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Figure S1. Workflow of Tetrahymena nucleosome mapping experiments. Macronuclei were isolated from starved
or log-phase Tetrahymena and digested with MNase. Separately, Tefrahymena histones were acid-extracted,
refolded into octamers, assembled on genomic DNA through salt gradient dialysis, and subsequently treated with
MNase. No frans-acting factors were added during chromatin assembly. The mononucleosomal DNA from in
vivo and in vitro MNase digests was gel-purified for subsequent lllumina sequencing.



Beh Fig. S2

A in vivo digestion in vitro digestion
37°C, 45sec — 15min 25°C, 12min
Digestion Digestion Digestion Digestion
Mo - __g__ M - : M- 94 M - :
= = 2 r3 [ | ) - K
— —
LT e - ¥ | |- ¥
ewhayi| MR " | il
el 1™ . —‘llip .
Native chromatin Fixed chromatin 4:10 7:10
Histone octamer : DNA Histone octamer : DNA
Reconstituted chromatin
SetA
B c o D L
. in vitro digestion in vitro digestion
«Da Input Fractions 25°C, 12min 25°C. 12min
75 -1 -] : D 58 i i _ [MNase] [MNase]
1 <] L » 3 M + + - M - + ++
50 =1% : {
37 =/ ‘ - § o s = :
25 = ¥ 5
20 - e - .
15 -‘ _ ﬁ.’ — e
p » =
10 =
Reconstituted chromatin Naked gDNA
SetB

Figure S2. Gel analysis of Tefrahymena chromatin samples. (A) Macronuclei from log-phase or starved cells yielded nucleosome ladders
upon MNase digestion in vivo, similar to other eukaryotes. A protected mononucleosome-sized fragment was observed after in vitro
reconstituted chromatin after MNase treatment, with no evidence of laddering. Mononucleosomal DNA samples marked with a red arrow
were gel-purified for subsequent paired-end sequencing. (B) Size exclusion chromatography of refolded Tefrahymena histone octamers.
The fractions highlighted with a horizontal black bar were pooled and concentrated for subsequent in vitro reconstitution experiments with
Tetrahymena genomic DNA. (C) Light and heavy digestion of in vitro reconstituted chromatin. Samples are from reconstitution set “B” (see
Supplemental Methods). They were digested with either (33 Kunitz Units) or 21.96 ul (66 Kunitz Units) MNase, and labeled as light (“+”
and heavy (“++“) digest, respectively. Mononucleosome-sized fragments denoted by the red arrow were excised and gel-purified, for
subsequent paired-end sequencing. (D) MNase digestion of naked Tetrahymena macronuclear gDNA. The DNA was digested with either
2.37 or 4.74 Kunitz Units of MNase (labeled as “+” and “++” respectively). A ~150bp mononucleosome-sized fragment was excised, as
denoted by the dotted red lines and arrow. This sample was gel-purified and subjected to paired-end sequencing. ‘M’ denotes kb(+) DNA
ladder (Life Technologies); ‘kDa’ denotes Precision Plus Protein Dual Color protein ladder (Bio-Rad).
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Figure S3. Subsampling of MNase-seq data. Varying fractions of mapped read pairs from each dataset were randomly subsampled, and
used for nucleosome calling through DANPOS (Chen et al. 2013a). Reads pairs were mapped to all chromosomes in the October 2008
build of the Tetrahymena SB210 reference genome (Eisen et al. 2006). Each point represents subsampling of a particular fraction of read
pairs. The number of called high confidence nucleosomes (p < 1e8) approached saturation before full sampling of in vivo and in vitro data,
indicating that nucleosomes are well-sampled in all datasets.
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Figure S4. Phasograms of in vitro and in vivo MNase-seq datasets. A distinct 200bp periodicity is
specifically observed within in vivo datasets (log-phase and starve), suggesting the presence of regular
nucleosome arrays. This is consistent with our gel analysis (Supplemental Fig. S2A) and other
independent studies (Gorovsky et al. 1978).



