
 

SUPPLEMENTAL INFORMATION 

Estimation of the frequency of false negatives in SNV calls. To evaluate false-negative rates, 

we counted the correctly called number of variants in our pipeline within the tentatively 

generated synthetic mutations, as described previously (Keightley et al. 2014). In this analysis, 

we first randomly picked up 2,000 base points over the entire mouse genome, including the sex 

chromosomes, and generated synthetic substitution mutations at each point. To determine the 

false-negative rate in homozygous variants, we changed all of the major base reads at each 

selected point to a different, randomly selected base. For heterozygous variants, we altered 

some fraction of the major base reads, such that the number of alterations in the sequencing data 

was determined by the binomial distribution of the number of major base reads, at each point. 

To maintain the effects of sequencing errors, we did not change any non-major base reads. Then, 

the complete data set of reads including the synthetic mutations was remapped to the reference 

genomic sequence, and candidate de novo variants were called using an identical pipeline to that 

used in the present study. We performed this procedure, using the same 2,000 selected points, 

independently in conA, conB, mutC, and mutD. Of the 2,000 points, 1,126 were in the EWC 

region. Thus, a total of 4,504 (=1,126×4) homozygous and 4,504 heterozygous synthetic 

mutations were tested here. Only two heterozygous synthetic mutations were missed in our 

pipeline; one missing variant in mutC had a 23.7% altered allele frequency, which was removed 

by our filter setting the lower bound of the alternate allele frequency, and the other variant was 

in mutD, located near a repeat sequence that was presumably removed by misalignment (no 

missing variants were detected in conA and conB). Although we used a binomial distribution in 



 

generating heterozygous synthetic mutations, which presumably underestimated the false 

negative rate because the actual sequencing read data was likely to be more variable, the results 

suggested that the false negative rate was not very high.  

     We also looked for missing calls that would drop out with our custom filters for credible 

variant calls: (i) the lower bound of the alternate allele frequency was set to 25% for a 

heterozygous variant call, and (ii) alternative allele identification required both forward and 

reverse strand coverage. For filter-(i), histograms of candidate variant frequencies showed the 

presence of a few low-frequency variants (<25%), which were excluded from the heterozygous 

variant number in this analysis. Presumably, many of these low-frequency variants would not be 

genuine germline mutations, indicating the possibility of a few false negatives (at most 3%) 

(Supplemental Fig. S2). Filter-(ii) removed fewer raw variants—seven heterozygous variants, 

one in mutC, four in mutD, and two in conB. These results also suggested that the conditions we 

used to call variants did not yield a high rate of false negatives. 

 

Highly accurate detection of de novo variants in our EWC regions. Our detection of de novo 

variants with few sequencing errors and few missing variants was highly accurate compared to 

previous reports (Keane et al 2011, Simon et al 2013). We propose three possible reasons for 

this high accuracy: (1) General analysis conditions. Our high-throughput sequencing conditions 

(100-bp or 150-bp paired end sequencing, high coverage sequencing, and the use of an updated 

mm10 database [a reference for the C57BL/6 genome]) should provide a better analysis than the 

previous conditions described in Simon et al, 2013. (2) Our EWC regions and variant call 

conditions. When we prepared the EWC regions, we adjusted many of the settings, including 



 

the variant call conditions, and checked some de novo candidate variants by manual inspection 

and Sanger sequencing. In this study, we had a relatively large number of called de novo 

variants (derived from mutator lines) and the sequencing data of the original mice “Adam/Eve” 

to use as a reference. The high number of candidates yielded a well-shaped frequency 

distribution of called variants (Supplemental Fig. S2), which served as a useful landmark for 

helping us find good conditions. The sequencing data of “Adam/Eve” enabled us to efficiently 

remove artificial errors derived from the high-throughput sequencing. To evaluate our 

conditions for detecting de novo variants, we used another software, the DeNovoGear software 

package (Ramu et al. 2013). The lower limit of read coverage was set to 0, without a 

contradiction filter. This setting is frequently used in trio analysis of de novo variants. The 

DeNovoGear results were similar to those obtained with SAMtools/BCFtools, in which there 

were at most 3% called homozygous or heterozygous variants. These approaches differed 

mostly in their treatment of low-frequency variant calls and highly repetitive sites. We 

concluded that the SAMtools/BCFtools were more suitable for this analysis because of the 

higher credibility of variant calls, in both the heterozygous and homozygous states. In our 

experience, the selection of EWC regions and the filtering out of sequencing errors were crucial 

for the highly accurate detection of de novo mutations. (3) Damaged genomic DNA sample. 

