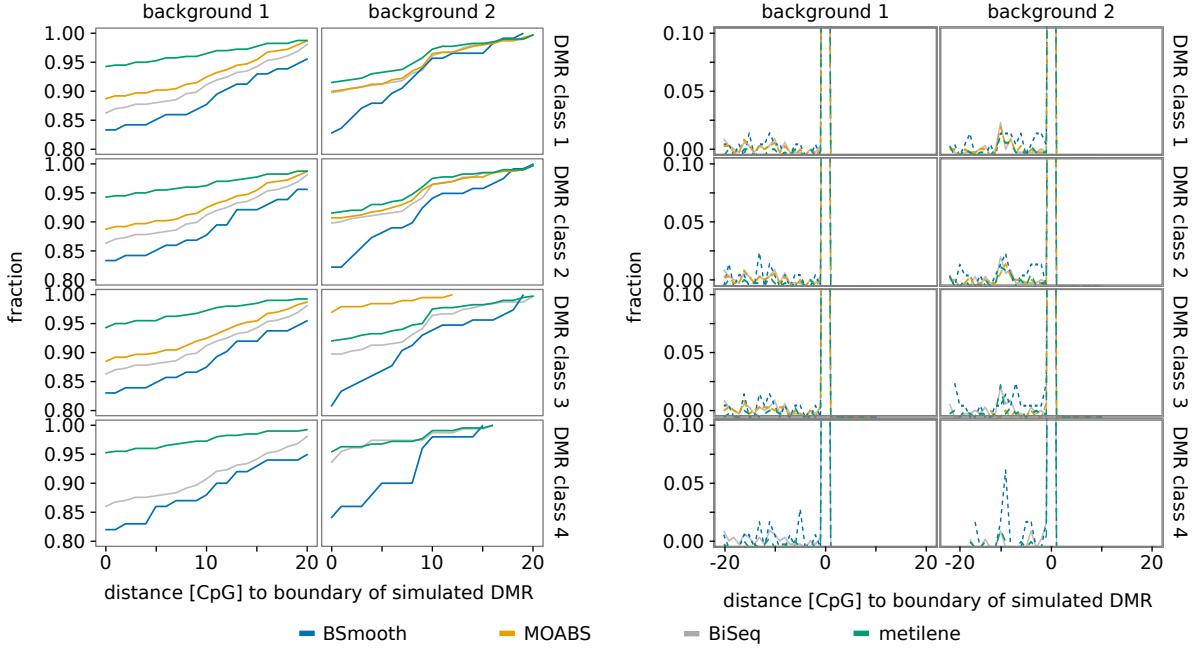



Figure 5: **RRBS** boundary detection analyses for background 1+2 and DMRs of class 1-4. MOABS did not predict any class 4 DMR and is therefore missing in the corresponding figures. The fraction of predicted DMR boundaries of metilene, MOABS, BSsmooth, and BiSeq within different maximum absolute distances, ranging from 0 (no difference between simulated and predicted boundary) to 20 CpGs. B) The fraction of distances (in CpGs) between predicted and simulated boundaries for the three tools. Negative distances indicate that the predictions were too short compared to the simulated ones while positive values indicate predictions extending beyond the simulated DMRs.