Beh Fig. S5

Ori 1 Ori 2
Tetrahymena rDNA 5' NTS
200 400 600 800 1,000 1,200 1,400 1,600
1.25
Log-phase
fixed chromatin
light digest
oL
125
Log-phase
native chromatin
heavy digest
oL
125
Starve
fixed chromatin
light digest
oL
125
Starve
native chromatin
heavy digest
oL
125
in vitro
native chromatin
light digest
oL
125
in vitro
native chromatin
heavy digest
oL

Figure S5. Nucleosome dyad counts along the 5 NTS of the Tetrahymena ribosomal DNA locus. Only uniquely mapping reads were
considered when tabulating nucleosome dyads from MNase-seq reads, at this locus. Blue and green tracks represent in vivo data from
chromatin digested to different extents with MNase. Well-positioned nucleosomes in vivo flank both origins of replication in vivo,
corroborating independent studies that mapped nucleosome positions through Southern analysis. We excluded the 5’-most end (0-200 bp)
of the rDNA locus from this analysis, because of potentially ambiguous mapping of the 5" end of read pairs to the adjacent palindromic arm
of this locus.
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Figure S6. Distribution of intergenic distances in Tetrahymena
and yeast. An intergenic distance is designated as the length
between 3’ end of the open reading frame of a gene, and the 5’
end of an adjacent open reading frame. Tefrahymena intergenic
regions tend to be longer than those in yeast.
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Figure S7. Removing duplicate reads does not affect the in vivo-like nucleosome organization near TSSs in
vitro. Histograms of called nucleosome dyads within each in vitro and log-phase in vivo datasets, around
TSSs. The various in vitro datasets analyzed here are described in Methods. Stringent filters for absolute and
conditional nucleosome positioning were applied, such that ~35% of nucleosomes were discarded. The
nucleosome organization remains similar in vivo and in vitro even when duplicate reads are removed,
suggesting that it is not an artifact arising from over-ampilification of lllumina libraries.
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Figure S8. The phased pattern of in vitro nucleosome positions is robust to variation in nucleosome calling criteria. Cutoffs for absolute
positioning (abs. pos.) and conditional positioning (cond. pos.) were separately varied, such that up to 30% of called nucleosomes were
respectively removed. The filtered data were then used to plot histograms of called nucleosome positions, relative to the TSS. The regular
organization of nucleosomes downstream of TSSs is readily observed, even when using the most stringent filtering criteria.
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Figure S9. The in vivo-like pattern in reconstituted chromatin is robust
to experimental variation. Averaged nucleosome dyad counts around
the TSS are plotted for each in vitro reconstitution experiment
performed in this study (see Methods for explanation of each sample).
Bracketed numbers indicate individual replicates. A regular pattern is
clearly observed in all samples, encompassing variation in MNase
digestion, histone:DNA ratio, and reconstitution reaction volume.
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Figure S10. Sites closest to the TSS show greatest correspondence between in vitro and in
vivo nucleosome positions. For in vitro nucleosomes in the +1, +2, +3, and +4 positions
downstream of the TSS, the distance to the nearest in vivo nucleosome is calculated. “Other”
represents in vitro nucleosomes in the genome that not located at +1 to +4 positions.
Nucleosomes at the +1 position in vitro most closely overlap with a nucleosome in vivo,
suggesting that the +1 nucleosome is intrinsically favorable for nucleosome formation.
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Figure S11. The stereotypical nucleosome pattern downstream
of TSSs is robust to extended MNase digestion. Averaged
nucleosome dyad counts around the TSS are plotted for (fixed)
lightly digested and (native) heavily digested chromatin. The in
vitro sample corresponds to reconstituted chromatin from
experimental set B (see Methods).
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Figure S12. The distinctive in vitro nucleosome organization in Tetrahymena genes is robust to
experimental variation. For each dataset, the number of genes with at least 1, 2, or 3 standard
nucleosomes is counted, as described in Fig. 3. The consensus positions of the +1, +2, and +3
positions are respectively called from each dataset, by examining aggregate plots of
nucleosome dyads around TSSs. Bracketed numbers denote individual replicates.
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Figure S13. Coding regions are enriched in resistant nucleosomes and
depleted in fragile nucleosomes. Resistant and fragile nucleosomes are
annotated as nucleosomes that are either invariant or labile between the
light and heavily digested chromatin samples (see Methods). These
nucleosomes are then matched to respective genomic locations.
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Figure S14. Distribution of Tetrahymena ORF start positions. Bars shaded
in blue represent ORF start positions that lie upstream of the 3’ end of the
+1 nucleosome, while red bars represent ORF start positions downstream