This is just a possibility. As shown in Supplemental Table S1, the whole-genome sequencing 

results for the “Eve” genome were not good, presumably due to the poor condition of the 

preserved genomic DNA (it is possible that accidental freezing and thawing damaged the 

sample). As a result of this problem with the “Eve” genome, our EWC regions became more 

restricted. We cannot rule out the possibility that damage-sensitive genomic regions would have 



 

been difficult regions in which to detect de novo variants.  

    In our preliminary data (not included in our presented data), we tested the more suspicious 

candidate de novo variants (heterozygous SNVs on chromosome X in males, for which we used 

analysis settings similar to those used for the EWC region) by Sanger sequencing. All of the 

tested candidates (a total of 5 SNVs: 2 SNVs from mutC, 3 SNVs from mutD) were confirmed 

to be true de novo variants (presumably, ~50% mosaic mutations), present in the sequenced 

individual but not in its parents. The 3 SNVs from mutD were confirmed to be inherited by 

some females of the next generation. (The 2 SNVs from mutC could not be analyzed due to a 

lack of daughters from the mutC sequenced mouse.) These data supported the accuracy of our 

detection of de novo variants and indicated that the high accuracy of our sequencing analyses 

might have increased our ability to detect somatic mosaic mutations in C57BL/6 mice.  

 

Frequency of recurrent mutations in mutator mice. Abundant recurrent mutations would 

interfere with our estimation of per-generation mutation rates. To evaluate the extent of 

recurrent mutations in the mutator mice, we compared all of the homozygous and heterozygous 

de novo variants in the mutC or mutD lines with variants called from the whole-genome 

sequencing data of an independently derived mutator line, mutE, at the 12th generation (shown 

in Fig. 1). Only two identical SNVs were found; one was shared by the mutE and mutC lines, 

and the other by the mutE and mutD lines. Both shared variants occurred at a homopolymer site, 

and the variants were confirmed to be de novo mutations in both lines by Sanger sequencing. 

This result indicated that there was some bias in mutation occurrence, but that the frequency of 

recurrent mutations was low in the mutator breeding lines, and the effect of recurrent mutations 



 

on our mutation-rate estimates was negligible.  

 

Effect of initial variants on mutator-line phenotypes. To produce Pold1exo/exo mice, we first 

used C57BL/6J ES cells to generate Pold1 gene-targeting mice, which contained a floxed 

polyadenylation signal and a Neo-resistance cassette. We then crossed the gene-targeted mice 

with Tg mice expressing Cre in the germline (C57BL/6), leading to the constitutive expression 

of 3’-5’ exonuclease-deficient Pold1 (D400A), and the generation of Pold1exo/+ mice. To 

produce the two types of mutator (Pold1exo/exo) mice used in our present breeding experiment, 

we intercrossed Pold1exo/+ mice before or after backcrossing to C57BL/6J mice at least eight 

times. The backcross was performed to simultaneously prevent mutation accumulation and 

maintain a C57BL/6J genetic background. The mutator lines mutA, mutB, mutC, mutD, mutE, 

mutF, and mutP were generated by crossing heterozygotes before the backcross, while the 

mutator lines mutK, mutL, mutM, mutN, and mutR were generated by crossing heterozygotes 

after the backcross. Notably, whole-genome sequencing called some candidate genetic 

polymorphisms between Adam and Eve in the mutC and mutD lines. However, in the absence 

of filtration, it was difficult to determine whether these called variants were sequencing artifacts 

or actual polymorphisms. To evaluate the possible effects of variants in the base population, we 

compared the numbers of called polymorphism sites (initial) and no call sites (de novo) in 

