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Materials and Methods 

1. Trio validation data 
 
 

1.1 Genetics of Inherited Muscle Disease Cohort 
 
Imprinting was assessed in skeletal muscle from six individuals for whom both individual 
and parental genotypes were available, hence allowing for the parental origin of the 
alleles to be determined. More specifically, the data set consists of five trios and one 
child-mother pair that were exome sequenced as part of a larger cohort (dbGaP accession 



phs000655.v1.p1) the six probands each being affected with a neuromuscular disorder of 
currently unknown cause.  
 
Exome capture was performed with Agilent SureSelect Human All Exon Kit v2 and the 
exome DNA was sequenced using Illumina HiSeq 2000 sequencer. Sequencing reads 
were aligned to the human reference genome (hg19) before calling single-nucleotide 
variants (SNVs) and small indels using the GATK version 3.0. A modified version of the 
Ensembl Variant Effect Predictor was used for variant annotation. The genotypes of the 
probands of the five trios and one parent-child pair were phased using the 
PhaseByTransmission tool of the GATK toolkit. 
 
Non-strand specific RNA sequencing was performed for the poly-A selected mRNA 
isolated from the skeletal muscle biopsies using Illumina Tru Seq RNA Sample 
Preparation protocol with 76 bp paired-end sequencing reads. The sequencing was done 
on an Illumina HiSeq 2000 with five of the individuals sequenced to coverage of 50M 
and one to 500M of mapped paired-end reads. RNA-seq reads were aligned using Tophat 
version v1.4.1 with the UCSC human genome release version hg19 as the reference. 
 
All exome and RNA sequencing was performed at the Broad Institute of Harvard and 
MIT following the same protocols used in the GTEx project, and the same ASE pipeline 
was used for this a data as for the GTEx data. 
 

1.2 Genes-environments & Admixture in Latino Americans (GALA II) 
	
  
Imprinting was assessed in nasal epithelium and whole blood from 10 trios from the 
GALA II cohort (Torgerson et al. 2011). More specifically, the data set consists of ten 
trios of Puerto Rican/Latino origin that were exome-sequenced. The ten probands were 
then RNA-sequenced in both tissues. Latino asthmatic probands and parents are Puerto 
Rican islanders recruited as part of the ongoing Genes Environments & Admixture in 
Latino Americans (GALA II) study described elsewhere (Borrell et al. 2013; Kumar et al. 
2013; Nishimura et al. 2013). The nasal airway epithelium RNA-seq data used was 
previously published in a separate analysis of asthma differential expression (Poole et al. 
2014). Probands had no history of smoking or recent nasal steroid use (within 4 weeks of 
recruitment). Methods for nasal airway brushing collection are described elsewhere 
(Poole et al. 2014). The study was approved by local institutional review boards, and 
written assent/consent was received from all subjects and their parents. 
 
Exome capture was performed with Nimblegen SeqCap EZ Human Exome Library v3.0 
and the exome DNA was sequenced using Illumina HiSeq 2500 sequencer to an average 
read depth of 39x. Sequencing reads were aligned to the human reference genome (hg19) 
before calling single-nucleotide variants (SNVs) and small indels using the GATK 
version 3.3-0. The genotypes of the probands of the ten trios were phased using the 
parent-offspring trio phasing of Beagle, and parental origin of each allele was assigned by 
matching phased parental haplotypes to offspring haplotypes within a 2000bp window 
above and below the SNP. If an exact match could not be found between the parental and 
offspring haplotypes, and the parental origin could not be inferred solely from the 



genotypes at the SNP, then the parental origin of the allele was considered to be 
ambiguous.  
 
Both nasal airway and blood RNA-seq libraries from the 10 probands were constructed 
and barcoded with the Illumina Tru Seq RNA Sample Preparation version 2 protocol 
(Illumina, San Diego, Calif). Barcoded RNA-seq libraries were run on flow cells of an 
Illumina HiSeq 2000 according to standard protocols using 2x100 paired end sequencing. 
RNA-seq reads were aligned using Tophat version v2.0.9 with the UCSC human genome 
release version hg19 as the reference. The same ASE pipeline was used for this data as 
for the GTEx data. 
	
  
 

2. mmPCR-seq validation data 
 
Microfluidic multiplex PCR sequencing (mmPCR-seq) (Zhang et al. 2014) was used to 
validate allelic ratios measured by RNA-Seq in 89 sites in 24 genes: ATP10A, COPG2, 
CPA4, ERLIN2, GRB10, H19, IGF2, KCNQ1, NAA60, NLRP2, NTM, PEG3, 
PHLDA2, PLAGL1, PPP1R9A, RB1, RBP5, SLC22A18, SNHG14, SNRPN, SNURF, 
UBE3A, WRB, ZNF331. The analysis was done for 121 GTEx samples from 9 
individuals. The details of the experiment are in (Rivas et al. 2015). Briefly, PCR primers 
were designed to amplify the loci surrounding each site, and cDNA obtained from the 
RNA samples was amplified in multiplex PCR reactions using the Fluidigm Access 
Array. The pooled mmPCR libraries were sequenced on a MiSeq yielding 75 bp paired-
end reads, and the data were aligned with STAR (Dobin et al. 2013) – alignment with 
TopHat yielded very similar results. Allelic counts were retrieved using an identical 
pipeline as for the GTEx RNA-seq data. The low number of individuals in the validation 
experiment did not allow us to use the statistical models developed for population-level 
RNA-seq data, but the allelic ratios obtained from mmPCR-seq data showed that the 
allelic counts themselves are reliable. 
 

3. Long-read RNA-seq validation data 
 
Standard RNA-seq data with relatively short reads can suffer from alignment errors and 
difficulty of determining the structure and annotation of the sequenced transcripts (Cho et 
al. 2014; Li et al. 2014). To this end, we analyzed long read strand-specific RNA-seq data 
(2 x 250 bp) from 34 GTEx samples from 5 individuals.  
 