of it. Most 5 UTRs (given by the distance between the TSS and the ORF
start position) are short, with a median length of 60 bp. Thus, most
nucleosomes downstream of the TSS (such as those at the +1, +2, and +3
positions) lie within Tefrahymena open reading frames.
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Figure S15. Nucleosome filtering criteria does not explain the observation of subsets of
standard nucleosomes in vitro. Nucleosomes called from each MNase-seq dataset are
normally filtered according to absolute and conditional positioning thresholds, to remove poorly
positioned nucleosomes. Here, the filtering step is omitted, and the number of genes with at
least 1, 2 or 3 standard nucleosomes is counted for each dataset. A similar number of genes
with standard nucleosomes is observed for each dataset (as compared to Supplemental Fig.
S12). This indicates that the nucleosome filtering criteria do not lead to the removal of
standard nucleosomes from the dataset. Bracketed numbers denote individual replicates.
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Figure S16. The high ratio of standard to non-standard nucleosomes within in vitro Tetrahymena chromatin is robust to
variation in experimental conditions. Similar ratios were obtained for all individual in vitro experiments, despite changes
in reaction volume, histone:DNA ratio, and the extent of MNase digestion. Bracketed numbers denote individual
replicates. Standard and non-standard positions were defined as in Fig. 3.
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Figure S17. Comparison of normalized nucleosome occupancy of 5-mers in the yeast and
Tetrahymena genomes. Occupancy data were calculated from the number of extended in vitro
MNase-seq reads that span each unique 5-mer, normalized by the average 5-mer read count
within each genome. This represents the relative intrinsic affinities of histone octamers for
various unique DNA sequences. A strong correlation between Tetrahymena and yeast
nucleosome occupancies is observed, indicating that histone octamers from both species share
similar nucleosome sequence preferences. Colored data points progressing from dark blue to
red denote increasing AT content.
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Figure S18. Rotational positioning of Tetrahymena nucleosomes. AA/TT/AT/TA
dinucleotide frequencies were calculated as a 3bp sliding window average across
nucleosomal DNA. A clear 10bp periodicity is observed, and is more distinct in
vitro than in vivo. This is consistent with the larger role that nucleosome
sequence preferences play in guiding nucleosome positions in vitro.
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Figure $19. DNA-guided nucleosomes are more strongly positioned in vivo, and exhibit less variability in
translational positions between different nutritional conditions and with extended MNase digestion. A
nucleosome in vivo is classified as “DNA-guided” if it lies within 10 bp from a nucleosome in vitro. On the
other hand, a nucleosome in vivo that lies greater than 73 bp from a nucleosome in vitro is classified as
“trans factor-guided”. For every in vivo nucleosome in a particular environmental condition (eg. log-phase),
its distance to the nearest nucleosome in another environmental condition (eg. starve) is calculated. These
distances are tabulated for all DNA-guided and trans factor-guided nucleosomes, respectively, and are
denoted as the “variability in positioning between different environmental conditions”. An analogous analysis
is performed between lightly digested versus heavily digested chromatin, to obtain the “variability in
positioning with nuclease digestion”. See Methods for description of ‘light' and ‘heavy’ chromatin digests.
Absolute nucleosome positioning and conditional nucleosome positioning are calculated as described in
Methods. (A) Analysis specifically of standard +1, +2, and +3 nucleosomes downstream of the TSS. (B)
Analysis of all nucleosomes across the genome in log-phase and starve conditions, respectively.
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Figure S20. Tetrahymena chromosomes exhibit little variation in
chromosome copy number. Sheared Tetrahymena genomic DNA from
either log-phase or starved cells was sequenced, and the number of
mapped reads per kilobase per million mapped reads was calculated for
each chromosome. The resulting values were normalized by the
genome-wide average, to obtain the relative chromosome copy number.
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Figure S21. Distribution of fragment lengths for various MNase-seq datasets. Individual fragment lengths were calculated as the distance
between the 5’ ends of each read in a mapped read pair.
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Figure S22. The distribution of nucleosome dyads around TSSs is consistent between different methods for calculating nucleosome positioning. (A) The mid-
point of each 122 — 172 bp read pair is designated as a nucleosome dyad. (B) The two-step procedure by Cole et al. is used. Here, “high accuracy”
nucleosome dyad positions are assigned from read pairs of length 144 — 150 bp. The mid-points of the remaining read pairs in the dataset are then assigned
to these “high accuracy” positions.