Adam and Eve, both of which were observed as homozygous sites in the mutC or mutD lines 

(Supplemental Table S14). Although we do not know the false-positive rate of these initial 

variants, there were ~800 candidate variants in each line, about half of which were known 

polymorphisms in C57BL/6N (Mouse Genomes Project SNP and Indel Release v3 of the 



 

Sanger Center). The C57BL/6N contamination was presumably introduced with the 

Cre-expressing Tg mice. Although the number of initial SNVs was smaller than the number of 

accumulated de novo SNVs in sequenced individuals of the mutC and mutD lines, these initial 

variants could certainly affect the phenotypes in mutC and mutD to some extent. We observed 

that all of the phenotypic results, except for the tendency of the male body weight to decrease, 

had similar tendencies in the backcrossed mutator lines (mutK, mutL, mutM, mutN, and mutR). 

These lines would be expected to contain far fewer initial genetic variations, indicating that the 

phenotypic changes observed in the mutator mouse lines resulted from many accumulated de 

novo mutations rather than from the initial variants.  

 

  



 

SUPPLEMENTAL METHODS  

Phenotypic screening for anomalies. Mice were screened for hydrocephaly and other apparent 

anomalies at 4 weeks of age, and were assessed at 8 weeks of age for coat color and eye 

appearance, for behavioral abnormalities in the home-cage environment, and for morphological 

anomalies in the digits, skull, tail, and elsewhere. Tumorigenic phenotypes related to the 

Pold1exo/exo genotype were excluded from the anomaly analysis. Phenotypic frequencies of the 

breeding lines (Supplemental Table S8) were analyzed for statistical significance by the χ2-test 

(and Fisher’s exact test for a rough indication) with GraphPad PRISM 6.0 software.  

 

Body-weight analysis. Body weights were typically measured in the afternoon (14:00-18:00). 

To compare specific traits across breeding lines, we used at least 50 mice from each breeding 

line (or mice from sub-lines that were within six relatives of the ancestral pair) (Fig. 1); the 

number (male, female) of each line was C(98,84), D1(66,74), D2(30,27), A1(33,26), A2(46,45), 

A3(29,31), A4(61,72), P(63,50), F(132,132), B1(136,140), B2(86,85), B3(38,34), E1(146,149), 

E2(63,82), E3(60,61), E4(103,82), E5(21,31), K(105,105), M(63,68), N(88,99), R(62,46), 

conA1(47,45), conA2(31,23), conE(30,30), conD(49,48), conB(67,69), conF(39,36), and 

conC(54,50). We divided the breeding lines as follows: four early-generation (six or fewer 

generations) mutator lines, 17 late-generation (more than six generations) mutator lines, and 

seven control lines. We grouped the late-generation control and mutator lines according to their 

ancestral pair (e.g., Adam/Eve in Fig. 1), and analyzed differences in the breeding-line groups 

(represented by colors in Fig. 3A and Supplemental Fig. S6A) by one-way ANOVA and 

Tukey’s multiple-comparison post-test using GraphPad PRISM 6.0 software. Body weights 



 

were measured at 7−10 weeks of age prior to February 2010, and at 8 weeks of age thereafter. 

Only body-weight data from 8-week-old mice were included in the present analysis.  

 

Analysis of changes in reproductive ability. All mice were examined at 8 weeks of age or 

later, and all capable females were assessed for reproductive ability. Virginal females were 

mated with an arbitrarily selected male littermate over a 1-week period. We recorded the 

number of births per mating trial (birth rate) and the number of pups born (the P0 litter size) 

(see Supplemental Tables S9, S10). We defined the survival rate as the percentage of pups 

reaching 8 weeks of age. To exclude the effect of the Pold1exo/exo tumorigenesis genotype on 

reproductive ability, we excluded data from matings if either parent died within 9 weeks of the 

start of mating, regardless of the cause of death. This excluded most of the data from 

hydrocephalic mice as well, since these mice often died at 1−3 months of age. Data relating to 

reproductive ability were recorded for individual breeding lines beginning in February 2010. To 

determine statistical significance, we used GraphPad PRISM 6.0 software (Supplemental Table 

S9, S10). 