3.1. Library preparation, sequencing, and data processing 
 
RNA sequencing was performed using a strand specific protocol with poly-A selection of 
mRNA. Strand specific RNA sequencing was performed at the Broad Institute using a 
large-scale, automated variant of the Illumina Tru Seq™ RNA Sample Preparation 
protocol.  Briefly, 200 ng of total RNA was used from each sample as the starting 
material. This method uses oligo dT beads to select poly-A mRNA from the total RNA 
sample.  The selected RNA is then heat fragmented and randomly primed before cDNA 



synthesis from the RNA template.  The resultant cDNA then goes through Illumina 
library preparation (end repair, base ‘A’ addition, adapter ligation, and enrichment) using 
Broad designed indexed adapters for multiplexing of samples, with 400 bp fragment 
size.  After enrichment, the samples are qPCR quantified and equimolar pooled before 
proceeding to Illumina sequencing which was done on the Illumina HiSeq 2000 to a 
target depth of 100M reads.  The entire process occurs in a 96-well format and all 
samples were electronically tracked through the process in real-time including reagent lot 
numbers, specific automation used, time stamps for each process step, and automatic 
registration. 
  
RNA-seq data were aligned with Tophat version v1.4.1 to the UCSC human genome 
release version hg19. Gencode version 12 was used as a transcriptome model for the 
alignment as well as all gene and isoform quantifications. Unaligned reads were merged 
back in to create a final bam. Allele-specific expression was analyzed as for the other 
data sets. 
 
3.2. Long read data analysis and results 
 
Allele-specific expression estimates from the 2 x 250 bp and the standard 2 x 75 bp data 
are fully concordant (rho = 0.99 based on 707 sites with >=20 reads), showing that 
alignment error does not affect to our original estimates of monoallelic expression. 
Furthermore, using these data, we manually assessed each of the initial 21 novel or 
provisional genes to verify that (1) the transcript structure in the data corresponded to the 
gene annotation, (2) SNPs in the ASE analysis were in regions that correspond to the 
annotated transcripts, and (3) monoallelic SNPs did not overlap with known imprinted 
genes and showed no signs of switching between monoallelic/biallelic expression along 
the gene (Supplementary Figure 7).  
 
The long read RNA-seq data showed that 4 out of 21 novel/provisional genes (LA16c-
306E5.2, RP11-701H24.3, AL132709.5, RP11-395B7.2) were inconsistent with the gene 
annotations, showing either ambiguous (although often likely imprinted) transcription, or 
in one case imprinting derived from heterozygous SNPs that overlapped regions of a 
different known imprinted gene. These genes were removed from downstream analysis. 
All the other novel/provisional genes were relatively consistent with the Gencode 
annotation, although future work is needed to elucidate full transcript structure and gene 
annotation in the imprinted regions. See also section 9 for discussion of patterns observed 
in specific genes.  

4. RNA-seq allele counts 
 
For all the heterozygous sites per individual identified from genetic data, we calculated 
the number of REF and ALT alleles in RNA-sequencing data using the same pipeline for 
all the data sets – this has also been used in the original papers of each of the studies. We 
used only uniquely mapped reads, and required base quality >10. We excluded 
heterozygous sites with potential mapping errors: 50bp mapability <1 in the UCSC 
mapability track, and >5% bias in simulated RNA-sequencing data (Panousis et al. under 
review).  



5. Methylation analysis 
 
The Gencord data set includes methylation data from the Illumina 450K array from 107 
fibroblast samples, 111 LCL samples, and 66 T-cell samples. In our analysis, we used 
normalized β–values; further details of the experiment and data processing are available 
in the original publication.  
 

6. Statistical Method 
 

We first describe the proposed model and the filtering steps we take. We then 
describe the classification based on the statistics output by our model. We conclude this 
section with a simulation study to examine edge properties of our approach.  

 

6.1 Statistical Model 
 
The input to our model is the genotypes (typed and imputed) of each individual, and the 
counts of RNA-seq alleles overlapping each SNP in each individual. We use the 
following notation for the count data: 
nij - number of reads mapped to SNP j in individual i 
rij - number of reads with the ref allele mapped to SNP j in individual i 
hij - number of reads mapped to SNP j in individual i and phased to haplotype 1 (of 
unknown parental origin and with arbitrary haplotype numbering; these counts were 
generated by phasing the genotypes and combining alleles of the same haplotype) 
 
We perform the analysis for each gene and for each tissue separately. Tissue indices are 
therefore discarded from the notation. 
 
We use the following error probabilities: 
pg - genotyping error rate: set to 0.001 for non-imputed SNPs, and to 0.05 for imputed 
SNPs 
ps - sequencing error rate: set to 0.001 
pp - phasing error rate (we assume phasing errors in different SNPs along the gene are 
independent): set to 0.2 
 
We say that a SNP is informative for a given individual in a given tissue if the individual 
is heterozygous and the SNP is covered by >=8 RNA-seq reads. Although our model 
accounts for genotyping and phasing error, SNPs covered by a small number of reads are 
uninformative. We therefore arbitrarily chose a threshold 8 of reads and show via 
simulation that our method is robust to false positives at this depth (see Section 6.5 
below). Informativeness is tissue-specific since a heterozygous SNP may be covered and 
therefore informative for a given individual in one tissue but not in another. We denote 
by site any combination of (individual, informative SNP). Sites are tissue-specific since 
informative SNPs are tissue-specific. 
 
A complete list of all symbols is provided in the Supplementary Text.  



 

6.2 Filtering Steps 
 
We first apply a series of filtering steps to address several of the technical and functional 
confounders described above: 
 
a. Filtering of RNA-seq reads according to mapping and base quality to reduce the effect 
of mapping and sequencing errors, and filtering of SNPs with unreliable mapping to 
further remove SNPs where allelic mapping error is likely.  
 
b. To filter out SNPs with high genotyping error rates, SNPs with a Hardy Weinberg p-
value smaller than 10-3 are discarded from the analysis. Figure S1b depicts allele counts 
for SNPs in a gene for which more than half of the SNPs were removed due to deviation 
from HWE. Since multiple SNPs in this gene show only reference counts, this gene could 
potentially be handled also by the “flip test” that we describe in (d) below. In the 
Geuvadis dataset 2.7% of the SNPs failed the HWE filter. 
 
c. To reduce the effects of NMD, for each gene we discarded individuals carrying a 
heterozygous premature stop SNP in that gene. Furthermore, NMD causing variants 
result in monoallelic expression only on heterozygous state, and these variants are 
typically rare ((Rivas et al. 2015), although see also (Andres et al. 2010)), and it is 
therefore very unlikely that NMD could cause a confounded imprinting signal with 
monoallelic expression in the vast majority of individuals. (Note that analogously, an 
eQTL can cause monoallelic expression only in individuals heterozygous for the eQTL, 
i.e. <=50% of individuals under HWE). 
 