### 3.6 Low Number of Samples

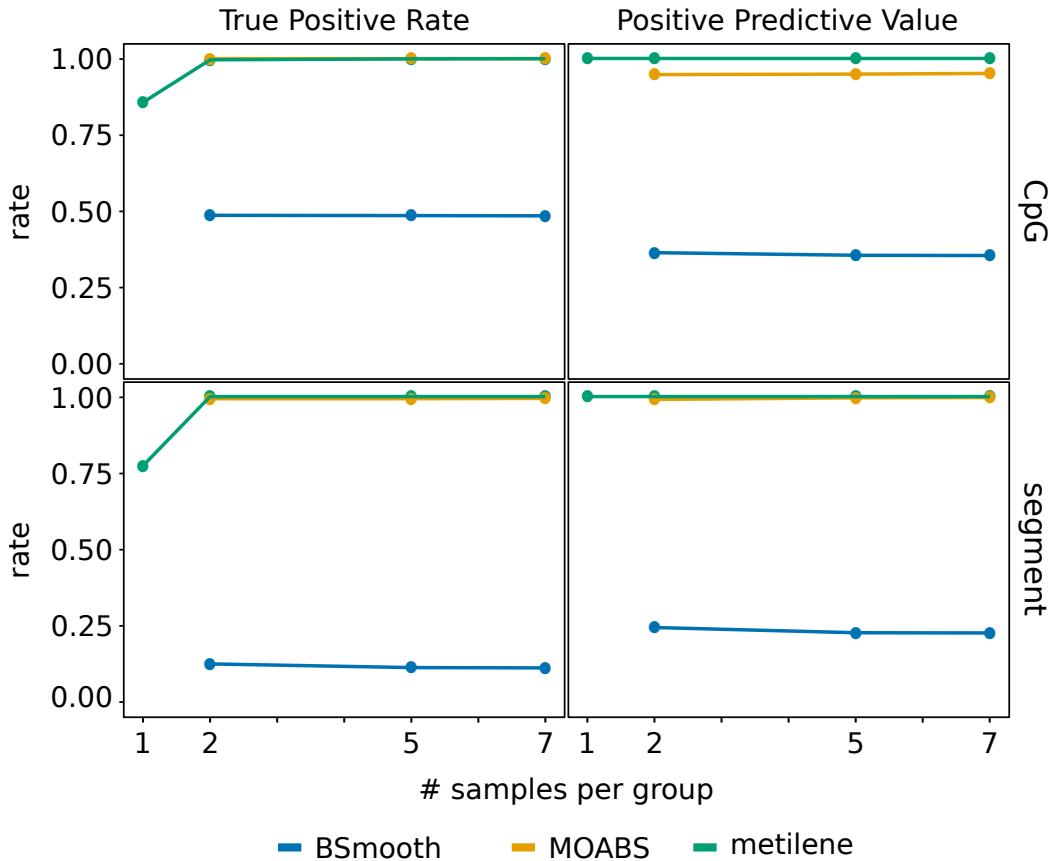



Figure 6: **WGBS** simulations with low number of samples. TPRs and PPVs on the CpG level (top) and the DMR level (bottom) were measured while comparing groups consisting of only 1, 3, 5 or 7 samples. Only metilene is able to compare 1 vs. 1 sample while both other tools need at least 2 samples within each group.

### 3.7 Missing Data

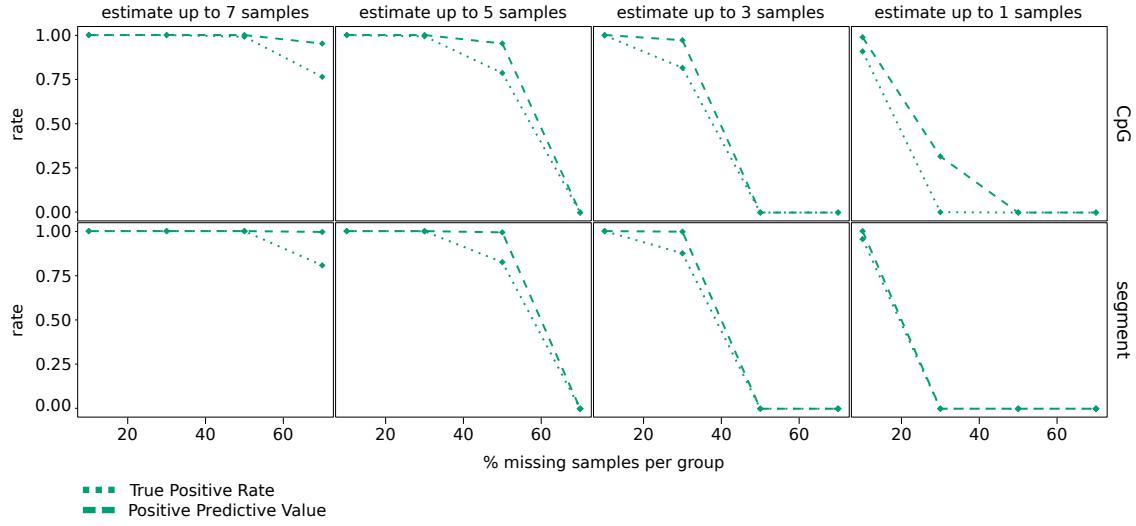



Figure 7: **WGBS** simulations with different levels of missing data as well as different amounts of estimated samples. The data set consisted of 10 vs. 10 samples while a certain amount of values was removed from the data, and different numbers of samples (7, 5, 3, and 1) per CpG position were allowed to be estimated by metilene using a beta distribution estimated from the existing methylation rates. TPRs and PPVs were measured on the CpG level (top) and the DMR level (bottom).

### 3.8 The algorithm implemented in metilene for *de-novo* DMR predictiton as pseudocode

---

#### Algorithm 1 metilene

---

```

1: diff=mean(group1)-mean(group2)
2: procedure SUB-REGIONS(distCpGs)
3:   for all CpGs x,y do
4:     if dist(x,y) >  $t_{dist}$  then
5:       subregion1 = [.,x]
6:       subregion2 = [y,.]
7:     end if
8:   end for
9: end procedure

```

---

#### Phase 1 - Segment each sub-region [s,t]

---

```

10: for all  $s \leq a < b \leq t$  do
11:   Calculate  $Z_{s,t}(a, b)$ 
12: end for
13:  $Z_{max}(a, b) = \max_{s \leq a < b \leq t} |Z_{s,t}(a, b)|$ 
14: Define pre-segments as  $[s,a], [a,b], [b,t]$ 

```

---

#### Phase 2 - Filter pre-segments

---

```

15: for all pre-segments do
16:   if #CpGs  $\leq \min_{CpGs}$  then
17:     Do 2D KS-test and calculate  $p_{new}$ 
18:     Label as potential DMR
19:   else if low variation filter passed then
20:     if majority filter passed then
21:       Do 2D KS-test and calculate  $p_{new}$ 
22:       if exists( $p_{[s,t]}$ ) AND  $p_{new} > p_{[s,t]}$  then
23:         Label as potential DMR
24:       else
25:         Goto Phase 1
26:       end if
27:     else
28:       Goto Phase 1
29:     end if
30:   else
31:     Goto Phase 1
32:   end if
33: end for

```

---

#### Phase 3 - Call DMRs

---

```

34: DMR =  $\arg\min_{potentialDMRs}(p\_value)$ 
35: Goto Phase 1 for  $[s, start_{DMR}], (end_{DMR}, t]$ 

```

---

#### Phase 4 - Output DMRs

---

```

36: Merge all regions without p-value
37: for all regions labeled as potential DMR do
38:   if diff  $\geq diff_{min}$  then
39:     Do Mann-Whitney U test
40:   end if
41: end for
42: Output all segments

```

---

Figure 8: The algorithm implemented in metilene for *de-novo* DMR predictition as pseudocode.