 

Regression analysis on phenotypic analyses. We used regression analysis to investigate 

whether the three kinds of phenotypes—body-weight, reproduction (represented by the 

offspring number per a mating), and visible abnormalities—showed trends over generations of 

breeding. Except in an additional analysis of the offspring number using the recessive lethal 

mutation model, the means of the responses were modeled as simple linear functions of the 

generation number: E(y) = β0 + β1 × generation number, where the βi’s are parameters to be 



 

estimated, and y is body weight, the presence or absence of a phenotypic abnormality (1 or 0), 

or the offspring number. The distributions of y conditional on the generation number and βi’s 

were assumed to be as follows: for body weight, a normal distribution with an unknown 

variance parameter δ2; for offspring number, a negative binomial with an unknown 

overdispersion parameter k; and for phenotypic abnormality (binary data), binomial. The 

negative binomial model was used because we found that in a given generation, the variances in 

offspring number were much larger than the means (on average, 2.78-fold higher for control 

mice, and 3.12-fold higher for mutator mice). All data points in each analysis were assumed to 

be independent. Body weight varied by sex and was analyzed for each sex separately.  

 Body-weight changes relative to the generation number were analyzed by simple linear 

regression; the CI and P values for the slope (β1) were obtained by standard methods. For the 

other two phenotypes, the P value for β1 was obtained using the fact that the log-likelihood ratio 

is asymptotically distributed as χ2 with one degree of freedom. The CIs for β1 and the mean 

responses (shown only in the analysis of offspring numbers) were obtained by the Wald method 

(Wald CI). For the above regression analyses, we used the lm and glm functions in the stat 

package and the glm.nb function in the MASS package in the R software version 3.0.3 

(http://www.r-project.org) to analyze body weight, the presence or absence of a phenotypic 

abnormality, and the offspring number, respectively. 

 For the offspring number, we also fitted the relatively simple "recessive lethal mutation 

model," presented previously (Lyon 1959) (see APPENDIX I, “Frequency of intercrosses for a 

lethal”), for full-sib matings. Consider a full-sib mating line. Assume that a is a recessive lethal 

mutation, and A is its counterpart wild-type allele in any locus. Consider that one de novo 



 

recessive lethal mutation, a, occurs in a locus in the initial generation. Let Xn, Yn, and Zn denote 

the occurrence frequencies in matings of individuals with the genotypes AA×AA, AA×Aa, and 

Aa×Aa, respectively, in the nth generation. Then X0 = Z0 = 0 and Y0 = 1, and for n > 0 
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Next, consider kn, which denotes the total number of Aa×Aa matings for the whole genome in 

the nth generation. All loci are assumed to evolve independently. Accounting for the successive 

mutation effect from the 0 to (n – 1)th generation, the expectation of kn is given by 

E 𝑘! = 2𝑈 𝑍!!!

!!!
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where U is the lethal mutation rate (the de novo mutation number per generation per diploid), 

and 2U is the per-sib mutation rate. The reproductive ability (offspring number) in the nth 

generation relative to the 0th generation is given by (3/4)!!, since Aa×Aa mating leaves as 

many 3/4 mice as the other two mating types. Thus, as a first-order approximation (the delta 

method), the expectation of the offspring number in the nth generation is given by 
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where β0 is the reproductive ability in the 0th generation. The values of E 𝑦!  given U and β0 in 

the nth generation are calculated numerically. 