d. We apply a tissue-specific “flip test” to verify that the pattern of monoallelic 
expression is consistent with imprinting. We assume that with imprinting, the identity of 
a monoallelically expressed allele, either ref or alt, is independent of parent of origin, and 
therefore has an equal probability of being either of them. Genotyping error, RNA-seq 
sequencing error, and allelic bias in RNA-seq mapping are unlikely to flip randomly 
between the alleles and will therefore fail this test. eQTLs would cause random flipping 
of monoallelic expression only when the regulatory variant and the coding variants 
analyzed for monoallelic expression are not in LD; otherwise the SNPs in LD with an 
eQTL will also have consistently higher expression on one of the two alleles. We apply 
the flip test as follows: 
1) For each SNP, we identify all individuals whose expression patterns appear 

monoallelic, and classify each such monoallelic site as ref or alt according to the 
over-expressed allele. Specifically, monoallelic sites are those for which the 
likelihood of the count data under the imprinted model is higher than the likelihoods 
under either the balanced or imbalanced models (these models are described next in 
section “Generative Model”). 

2) For each SNP, we compute a p-value for the null hypothesis that the fraction of ref 
sites out of all monoallelic sites was drawn from a binomial distribution with p=0.5. 
We remove all SNPs with p-value < 0.001. 



We observe that this filter removes many genotyping and mapping errors. Figure S1c 
depicts an example of a gene that shows signs of imprinting before the flip test is applied 
but not afterwards. In the Geuvadis dataset 0.65% of the SNPs failed the “flip test”. 
 
e. For genes with a small number of individuals the flip test will not be well powered. We 
therefore test for imprinting only genes for which at least one SNP with both ref and alt 
monoallelic expression patterns have been observed. This will filter out genes in which 
monoallelicity either does not exist or is allele-specific and thus possibly driven by 
genotyping or mapping errors as discussed above. In the Geuvadis dataset, from the set of 
all genes showing some monoallelic expression, only 2215 qualified by this criterion. We 
therefore include statistical results of all genes in Supplementary Table S5 such that 
future studies with additional samples can leverage our analysis to determine additional 
imprinted genes.    
 

6.3 Generative Model 
 
We model individual i’s status in gene g and tissue t as being classified into one of three 
allelic expression classes: 
(a) BAL (balanced) - The gene is expressed biallelically and evenly from both gene 
copies. 
(b) IMB (imbalanced) - The gene exhibits allelic imbalance, i.e. one gene copy has a 
moderately higher expression level than the other. Such imbalance may result, for 
example, from an eQTL, in which case the expression level is sequence-dependent.  
(c) IMP (imprinted) - The gene exhibits imprinting, i.e. one gene copy has a considerably 
higher expression level than the other, potentially depending on the parental origin. We 
assume that in this scenario one of the copies is nearly completely silenced. 
 
Each allelic expression class is characterized by a Beta distribution (see Figure S3). For 
the balanced class, the distribution describes the relative expression of the reference allele 
level (i.e. the fraction of ref counts out of total counts) of SNPs residing in balanced 
genes. For the imbalanced and imprinted classes, the distribution describes the relative 
expression level of alleles residing in the over-expressed gene copy in imbalanced and 
imprinted genes, respectively. Given the allelic expression class and the phase 
information, the expression levels of multiple SNPs in the same gene are independently 
drawn from the relevant beta distribution. Independent sampling of relative expression 
levels along the gene is done as to account for isoform-specific silencing, splicing QTLs, 
and other biological effects that may cause inconsistency in allelic expression patterns in 
proximal sites, as well as for over-dispersion due to technical artifacts. Finally, given the 
allelic ratio and the total count data in a given site, the reference allele counts are drawn 
from the corresponding Binomial distribution. 
 
A gene-specific and tissue-specific multinomial distribution determines the probability 
that any given individual belongs to each of the three expression classes. The multinomial 
distribution is characterized by the following parameters that sum to 1: 
θg

bal - fraction of individuals belonging to the balanced class in gene g 
θg

imb - fraction of individuals belonging to the imbalanced class in gene g 



θg
imp - fraction of individuals belonging to the imprinted class in gene g 

This model therefore allows for both imprinted and non-imprinted individuals in the same 
gene and tissue. 
 

6.4 Model Computations 
 
We first compute the likelihood that the count data observed for SNP j in individual i 
results from a genotyping error: 
 

𝑝𝑝𝑖𝑖𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑝𝑝𝑔𝑔 ∙

1
2𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏 𝑟𝑟𝑖𝑖𝑖𝑖|  𝑝𝑝𝑠𝑠, 𝑛𝑛𝑖𝑖𝑖𝑖 +

1
2 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏 𝑟𝑟𝑖𝑖𝑖𝑖|  1 − 𝑝𝑝𝑠𝑠, 𝑛𝑛𝑖𝑖𝑖𝑖  

 
where 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥|  𝑝𝑝, 𝑛𝑛  is the binomial probability density function with parameters (𝑝𝑝, 𝑛𝑛), 
and 𝑝𝑝𝑔𝑔 is set differently for typed and imputed SNPs, as explained above in input data. 
 
We then compute the likelihood of the count data for the entire gene g given that 
individual i belongs to the balanced class: 

𝐿𝐿𝑖𝑖𝑖𝑖
𝑏𝑏𝑏𝑏𝑏𝑏 =   𝑝𝑝𝑖𝑖𝑖𝑖

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 +  (1 − 𝑝𝑝𝑔𝑔) 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑏𝑏𝑏𝑏𝑏𝑏 (𝑥𝑥) ∙ 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏 𝑟𝑟𝑖𝑖𝑖𝑖 𝑥𝑥, 𝑛𝑛𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑

!

𝑥𝑥!!𝑠𝑠𝑠𝑠𝑠𝑠  𝑗𝑗  ∈  𝑔𝑔

 

where 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥  is the beta probability density function with parameters specific to the 

balanced class; this is the distribution from which the relative expression level of the 
reference alleles in balanced genes are sampled. 
 