Table S1

Sample information

Fragment length

Sequencin Number of Nutritional | Formaldehyde Extent of
9 9 mapped Type of DNA Source oy narceny MNase Description **Mean| Median | Std Dev
Mode . condition fixation . i
reads digestion
Paired-end | 7581138 Monongﬂiosoma' Macronucleus (in vivo) | Log-phase Yes Light Biological replicate A 1489 | 1500 | 13.7
Paired-end | 9417895 M°”°”;‘,’\:‘i\°s°ma' Macronucleus (in vivo)| Log-phase Yes Light Biological replicate B 1548 | 1550 | 117
Paired-end 8375184 Monon;crz\ljersomal Macronucleus (in vivo) | Log-phase No Heavy Biological replicate A 133.3 132.0 171
Paired-end 6435260 Monon;(lz\ljersomal Macronucleus (in vivo) | Log-phase No Heavy Biological replicate B 127.0 127.0 14.2
Paired-end | 6133025 Monongﬂiosoma' Macronucleus (in vivo)|  Starve Yes Light Biological replicate A 1542 | 155.0 9.8
Paired-end 6177167 Monon;{;ljersomal Macronucleus (in vivo) Starve Yes Light Biological replicate B 157.3 157.0 10.0
Paired-end 6866269 Monon;crz\ljersomal Macronucleus (in vivo) Starve No Heavy Biological replicate A 129.2 129.0 1.7
Paired-end | 8424740 M°”°”;?\'I‘Z°S°ma' Macronucleus (in vivo)| ~ Starve No Heavy Biological replicate B 1289 | 1200 | 137
. Mononucleosomal Reconstituted L . 50ul in vitro reconstitution reaction
Paired-end | 10017296 DNA chromatin (in vitro) in vitro No Light (SetA), 4:10 histone:DNA ratio | 1455 | 1460 | 154
. Mononucleosomal Reconstituted L . 50ul in vitro reconstitution reaction
Paired-end | 14571585 DNA chromatin (in vitro) | " V© No Light (SetA), 7:10 histone:DNAratio | 1490 | 1500 | 110
Mononucleosomal Reconstituted 150ulin vitro reconstitution
Paired-end 3679464 N in vitro No Light reaction (Set B), 4:10 134.5 135.0 11.3
DNA chromatin (in vitro) . . . .
histone:DNA ratio, Replicate 1
Mononucleosomal Reconstituted 150ulin vitro reconstitution
Paired-end 6492854 N in vitro No Light reaction (Set B), 4:10 138.1 139.0 11.9
DNA chromatin (in vitro) . . . .
histone:DNA ratio, Replicate 2
Mononucleosomal Reconstituted 150ulin vitro reconstitution
Paired-end 300531 N in vitro No Heavy reaction (Set B), 4:10 150.2 151.0 9.9
DNA chromatin (in vitro) . . . .
histone:DNA ratio, Replicate 1
Mononucleosomal Reconstituted 150ulin vitro reconstitution
Paired-end 4121508 N in vitro No Heavy reaction (Set B), 4:10 153.6 154.0 9.5
DNA chromatin (in vitro) . . . .
histone:DNA ratio, Replicate 2
Rk 1 ded e
Paired-end | 10329843 |genomic DNA from| Naked genomic DNA NA No Light 153.4 153.0 18.0

starved cells

mononucleosome-sized DNA
fragments




Table S1 (contd.)

Sample information

Fragment length

**Mean | Median

Std Dev

. Number of e Extent of
Sequencing Nutritional | Formaldehyde N
mapped Type of DNA Source e N MNase Description
Mode condition fixation . .
reads* digestion
Covaris-sheared Tetrahymena genomic DNA
Single-end | 17887355 |genomic DNA from| Naked genomic DNA NA No NA v . g ) ’ 112.0
sheared in a sonicator
log-phase cells
Covaris-sheared Tetrahymena genomic DNA
Single-end 7522145 |genomic DNA from| Naked genomic DNA NA No NA y . g } ’ 119.0
starved cells sheared in a sonicator

* For paired-end datasets, the number of properly mapped read pairs is listed.

* For single-reads datasets, the number of mapped individual reads is listed.

**Mean fragment length values were directly calculated for paired-end datasets, while they were estimated using cross-correlation analysis for single-read datasets

Table S1. Summary of lllumina datasets generated in this study. Fragment lengths for paired-end datasets were calculated directly, as the distance between the
5’ ends of the reads in a mapped read pair. For single-end datasets, the average fragment length was estimated using cross-correlation analysis (Kharchenko et
al. 2008). Reads counts denote the total number of reads mapped to two-telomere (complete) chromosomes in the Tetrahymena SB210 genome assembly.