  The distribution of y conditional on the generation number and the parameters U and β0 

was still assumed to be a negative binomial with an unknown overdispersion parameter k, and 

all the obtained values of y were assumed to be independent of each other. This complex 



 

regression analysis cannot be conducted with the standard default settings on most statistical 

packages. To maximize likelihood, we used the R function nlm(), which can minimize arbitrary 

nonlinear functions. Similar to the analyses just described, the P value was obtained by the 

log-likelihood ratio, and the CI was calculated by the Wald method with the Hessian matrix, 

obtained by nlm(), at the maximum likelihood estimates. We used the Akaike information 

criterion (Akaike 1974) (AIC) to compare two models: the recessive lethal mutation model, and 

the linear function model of generation-dependent trends we just described. Supplemental Table 

S15 summarizes the regression analysis. 

 

Variant calls and de novo structural variants. For all samples, structural variants (SVs) were 

detected with BreakDancerMax v1.1.2 (Chen et al. 2009). We used bam2cfg.pl, which is 

included in the BreakDancer package, to generate a BreakDancerMax parameter file from the 

BAM-format mapping data. We used whole mapping data without duplicates as input for 

bam2cfg.pl and BreakDancerMax, since improperly mapped read pairs are useful for detecting 

SVs. Although BreakDancerMax detects several types of SV candidates, we focused on large 

deletions, because other SVs are difficult to detect with high confidence. To identify de novo 

large deletions, we extracted large deletions detected in mutC, mutD, conA, and conB that were 

not in the original population (Adam/Eve). We subjected these deletions to the following 

custom filters: (i) the lower bound of the alternate allele frequency was set to 25%, and (ii) the 

minimum number of read pairs supporting deletions was set to 20. In addition, we used 

GBrowser (Stein 2013) to visually inspect the short-read sequencing data of all 166 unique sites, 

and found 5 candidate de novo variant sites. PCR followed by Sanger sequencing of genomic 



 

DNA samples from the sequenced individuals and their ancestors confirmed the presence of two 

true de novo deletions (Supplemental Table S13) and three variants derived from the base 

population. 

 

Cytogenetic analysis. Splenocytes were cultured in RPMI1640 medium supplemented with 

10% FBS, 15 μg/ml LPS, and 5 μg/ml Con A. After 46 hours, colcemid was added at 1 μ

g/ml for 20 min prior to harvesting. A hypotonic solution (0.075 M KCl) was added to the cell 

pellet, and the samples were incubated for 20 min at 37 °C. The cells were then fixed with 

Carnoy’s fixative (3:1 methanol to glacial acetic acid). Metaphase spreads were prepared and 

air-dried. A solid Giemsa stain was used to analyze the chromosome number and structure.  

 

Confidence Intervals (CIs) for 𝝁 and combined estimates. If all de novo mutations are 

inherited independently, the numbers of mutant heterozygote or homozygote sites at a given 

generation are distributed as Poisson random variables with the parameter M = µμ×G×𝐿. The 

CIs for µ can then be calculated under the Poisson assumption. In fact, however, mutations in 

the same chromosome are inherited perfectly or partially together, and the variance in the 

number of de novo mutations (and thus the CIs for µμ) may be larger than under the Poisson 

assumption. We conducted computer simulations to check the Poisson assumption and to 

determine the 95% CIs for µμ when the assumption is violated. The lower (L) and upper (U) 

limits were experimentally chosen so that the P value P  ! µμ ≥ observed  µμ = 2.5%  and 

P  ! µμ ≤ observed  µμ = 2.5%, respectively. The point estimator of mutation rates given by 

µμ = M/(G×𝐿) was also confirmed to be unbiased, as will be shown later. 



 

 We simulated the real inheritance process of the mutations observed in our experiments. 

The 19 autosomal chromosomes were given relative lengths according to the actual lengths in a 

mouse, although the results were only slightly different if the lengths were the same. Prior to 

fertilization, mutations occurred randomly in EWC sites (and the EWC sites themselves were 

random within the genome) at a rate of µ per site per generation, or at the Poisson rate of 2×µ × 

(the size of the EWC region) per diploid EWC region. The size of the EWC was 1,516,416,340 

for SNVs, and 961,909,845 for indels, assuming no recurrent mutations. Next, genetic 

recombinations occurred randomly in the genome at a rate of r cM/Mb, or the Poisson rate of 

r×2,462,745,373 (the genome size) ×10-8 in the total genome. After mutations and 

recombinations, the 19 autosomal chromosomes were independently inherited by the offspring. 