Similarly, the likelihood of the count data for gene g given that individual i belongs to the 
imprinted class, and that gene copy 1 is expressed (and gene copy 2 is silenced) is: 
 

𝐿𝐿𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖! = 𝑝𝑝𝑖𝑖𝑖𝑖

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + (1
𝑠𝑠𝑠𝑠𝑠𝑠  𝑗𝑗  ∈  𝑔𝑔

− 𝑝𝑝𝑔𝑔) 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑖𝑖𝑖𝑖𝑖𝑖 (𝑥𝑥) 1 − 𝑝𝑝𝑝𝑝 ∙ 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏 ℎ𝑖𝑖𝑖𝑖 𝑥𝑥, 𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑝𝑝𝑝𝑝 ∙ 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏(𝑛𝑛𝑖𝑖𝑖𝑖

!

𝑥𝑥!!

− ℎ𝑖𝑖𝑖𝑖|𝑥𝑥, 𝑛𝑛𝑖𝑖𝑖𝑖) 𝑑𝑑𝑑𝑑  

 
and the likelihood of the same data given that gene copy 2 is the expressed one is: 
 



𝐿𝐿𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖! = 𝑝𝑝𝑖𝑖𝑖𝑖

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + (1
𝑠𝑠𝑠𝑠𝑠𝑠  𝑗𝑗  ∈  𝑔𝑔

− 𝑝𝑝𝑔𝑔) 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑖𝑖𝑖𝑖𝑖𝑖 (𝑥𝑥) 1 − 𝑝𝑝𝑝𝑝 ∙ 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏 𝑛𝑛𝑖𝑖𝑖𝑖 − ℎ𝑖𝑖𝑖𝑖 𝑥𝑥, 𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑝𝑝𝑝𝑝

!

𝑥𝑥!!

∙ 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏(ℎ𝑖𝑖𝑖𝑖|𝑥𝑥, 𝑛𝑛𝑖𝑖𝑖𝑖) 𝑑𝑑𝑑𝑑  

 
where 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥  is the beta probability density function with parameters specific to the 
imprinted class. Note that when a phasing error occurs in a given site, that site would 
seem to be expressed from the wrong gene copy. Therefore, given that a genotyping error 
did not occur, we draw the counts from the correct distribution with probability 1 − 𝑝𝑝𝑝𝑝  
and from the wrong distribution with probability 𝑝𝑝𝑝𝑝. 
 
Since the numbering of the two gene copies is arbitrary, the likelihood of the count data 
for gene g given that individual i belongs to the imprinted class follows as: 
 

𝐿𝐿𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖 =  

1
2𝐿𝐿

𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖!

+
1
2𝐿𝐿𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖! 

 
The computations for the imbalanced class are identical to those for the imprinted class, 
but replacing 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑖𝑖𝑖𝑖𝑖𝑖 with 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑖𝑖𝑖𝑖𝑖𝑖 , which is the distribution from which the relative expression 

level of the over-expressed alleles in imbalanced genes are drawn. 
 
Estimation of the Beta distribution parameters is described in Section “Estimation of Beta 
parameters“ below. 
 

6.5 Per-Gene Statistics 
 
For each gene in each tissue we compute a set of statistics to summarize different aspects 
of expression and imprinting across individuals.  
 
The overall likelihood of the RNA-seq data observed for gene g in a given tissue over all 
individuals is a function of the parameters (θg

bal, θg
imb , θg

imp ): 
 

𝐿𝐿𝑔𝑔 =   𝜃𝜃𝑔𝑔
𝑏𝑏𝑏𝑏𝑏𝑏 ∙ 𝐿𝐿𝑖𝑖𝑖𝑖

𝑏𝑏𝑏𝑏𝑏𝑏 + 𝜃𝜃𝑔𝑔
𝑖𝑖𝑖𝑖𝑖𝑖 ∙ 𝐿𝐿𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜃𝜃𝑔𝑔
𝑖𝑖𝑖𝑖𝑖𝑖 ∙ 𝐿𝐿𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖∈
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

 

 
Optimizing over (𝜃𝜃𝑔𝑔

𝑏𝑏𝑏𝑏𝑏𝑏, 𝜃𝜃𝑔𝑔
𝑖𝑖𝑖𝑖𝑖𝑖, 𝜃𝜃𝑔𝑔

𝑖𝑖𝑖𝑖𝑖𝑖)  yields (𝜃𝜃𝑔𝑔
𝑏𝑏𝑏𝑏𝑏𝑏, 𝜃𝜃𝑔𝑔

𝑖𝑖𝑖𝑖𝑖𝑖, 𝜃𝜃𝑔𝑔
𝑖𝑖𝑖𝑖𝑖𝑖) , the maximum likelihood 

estimates for these parameters: 



 
𝜃𝜃𝑔𝑔

𝑏𝑏𝑏𝑏𝑏𝑏, 𝜃𝜃𝑔𝑔
𝑖𝑖𝑖𝑖𝑖𝑖, 𝜃𝜃𝑔𝑔

𝑖𝑖𝑖𝑖𝑖𝑖 = argmax
(𝜃𝜃𝑔𝑔

𝑏𝑏𝑏𝑏𝑏𝑏,𝜃𝜃𝑔𝑔
𝑖𝑖𝑖𝑖𝑖𝑖,𝜃𝜃𝑔𝑔

𝑖𝑖𝑖𝑖𝑖𝑖)
𝐿𝐿𝑔𝑔  

  
We compute the following likelihood statistics: 
 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑅𝑅𝑔𝑔 =  
max

(𝜃𝜃𝑔𝑔
𝑏𝑏𝑏𝑏𝑏𝑏,𝜃𝜃𝑔𝑔

𝑖𝑖𝑖𝑖𝑖𝑖,𝜃𝜃𝑔𝑔
𝑖𝑖𝑖𝑖𝑖𝑖)

𝐿𝐿𝑔𝑔

max
(𝜃𝜃𝑔𝑔

𝑏𝑏𝑏𝑏𝑏𝑏,𝜃𝜃𝑔𝑔
𝑖𝑖𝑖𝑖𝑖𝑖,𝜃𝜃𝑔𝑔

𝑖𝑖𝑖𝑖𝑖𝑖!!)
𝐿𝐿𝑔𝑔

 

 
IMPGLRg is a generalized likelihood ratio statistic that quantifies the evidence for the 
existence of imprinting in gene g. Specifically, it is the ratio of the maximum data 
likelihood when allowing for imprinting to the maximum data likelihood under the 
assumption that imprinting does not exist in gene g. 
  