Table S2

Tetrahymena in vitro Yeast in vitro
Standard Experimental Set A A B B B B
nucleosome
pattern Histone:DNA ratio 4:10 7:10 4:10 4:10 4:10 4:10
+1 +2 | +3 MNase digestion Light (1) Light (1) Light (1) Light (2) Heavy (1) | Heavy (2)
11.6 10.9 10.5 10.4 11.2 11.5
111 11.0 10.9 11.3 12.9 11.9 8.6
7.1 7.3 7.7 7.9 7.7 6.2 54
% genes with
specific pattern 10.7 11.0 11.8 11.4 11.2 11.6 9.0
6.5 6.6 6.1 6.0 6.2 6.2 4.0
7.1 7.4 7.4 7.8 7.2 7.4 7.3
7.1 8.2 8.0 8.6 6.7 9.0 6.9

Table S2. Frequency of genes with standard nucleosome patterns. Each nucleosome pattern is depicted by a row of 3 shaded boxes
on the left of the table. A green box denotes the presence of a standard nucleosome, while a grey box denotes its absence. The
corresponding frequency of the pattern is listed for each dataset, on the right of the table. A distribution of frequencies is observed for
each Tetrahymena in vitro dataset, with no clearly dominant pattern. This indicates that multiple nucleosome patterns — each mainly
exhibiting subsets of standard nucleosomes — explain the regular aggregate pattern in vitro. All of these individual patterns occur with
higher frequency in Tetrahymena than yeast.



Table S3

Codon position 1

Number of Gs and Cs

Number of As and Ts

Within DNA sequence guided nucleosome

103934

172616

Within trans-factor guided nucleosome

54536

101145

Codon position 2

Number of Gs and Cs

Number of As and Ts

Within DNA sequence guided nucleosome

83960

192590

Within trans-factor guided nucleosome

41558

114123

Codon position 3

Number of Gs and Cs

Number of As and Ts

Within DNA sequence guided nucleosome

73281

203269

Within trans-factor guided nucleosome

37942

117739

Table S3. Codons within DNA-guided nucleosomes exhibit higher GC content than those
within frans factor-guided nucleosomes. Both types of nucleosomes are defined in
Supplemental Fig. S19. Codons that lie no greater than 73 bp from a called nucleosome
are considered as lying within the corresponding DNA-guided or trans factor-guided

nucleosome.




Table S4

Codon Frequency

Within DNA-guided
Amino Acid Codon Codon GC r;:ti:/eeots: \r:v]::;n Wlf:tl?d:::: o f:\g:::?gz;nesti With_in all
content trans factor-guided | nucleosomes nucleosomes regions
nucleosomes
A GCG 0.361 0.019 0.052 0.019
A GCT 0.667 0.857 0.537 0.626 0.537
A GCA 0.667 0.348 0.266 0.340
A GCC 0.097 0.057 0.104
Cc TGT 0.333 0.672 0.465 0.693 0.535
o] TGC 0.535 0.307 0.465
D GAT 0.333 0.923 0.801 0.868 0.805
D GAC 0.199 0.132 0.195
E GAA 0.333 0.951 0.801 0.842 0.811
E GAG 0.199 0.158 0.189
F TTC 0.942 0.313 0.332 0.311
F TTT 0.000 0.687 0.668 0.689
G GGA 0.667 0.737 0.434 0.588 0.438
G GGT 0.667 0.391 0.361 0.398
G GGC 0.117 0.036 0.112
G GGG 0.059 0.015 0.053
H CAT 0.333 0.929 0.667 0.718 0.695
H CAC 0.333 0.282 0.305
| ATA 0.000 0.725 0.333 0.460 0.346
I ATT 0.000 0.509 0.416 0.509
| ATC 0.158 0.124 0.146
K AAA 0.000 0.957 0.696 0.727 0.707
K AAG 0.304 0.273 0.293
L CTC 0.835 0.095 0.114 0.072
L TTA 0.000 0.864 0.388 0.449 0.414
L CTT 0.333 0.878 0.212 0.241 0.217
L CTA 0.333 0.100 0.072 0.107
L TTG 0.333 0.174 0.108 0.159
L CTG 0.031 0.016 0.031

Table S4. Biases in synonymous codon usage are encoded within distinct nucleosomal regions. DNA-guided and trans-factor guided
nucleosomes are defined as in Supplemental Fig. S19. We examined nucleosomes from the log-phase dataset (light MNase digest),
and from the set “B” in vitro experiment (performed with 4:10 histone:DNA, light MNase digest). Codons were considered as lying
within a nucleosome, according to criteria described in Supplemental Table S3. Each group of synonymous codons was analyzed
separately. The most GC-rich codon(s) within each group of synonymous codon is highlighted in red. For each codon, we calculated
the ratio of its frequency in sequences that lie within DNA-guided nucleosomes, to its corresponding frequency within sequences that
lie within trans factor-guided nucleosomes. Codons enriched in DNA-guided nucleosomes have the corresponding value > 1, and are
highlighted in red. It quantifies the impact of accommodating DNA-guided nucleosomes on synonymous codon usage. The underlying
codon usage for 13 out of 18 amino acids was biased towards GC-rich codons within coding regions that overlap with DNA-guided



Table S4 (contd.)