The strains were maintained by sibling mating. Repeating the above steps at a given generation 

(16th, 17th, 18th, and 21st generations in the mutC, mutD, conA, and conB lines, respectively), we 

obtained the number of mutant heterozygous and homozygous sites (M) in one sibling, and 

µμ = M/(G×𝐿) was calculated based on each M. There were 1,001 simulations per given 

mutation rate µ. 

 Using the simulated data for various mutation-rate levels, we checked the 

overdispersion of the number of mutant heterozygous or homozygous sites compared with 

Poisson variance (Supplemental Table S16). Here, overdispersion was defined as the squared 

ratio of the variance to the mean of the number of heterozygous or homozygous sites. The 

overdispersion value shows the CI widths relative to those obtained by Poisson. The 

recombination rates (cM/Mb) were set as r=0.5, 0.6, and 0.7, which are likely values for the 

mouse. As expected, high mutation rates resulted in high overdispersion, because recombination 



 

does not overwhelm mutation. If clear overdispersion was seen, we used a simulation-based 

method to calculate the CIs, as we will explain (See Supplemental Table S16, the right-most 

column). The overdispersion values did not vary widely at r = 0.5~0.7. We calculated CIs using 

r = 0.6, a value derived from the mean among 19 chromosomes, as shown in the revised 

Shifman map in Table 1 of a previous report (Cox et al. 2009). 

      Following the above simulations, we calculated the experimental CIs by obtaining the 

2.5th and 97.5th percentile of µμ (the 26th lowest and highest values of 1001 simulations) per 

given mutation-rate value (µμ); the 2.5th and 97.5th percentiles were regressed on the true µμ. The 

µμ values of the intersection point between the regression lines and the observed µμ were 

determined with 95% confidence limits. 

  Supplementary Fig. S10 shows examples of CIs calculated by the above method. The 

2.5th and 97.5th percentiles are on or almost on the regression lines. Thus, the 2.5th and 97.5th 

regression lines are good representatives of the true 2.5th and 97.5th percentiles, and CIs obtained 

using these lines should be reliable. This analysis also shows that µμ can be estimated by µμ 

with no bias. (The mean values of µμ are on the diagonal lines.) 

  For the mutator lines (mutC and mutD), de novo mutations (M) should be detected with 

few false-positive SNV or indel mutations. For the control lines (conA and conB), candidate de 

novo mutations included both SNV and indel initial variants (Supplemental Table S3). In the 

conA line, for example, we found one initial variant of 30 (=31-1) to be a candidate 

heterozygous mutation. In these cases, the “observed” de novo mutations replaced the “expected” 

de novo mutation numbers. In the conA line, the number of “expected” mutations would be 

calculated as 75×29/30 + 29 =101.5 mutations. 



 

  The overall mutation rates were estimated using the formula µμ!"! = M!"!/(G×𝐿!"!), 

similar to the mutation rate estimates for each line’s SNVs and indels. Here M!"! is the total 

number of mutations used for the overall estimates: M!"! = 101.5   +   92.7   =   194.2  for 

SNVs in the control lines, M!"! = 1,304   +   1,944   +   1,472   +   1,633   =   6,353 for SNVs in 

the mutant lines, M!"! = 4 + 3 = 7 for indels in the control lines, and M!"! = 28 + 28 +

21 + 37   =   114 for indels in the mutant lines. 𝐿!"! is the sum of 𝐿s used for the mutation 

rate estimation for each line’s SNVs and indels. Note that the homozygous mutations in control 

lines were excluded due to the low ability to discriminate between true mutations and the initial 

variants. The CIs for the overall mutation rates for indels were calculated simply based on a 

Poisson assumption, since the mutation rate for indels was low enough to result in low 

overdispersion (Supplemental Table S16). For the overall mutation rates for SNVs, the CIs were 

calculated by performing 1,001 simulations of 𝜇!"! as described above.  