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑅𝑅𝑔𝑔 =  
max

(𝜃𝜃𝑔𝑔
𝑏𝑏𝑏𝑏𝑏𝑏!!,𝜃𝜃𝑔𝑔

𝑖𝑖𝑖𝑖𝑖𝑖!!,𝜃𝜃𝑔𝑔
𝑖𝑖𝑖𝑖𝑖𝑖!!)

𝐿𝐿𝑔𝑔

max
(𝜃𝜃𝑔𝑔

𝑏𝑏𝑏𝑏𝑏𝑏,𝜃𝜃𝑔𝑔
𝑖𝑖𝑖𝑖𝑖𝑖,𝜃𝜃𝑔𝑔

𝑖𝑖𝑖𝑖𝑖𝑖!!)
𝐿𝐿𝑔𝑔

 

 
IMPLRg is a likelihood ratio statistic that compares the hypotheses of gene g being 
imprinted and not imprinted under the assumption that all individuals share the same 
imprinting status. Specifically, it is the ratio of the data likelihood when all individuals 
are imprinted to the maximum data likelihood when all individuals are allowed to be 
either balanced or imbalanced, but not imprinted, in gene g. 
 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑅𝑅𝑔𝑔 =  
max

(𝜃𝜃𝑔𝑔
𝑏𝑏𝑏𝑏𝑏𝑏,𝜃𝜃𝑔𝑔

𝑖𝑖𝑖𝑖𝑖𝑖,𝜃𝜃𝑔𝑔
𝑖𝑖𝑖𝑖𝑖𝑖)

𝐿𝐿𝑔𝑔

max max
(𝜃𝜃𝑔𝑔

𝑏𝑏𝑏𝑏𝑏𝑏,𝜃𝜃𝑔𝑔
𝑖𝑖𝑖𝑖𝑖𝑖,𝜃𝜃𝑔𝑔

𝑖𝑖𝑖𝑖𝑖𝑖!!)
𝐿𝐿𝑔𝑔 , max

(𝜃𝜃𝑔𝑔
𝑏𝑏𝑏𝑏𝑏𝑏!!,𝜃𝜃𝑔𝑔

𝑖𝑖𝑖𝑖𝑖𝑖!!,𝜃𝜃𝑔𝑔
𝑖𝑖𝑖𝑖𝑖𝑖!!)

𝐿𝐿𝑔𝑔

 

 
HETLRg is a likelihood ratio statistic that quantifies the evidence for the existence of 
between-individuals heterogeneity in the imprinting status of gene g. Specifically, it is the 
ratio of the maximum data likelihood to the maximum data likelihood under the 
assumption that all individuals are either imprinted or not imprinted. 
 
In the above likelihood statistics, maximum likelihood estimates for 𝜃𝜃𝑔𝑔

𝑏𝑏𝑏𝑏𝑏𝑏, 𝜃𝜃𝑔𝑔
𝑖𝑖𝑖𝑖𝑖𝑖, 𝜃𝜃𝑔𝑔

𝑖𝑖𝑖𝑖𝑖𝑖  are 
computed using the Expectation Maximization algorithm. 
 
 
We compute the probabilities of gene g being balanced, imbalanced or imputed under the 
strict assumption that all individuals are either balanced, imbalanced or imputed: 
 

𝑧𝑧𝑔𝑔
𝑏𝑏𝑏𝑏𝑏𝑏 =  

𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏 𝐿𝐿𝑖𝑖𝑖𝑖
𝑏𝑏𝑏𝑏𝑏𝑏

𝑖𝑖

𝑃𝑃𝑏𝑏𝑎𝑎𝑎𝑎 𝐿𝐿𝑖𝑖𝑖𝑖
𝑏𝑏𝑏𝑏𝑏𝑏

𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 𝐿𝐿𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 𝐿𝐿𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖
 



𝑧𝑧𝑔𝑔
𝑖𝑖𝑖𝑖𝑖𝑖 =  

𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 𝐿𝐿𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖

𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏 𝐿𝐿𝑖𝑖𝑖𝑖
𝑏𝑏𝑏𝑏𝑏𝑏

𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 𝐿𝐿𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 𝐿𝐿𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖
 

𝑧𝑧𝑔𝑔
𝑖𝑖𝑖𝑖𝑖𝑖   

𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 𝐿𝐿𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖

𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏 𝐿𝐿𝑖𝑖𝑖𝑖
𝑏𝑏𝑏𝑏𝑏𝑏

𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 𝐿𝐿𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 𝐿𝐿𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖
 

 
In the equations above 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏,𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖,𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 are the prior probabilities of a given gene being 
balanced, imbalanced and imprinted. We set these probabilities to 0.8, 0.19 and 0.01, 
respectively. These are conservative estimates, which are meant to produce a gross 
scaling of the probabilities of the three classes. 
 
τg  - mean fraction of higher-frequency allele (either ref or alt) out of total counts, 
computed over all informative sites in gene g 
φg – mean fraction of reference counts out of total counts, computed over all informative 
sites in gene g 
 
 

6.6 Per-gene, per-individual Statistics 
 
 In addition to the statistics summarizing information over all individuals, we 
compute a series of statistics for each individual in a given gene and tissue. We denote by 
𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏,𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖,𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 the prior probabilities of a given gene being balanced, imbalanced and 
imprinted in any given individual. We set these probabilities to 0.8, 0.19 and 0.01, 
respectively, identically to the per-gene prior probabilities as described in “Per-­‐Gene	
  
Statistics”	
  above.  
We compute the conditional probabilities of gene g in individual i belonging to each of 
the three classes as follows: 

𝑧𝑧𝑖𝑖𝑖𝑖
𝑏𝑏𝑏𝑏𝑏𝑏 =  

𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿𝑖𝑖𝑖𝑖
𝑏𝑏𝑏𝑏𝑏𝑏

𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿𝑖𝑖𝑖𝑖
𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝐿𝐿𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝐿𝐿𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖 

 

𝑧𝑧𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖 =  

𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝐿𝐿𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖

𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿𝑖𝑖𝑖𝑖
𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝐿𝐿𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝐿𝐿𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖 

 

𝑧𝑧𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖 =  

𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝐿𝐿𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖

𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿𝑖𝑖𝑖𝑖
𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝐿𝐿𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝐿𝐿𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖 

 
We count as balanced/imbalanced/imprinted any individual whose   𝑧𝑧𝑖𝑖𝑖𝑖

𝑏𝑏𝑏𝑏𝑏𝑏/𝑧𝑧𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖/𝑧𝑧𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖 
probability exceeds 0.7, respectively. We compute these statistics twice: First considering 
all individuals with at least one informative SNP in gene g, and second considering only 
individuals with at least two informative SNPs. We denote these sets of statistics as 
(bal1,imb1,imp1) and (bal2,imb2,imp2), respectively. Compared with the first set, the 
second one includes fewer but more confident counts. Finally, the statistics total1, total2 
give the total number of individuals with at least 1,2 informative SNPs in gene g, 



respectively. Note that not all individuals will be classified into a category as there must 
be substantial evidence to exceed the threshold, and therefore bal1+imb1+imp1 is often 
smaller than total1 (and same for total2).  
 

