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Supplemental Figure 1.  Positional trends in similarity for all gRNA target sequences with off-target 

binding sites. Plots for IL1RN gRNA A, IL1RN gRNA B, and HBG gRNA B are the same as in Figure 4. 

The additional panels are gRNAs for which an enriched motif was not detected in de novo searches. No 

significant trend was observed for the gRNAs without an enriched motif, further indicating that those 

gRNAs did not substantially contribute to off-target binding. 
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Supplemental Figure 2.  Positional trends in similarity for all TALE target sequence in off-target 

binding sites. The plot for HBG TALE D is the same as in Figure 4. The additional panels are TALEs for 

which an enriched motif was not detected in de novo searches, none of which had a significant 3′ trend in 

sequence similarity to the best match in off-target binding sites. 
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Supplemental Figure 3.  Analysis of expression levels of genes nearby ChIP-seq off-target sites, as 

determined by RNA-seq. The nearest refseq-annotated transcription start site was determined for each 

ChIP-seq off-target site using the bedtools software (Supplemental Tables 12-15). The read counts for 

each refseq mRNA, after normalizing for the total number of aligned reads per experiments, were then 

collected and plotted using Prizm (Graphpad). To determine if there was a significant trend in gene 

expression across all candidate off-target genes, an ANOVA analysis was used that took into account per-

gene mean expression values. No significant trends were observed. All statistical analysis was performed 

in R. 
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Supplemental Figure 4. The expression of eight representative genes identified nearby ChIP-seq off-

target sites was assessed by qRT-PCR in samples treated with the indicated TALE-VP64 or dCas9-

VP64/gRNA constructs (n=4, mean ± st. dev.).  Relative gene expression levels are calculated by the 

ΔΔCt method normalized to mock-transfected cells and GAPDH. No significant increases in gene 

expression were observed. 
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Supplemental Figure 5.  DNase-seq results for each individual treatment targeted to the IL1RN promoter 

compared to control. Each dot represents an individual DNase I hypersensitive site. The x-axis is the 

average signal and the y-axis represents the log fold change compared to mock-transfected control cells as 

determined by DESeq (Anders and Huber, 2010). Nominal P values (pval), and P values adjusted for 

multiple hypotheses testing (False Discovery Rate (padj), shown in red) indicate that IL1RN targeting is 

highly specific.  The top 100 differential DNase I hypersensitive sites are listed in Supplemental Tables 

16-17 and 20-21. 

 

Anders, S., and Huber, W. (2010). Differential expression analysis for sequence count data. Genome 

biology 11, R106. 
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Supplemental Figure 6.  DNase-seq results for each individual treatment targeted to the HBG1/2 

promoter compared to control. Each dot represents an individual DNase I hypersensitive site. The x-axis 

is the average signal and the y-axis represents the log fold change compared to mock-transfected control 

cells as determined by DESeq (Anders and Huber, 2010). Nominal P values (pval), and P values adjusted 

for multiple hypotheses testing (False Discovery Rate (padj), shown in red) indicate that HBG1/2  

targeting is highly specific.  The top 100 differential DNase I hypersensitive sites are listed in 

Supplemental Tables 18-19 and 22-23. 

 

Anders, S., and Huber, W. (2010). Differential expression analysis for sequence count data. Genome 

biology 11, R106. 
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Supplemental Figure 7. Analysis of expression levels of genes nearby DNase-seq off-target sites, as 

determined by RNA-seq. The nearest refseq-annotated transcription start site was determined for each of 

the top 100 DNase-seq off-target site using the bedtools software (Supplemental Tables 24-27). The read 

counts for each refseq mRNA, after normalizing for the total number of aligned reads per experiments, 

were then collected and plotted using Prizm (Graphpad). The on-target genes are labeled in red. To 

determine if there was a significant trend in gene expression across all candidate off-target genes, an 

ANOVA analysis was used that took into account per-gene mean expression values. No significant trends 

were observed. All statistical analysis was performed in R. 

 

 

 

 