Codon Frequency

Within DNA-guided

Codon GC nucleosomes, Within DNA- Within trans Within all
Amino Acid Codon content relative to wit!ﬂn guided factor-guided regions
trans factor-guided | nucleosomes | nucleosomes
nucleosomes
N AAT 0.000 0.917 0.722 0.787 0.739
N AAC 0.278 0.213 0.261
P CCccC 0.096 0.184 0.090
P CCA 0.320 0.433 0.335
P CCG 0.012 0.012 0.015
P CCT 0.572 0.371 0.560
Q CAA 0.333 0.894 0.234 0.261 0.225
Q TAA 0.000 0.950 0.522 0.550 0.556
Q TAG 0.333 0.192 0.172 0.172
Q CAG 0.052 0.017 0.047
R AGA 0.333 0.902 0.719 0.797 0.729
R CGT 0.667 0.982 0.093 0.094 0.108
R CGA 0.667 0.985 0.015 0.016 0.017
R CGC 0.036 0.020 0.036
R AGG 0.135 0.072 0.108
R CGG 0.003 0.001 0.002
S TCG 0.022 0.049 0.024
S AGT 0.194 0.240 0.210
S TCA 0.267 0.269 0.250
S TCT 0.319 0.297 0.313
S AGC 0.146 0.107 0.149
S TCC 0.053 0.039 0.054
T ACA 0.354 0.475 0.376
T ACT 0.488 0.436 0.496
T ACC 0.136 0.079 0.105
T ACG 0.022 0.010 0.022
\% GTG 0.087 0.103 0.084
\Y GTT 0.500 0.550 0.495
\% GTA 0.281 0.249 0.297
\Y GTC 0.132 0.098 0.124
Y TAT 0.667 0.789 0.695
Y TAC 0.333 0.211 0.305
M ATG 0.333 1.000 1.000 1.000 1.000
w TGG 0.667 1.000 1.000 1.000 1.000




Table S5

Amino Acid Frequency

Within DNA-guided nucleosomes, relative s . s . -
Amino acid to witgin trans factor-guided Within DNA-guided Within trans factor-guided Wlth_ln all
nucleosomes nucleosomes nucleosomes regions

| 0.072 0.085 0.079
N 0.083 0.096 0.086
K 0.086 0.096 0.091
Y 0.039 0.038 0.041
F 0.049 0.065 0.049
Q 0.083 0.101 0.092
L 0.089 0.093 0.088
M 0.022 0.016 0.019
T 0.044 0.035 0.044
E 0.064 0.065 0.068
D 0.054 0.055 0.051
\Y 0.045 0.035 0.043
S 0.080 0.078 0.079
H 0.017 0.013 0.016
R 0.030 0.017 0.030
C 0.015 0.015 0.014
w 0.008 0.004 0.006
P 0.033 0.028 0.029
A 0.044 0.028 0.037
G 0.043 0.038 0.037

Table S5. Biases in amino acid composition are encoded within distinct nucleosomal regions. DNA-guided and trans-factor guided nucleosomes are
defined as in Supplemental Fig. S19. We examined nucleosomes from the log-phase dataset (light MNase digest), and from the set “B” in vitro
experiment (performed with 4:10 histone:DNA, light MNase digest). Amino acids whose corresponding codons lie no greater than 73 bp from a called
nucleosome dyad are considered as lying within the nucleosome. Weighted codon GC content values were calculated as the sum of GC contents of
synonymous codons specifying an amino acid, respectively multiplied by their respective codon frequencies. Amino acids were ranked according to
their weighted codon GC content, as shaded from low (blue) to high (red). For each amino acid, we calculated the total frequency of its codons that lie
within 73 bp of DNA-guided nucleosome dyads, divided by the total frequency of those that lie within 73 bp of trans factor-guided nucleosome dyads.
Amino acids whose codons are enriched in DNA-guided nucleosomes have the corresponding value > 1. Amino acids specified by GC-rich codons
tend to be enriched in DNA-guided nucleosomes.