6.7 Estimation of Beta parameters 
 
 For the parameter estimation procedure only we assume a simplistic mixture 
model in which the expression pattern of every gene can be classified into one of three 
different classes (BAL, IMB, IMP). Each class is characterized by a Beta distribution, 
from which the fraction of the over-expressed allele counts are drawn for the relevant 
sites. The parameters of the three classes are denoted as 𝛼𝛼𝑏𝑏𝑏𝑏𝑏𝑏, 𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏 , 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖, 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖  and 
𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖, 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖 , respectively. The fraction of genes belonging to each class are denoted as 

𝑞𝑞𝑏𝑏𝑏𝑏𝑏𝑏, 𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖, respectively. 
 
Given the gene’s class and the number of counts observed in the relevant sites, the 
reference counts are assumed to be drawn independently, regardless of the individual of 
origin, and discarding phase information. The likelihood of the count data as a function of 
the mixture model parameters is computed as 
 

𝐿𝐿 𝑅𝑅,𝑁𝑁 𝑞𝑞, 𝛼𝛼, 𝛽𝛽 =   𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑖𝑖𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 1 − 𝑝𝑝𝑔𝑔 𝑝𝑝𝑖𝑖𝑖𝑖

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑠𝑠𝑛𝑛𝑛𝑛  𝑗𝑗  ∈  𝑔𝑔𝑖𝑖∈
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐∈
𝑏𝑏𝑏𝑏𝑏𝑏,𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖

𝑔𝑔∈
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

 

 
In the equation above R are the ref counts and N are the total counts, provided per 
individual and per site, and 𝑝𝑝𝑖𝑖𝑖𝑖

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is computed as explained in section “Model 
Computations” above. 𝑝𝑝𝑖𝑖𝑖𝑖

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠 is computed per site and per class as follows: 
 

𝑝𝑝𝑖𝑖𝑖𝑖
𝑏𝑏𝑏𝑏𝑏𝑏 =   𝑃𝑃 𝑟𝑟𝑖𝑖𝑖𝑖 𝛼𝛼𝑏𝑏𝑏𝑏𝑏𝑏, 𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏, 𝑛𝑛𝑖𝑖𝑖𝑖) =    𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥 ∙ 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏 𝑟𝑟𝑖𝑖𝑖𝑖 𝑥𝑥, 𝑛𝑛𝑖𝑖𝑖𝑖)
!

𝑥𝑥!!

 

 
𝑝𝑝𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖 =   𝑃𝑃 𝑟𝑟𝑖𝑖𝑖𝑖 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖, 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖, 𝑛𝑛𝑖𝑖𝑖𝑖)

=
1
2 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥 ∙ 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏 𝑟𝑟𝑖𝑖𝑖𝑖 1 − 𝑥𝑥, 𝑛𝑛𝑖𝑖𝑖𝑖)
!

𝑥𝑥!!

+
1
2 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥 ∙ 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏 𝑟𝑟𝑖𝑖𝑖𝑖 𝑥𝑥, 𝑛𝑛𝑖𝑖𝑖𝑖)
!

𝑥𝑥!!

 

 
𝑝𝑝𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖 =   𝑃𝑃 𝑟𝑟𝑖𝑖𝑖𝑖 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖, 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖, 𝑛𝑛𝑖𝑖𝑖𝑖)

=
1
2 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥 ∙ 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏 𝑟𝑟𝑖𝑖𝑖𝑖 1 − 𝑥𝑥, 𝑛𝑛𝑖𝑖𝑖𝑖)
!

𝑥𝑥!!

+
1
2 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥 ∙ 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏 𝑟𝑟𝑖𝑖𝑖𝑖 𝑥𝑥, 𝑛𝑛𝑖𝑖𝑖𝑖)
!

𝑥𝑥!!

 

 



We use the Stochastic Expectation Maximization (SEM) algorithm (Celeux and Diebolt 
1985) to estimate q, α and β. SEM is a modification of the EM algorithm in which the 
hidden variables are simulated according to their posterior probabilities, instead of being 
replaced by their expectations. SEM has been shown to produce stable estimates in 
similar problems. 

We declare the following hidden indicator variables: 

                                                          𝑧𝑧𝑖𝑖𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 1 if a genotyping error occurred in snp  𝑗𝑗 in individual  𝑖𝑖  

0 otherwise
 

𝑧𝑧𝑔𝑔
𝑏𝑏𝑏𝑏𝑏𝑏 = 1 if gene g belongs to the balanced class

0 otherwise
 

          𝑧𝑧𝑔𝑔
𝑖𝑖𝑖𝑖𝑖𝑖 = 1 if gene g belongs to the imbalanced class

0 otherwise
 

𝑧𝑧𝑔𝑔
𝑖𝑖𝑖𝑖𝑖𝑖 = 1 if gene g belongs to the imprinted class

0 otherwise
 

Initialization: We set 𝑞𝑞(!) =    (𝑞𝑞𝑏𝑏𝑏𝑏𝑏𝑏 ! , 𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖 ! , 𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖 ! )   to ( 1/3   ,1/3,1/3). In order to 
initialize the Beta parameters, we compute abs(𝑟𝑟𝑖𝑖𝑖𝑖

𝑛𝑛𝑖𝑖𝑖𝑖
− 0.5) for all sites in the dataset, and 

use the first decile to set (𝛼𝛼𝑏𝑏𝑏𝑏𝑏𝑏(!),𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏(!)), the ninth decile to set (𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖(!),𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖(!)), and the 
tenth decile to set (𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖(!),𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖(!)). The motivation here is to initialize the distributions to 
reflect balanced, moderately imbalanced and highly imbalanced expression patterns, 
respectively. Given the sites in the relevant decile, the initialization is performed by 
optimizing each (𝛼𝛼, 𝛽𝛽) pair using an interior-point procedure. 