 Our CIs for µμ based on the expected number of de novo mutations in conA and conB 

might be anti-conservative, because this calculation ignored the possibility of random error in 

estimating the expected false-positive rate from the randomly selected Sanger sequencing 

(except for heterozygous de novo indels in conA and conB, which were all confirmed). To 

determine how much of an effect such random error would have, we calculated conservative CIs 

for the mutation rates in conA and conB as follows. As an example, consider heterozygous 

SNVs in the conA line. We calculated the 95% range of the true mutation frequency (= 1 – 

“false positive rate”), (0.83, 1.00) in conA, estimated from the binomial sampling of one initial 

variant out of 30 tested variants (Supplemental Table S3), and then calculated the 95% range of 

the number of de novo variants: 29 + 75 (not tested variants) × 95% CI (0.83, 1.00) = (91.1, 



 

104.0). The numbers 91.1 and 104.0 give 95% CIs for µμ of (3.9-6.6, ×10-9) and (4.5-7.5, ×10-9), 

respectively. We then used the two extreme values (3.9-7.5, ×10-9) as the 95% conservative CI 

for µμ  in conA heterozygous SNVs. This method is ad hoc, but it seems to give reasonable CIs 

for µμ; conA: (0.5-8.6, ×10-9), conB: (1.5-9.5, ×10-9) for homozygous SNVs; conA: (3.9-7.5, 

×10-9), conB: (3.5-7.1, ×10-9) for heterozygous SNVs; conA: (0.04-1.46, ×10-9), conB: 

(0.01-1.19, ×10-9) for homozygous indels; overall rate in controls: (4.2-6.7, ×10-9) for SNVs. 

These results show that the estimated mutation rates for homozygous SNVs and indels have 

much wider ranges than the previously calculated 95% CIs (shown in Table 1), indicating that 

the estimates from the homozygous variants in conA and conB are less reliable than the others.  

  

References in the Supplemental Material   

Akaike H. 1974. New Look at Statistical-Model Identification. Ieee T Automat Contr 19: 

716-723. 

Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. 2012. Predicting the functional effect of 

amino acid substitutions and indels. PloS ONE 7: e46688. 

Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS, McGrath SD, Wendl MC, 

Zhang Q, Locke DP et al. 2009. BreakDancer: an algorithm for high-resolution 

mapping of genomic structural variation. Nat Methods 6: 677-681. 

Cox A, Ackert-Bicknell CL, Dumont BL, Ding Y, Bell JT, Brockmann GA, Wergedal JE, Bult 

C, Paigen B, Flint J et al. 2009. A new standard genetic map for the laboratory mouse. 

Genetics 182: 1335-1344. 

Keane TM, Goodstadt L, Danecek P, White MA, Wong K, Yalcin B, Heger A, Agam A, Slater 



 

G, Goodson M et al. 2011. Mouse genomic variation and its effect on phenotypes and 

gene regulation. Nature 477(7364): 289-294. 

Keightley PD, Ness RW, Halligan DL, Haddrill PR. 2014. Estimation of the spontaneous 

mutation rate per nucleotide site in a Drosophila melanogaster full-sib family. Genetics 

196: 313-320. 

Lyon FM. 1959. Some evidence concerning the "Mutational load" in inbred strains of mice. 

Heredity 13: 341-352. 

Ramu A, Noordam MJ, Schwartz RS, Wuster A, Hurles ME, Cartwright RA, Conrad DF. 2013. 

DeNovoGear: de novo indel and point mutation discovery and phasing. Nat Methods 

10: 985-987. 

Simon MM, Greenaway S, White JK, Fuchs H, Gailus-Durner V, Wells S, Sorg T, Wong K, 

Bedu E, Cartwright EJ et al. 2013. A comparative phenotypic and genomic analysis of 

C57BL/6J and C57BL/6N mouse strains. Genome Biol 14: R82. 

Stein LD. 2013. Using GBrowse 2.0 to visualize and share next-generation sequence data. Brief 

Bioinform 14: 162-171. 

 