Iteration: In the ith iteration of the algorithm we perform the two following stages: 

1. Drawing from expectation: 
a. Draw the hidden variables 𝑧𝑧𝑔𝑔

𝑏𝑏𝑏𝑏𝑏𝑏, 𝑧𝑧𝑔𝑔
𝑖𝑖𝑖𝑖𝑖𝑖, 𝑧𝑧𝑔𝑔

𝑖𝑖𝑖𝑖𝑖𝑖 for every gene g from their 
posterior multinomial distributions given 𝑞𝑞𝑖𝑖!! and 
 𝛼𝛼, 𝛽𝛽 (𝑖𝑖!!) =    (𝛼𝛼𝑏𝑏𝑏𝑏𝑏𝑏(𝑖𝑖!!),𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏(𝑖𝑖!!), 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖!!),𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖!!), 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖!!),𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖!!)). 

b. Draw the hidden variables 𝑧𝑧𝑖𝑖𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔for every individual i and for every SNP j, 

given the gene classifications drawn in 1(a). 
 

2. Maximization: Set 𝑞𝑞𝑖𝑖 and 𝛼𝛼, 𝛽𝛽 𝑖𝑖 by optimizing over the resulting complete data 
likelihood. The Beta parameters are obtained using an interior point procedure. 

We ran the above procedure on the Geuvadis dataset. Following twenty iterations we 
observed that the absolute value of change in all parameters was smaller than 0.01, and 
used these estimates as the model’s parameters. The parameter values are (𝛼𝛼𝑏𝑏𝑏𝑏𝑏𝑏, 𝛽𝛽𝑏𝑏𝑏𝑏𝑙𝑙) =
(45.5,44.5), (𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖, 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖) = (6.3,5.7), (𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖, 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖) = (0.64,0.15). 



6.8 Classification 
	
  
 The complete results of our approach applied to each data set are given in 
Supplementary Tables 3-5. Using these data we classified a set of imprinted genes in 
each tissue. Given the lack of parental inheritance information we took a conservative 
approach, requiring substantial evidence from multiple statistics and filters in order to 
classify a gene as imprinted. However, there were many genes that had moderate 
evidence of imprinting and these results can be combined with future studies in order to 
determine their validity. Below we describe the thresholds for classification in each of the 
four categories Imprinted, Biallelic, consistent with Imprinted, and consistent with 
Biallelic. Five genes classified as imprinted were removed based on validation results 
from the family or long-read RNA-seq analyses (see sections 1 and 3).  
 
Imprinted  

For identification of novel genes we required at least five individuals and two 
SNPs. For at least one SNP both alleles had to occur as the monoallelically expressed 
allele in at least one individual. We did not allow for novel heterogeneously imprinted 
genes (hetlr < 1.0), but removed this requirement if the gene was previously identified as 
imprinted in humans. If all of these filters were passed a gene was classified as imprinted 
if θg

imp > 0.7, θg
bal < 0.05, and impglr > 31.52 to account for the multiple hypotheses via a 

conservative Bonferoni correction for all genes/tissues examined (0.05/N=2532972 gene-
tissue pairs examined). For the smaller set of previously identified genes we required θg

imp 
> 0.5 and impglr > 13.7 (0.05/N=233 known gene-tissue pairs examined). The putatively 
imprinted genes defined according to these criteria are listed in Table S4. However, due 
to lack of comprehensive family data needed to confirm a parent of origin effect and 
formally define a false discovery rate obtained with these thresholds, and because the glr 
statistics are not guaranteed to be chi-square distributed due to the boundary condition 
of  𝜃𝜃𝑔𝑔

𝑖𝑖𝑖𝑖𝑖𝑖 = 0 under the null, in the final analysis described in the main text, focusing on 
biological variation in imprinting, we used a more stringent threshold. Specifically, for 
novel genes, we required impglr > 50 if θg

imp = 1.00 and impglr > 100 otherwise. For 
previously identified genes we required impglr > 40.  
 
Biallelic 
  We next examined each of these imprinted genes in all tissues to determine, 
which tissues showed strong evidence of biallelic expression. We classified a gene as 
biallelic if it was not imprinted, and at least half of the individuals were classified as 
balanced by our method. Recall that individuals are only classified as biallelic if 𝑧𝑧𝑖𝑖𝑖𝑖

𝑏𝑏𝑏𝑏𝑏𝑏 > 
0.7 and that not all individuals are classified as any of balanced, imbalanced or imprinted. 
That is, the method will give an unknown classification for ambiguous individuals with a 
small number of reads.  
 
 For genes with a small number of individuals, SNPs, or reads, there was not 
enough information to classify genes de novo as either imprinted or biallelic according to 
the metrics above. However, we did examine genes with lower thresholds conditional on 
the existence of a classified imprinted gene in at least one tissue. We created two 
additional categories “consistent with Imprinted” and “consistent with Biallelic”:  



 
consistent with Imprinted 

These are the set of genes in which the statistical model suggested imprinting, but 
there was not enough evidence for classification. We required that θg

imp accounted for 
90% of the population of individuals. We used the same statistic, θg

imp, as in the 
classification procedure, but did not include a cutoff for the impglr test statistic allowing 
for individuals with low read counts.  For example, a gene whose data consists of a single 
individual with read counts 20 ref and 0 alt at a single SNP would be classified into this 
category.   

 
consistent with Biallelic 

These are the set of genes in which the statistical model suggested biallelic 
expression, but there was not enough evidence for classification. We required that the 
combined set of biallelic and imbalanced individuals, as determined by the 𝑧𝑧!"!"# and 𝑧𝑧!"!"# 
statistics, accounted for at least 50% of the population of classified individuals. 	
  

7. Symbol and naming reference 
 
Names and symbols used in this section and Tables S3-S5: 
  
impglr	
   –	
   generalized	
   LR	
   statistic,	
   quantifies	
   the	
   gain	
   in	
   likelihood	
   obtained	
   by	
  

allowing	
  for	
  imprinting	
  in	
  this	
  gene	
  (full	
  description	
  in	
  supp	
  methods)	
  
implr	
  -­‐	
  LR	
  statistic,	
  compares	
  the	
  assumption	
  that	
  all	
  individual	
  are	
  imprinted	
  to	
  the	
  

assumption	
  that	
  none	
  are	
  (full	
  description	
  in	
  supp	
  methods)	
  
hetlr	
  –	
  generalized	
  LR	
  statistic,	
  quantifies	
  the	
  gain	
  in	
  likelihood	
  obtained	
  by	
  allowing	
  	
  

for	
  heterogeneity	
   in	
   imprinting	
  status	
  across	
   individuals	
  (full	
  description	
  in	
  
supp	
  methods)	
  

𝜃𝜃 g
bal, 𝜃𝜃 g

imb , 𝜃𝜃 g
imp	
   –	
   estimates	
   for	
   fraction	
   of	
   balanced,	
   imbalanced	
   and	
   imprinted	
  

individuals	
  
𝑧𝑧𝑔𝑔

𝑏𝑏𝑏𝑏𝑏𝑏, 𝑧𝑧𝑔𝑔
𝑖𝑖𝑖𝑖𝑖𝑖, 𝑧𝑧𝑔𝑔

𝑖𝑖𝑖𝑖𝑖𝑖	
  -­‐	
  probabilities	
  of	
   the	
  gene	
  being	
  balanced,	
   imbalanced	
  and	
   imprinted	
   in	
  
all	
  individuals	
  

	
  
bal2	
  –	
  number	
  of	
  individuals	
  with	
  at	
  least	
  two	
  informative	
  SNPs	
  who	
  are	
  classified	
  

as	
  balanced	
  	
  
imb2	
  –	
  number	
  of	
  individuals	
  with	
  at	
  least	
  two	
  informative	
  SNPs	
  who	
  are	
  classified	
  

as	
  imbalanced	
  	
  
imp2	
  –	
  number	
  of	
  individuals	
  with	
  at	
  least	
  two	
  informative	
  SNPs	
  who	
  are	
  classified	
  

as	
  imprinted	
  	
  
total2	
  –	
  number	
  of	
  individuals	
  with	
  at	
  least	
  two	
  informative	
  SNPs	
  
bal1	
  –	
  number	
  of	
  individuals	
  with	
  at	
  least	
  one	
  informative	
  SNP	
  who	
  are	
  classified	
  as	
  

balanced	
  	
  
imb1	
  –	
  number	
  of	
   individuals	
  with	
  at	
   least	
  one	
  informative	
  SNP	
  who	
  are	
  classified	
  

as	
  imbalanced	
  	
  
imp1	
  –	
  number	
  of	
   individuals	
  with	
  at	
   least	
  one	
  informative	
  SNP	
  who	
  are	
  classified	
  

as	
  imprinted	
  	
  
total1	
  –	
  number	
  of	
  individuals	
  with	
  at	
  least	
  one	
  informative	
  SNP	
  



	
  
both	
  –	
  a	
  SNP	
  monoallelic	
  for	
  both	
  alleles	
  was	
  observed	
  (yes/no)	
  
known	
  –	
  a	
  known	
  imprinted	
  gene	
  (yes/no)	
  
RME	
  –	
  a	
  known	
  random	
  monoallelic	
  expression	
  gene	
  (yes/no)	
  
eQTLt	
  –	
  tissues	
  in	
  which	
  known	
  strong	
  eQTLs	
  exist	
  
eQTLv	
  –	
  linear	
  regression	
  coefficient	
  from	
  allelic	
  ratio	
  ~	
  	
  	
  het|hom	
  eQTL	
  genotype	
  
	
  
indn	
  –	
  number	
  of	
  individuals	
  with	
  at	
  least	
  one	
  informative	
  SNP	
  
snpn–	
  number	
  of	
  SNPs	
  which	
  are	
  informative	
  in	
  at	
  least	
  one	
  individual	
  
indn2	
  –	
  number	
  of	
  individuals	
  with	
  at	
  least	
  two	
  informative	
  SNP	
  
snpn3	
  –	
  number	
  of	
  SNPs	
  which	
  are	
  informative	
  in	
  at	
  least	
  three	
  individuals 
τg - mean	
  fraction	
  of	
  higher-­‐frequency	
  allele	
  (either	
  ref	
  or	
  alt)	
  out	
  of	
  total	
  counts,	
  

computed	
  over	
  all	
  sites	
  in	
  gene	
  g	
   
φg - mean	
   the	
   fraction	
  of	
   reference	
  counts	
  out	
  of	
   total	
   counts,	
   computed	
  over	
  all	
  

sites	
  in	
  gene	
  g	
  
	
  

8. Known Imprinted Genes in Human and Mouse 
 
The set of known imprinted genes in human and mouse were collected from the Otago 
database (Morison et al. 2001) by searching under category for status “imprinted” (Table 
S6). Provisional genes and genes with conflicting evidence were not considered amongst 
the known set of genes. We also added all genes from the Otago pdf 1101Summary-
table.pdf, and human non-provisional “imprinted”	
   genes from geneimprint.org. In the 
event that these data sources are not up to date with the latest literature, some of our 
novel genes may in fact be previously known.  
 
We compared all identified imprinted genes with imprinting status in the mouse as 
retrieved from the Otago database and the results are shown in Figure S9. The results 
indicate that while there exists a high overlap between human and mouse imprinted 
genes, there are also uniquely human/mouse imprinted genes. However, not all 
tissues/developmental stages have been examined for imprinting.  
 

9. Additional notes on specific genes 
 
In this section, we briefly discuss the imprinting patterns of individual genes, based on 
additional inspection, especially of the novel imprinted genes discovered in this study, 
and other noteworthy observations.  
• IGF2: We verified with visual inspection of both the long- and short-read RNA-seq 

data that the IGF2 locus does not show signs of ambiguous transcription that could 
explain the different expressed allele in brain and muscle. Specifically, RNA-seq 
reads in the IGF2 region do not overlap the nearby H19 gene. 

• INPP5F: The 3’ exons of INPP5F overlap INPP5F_V2, which is annotated as a 
transcript of INPP5F according to both Gencode and RefSeq even though it is a 
previously known imprinted retrogene inside the non-imprinted INPP5F (Monk et al. 
2011). Because of this, and all of our ASE data from INPP5F being from the region 



overlapping INPP5F_V2, we treated INPP5F_V2 as a separate gene (except in gene 
expression level analysis), observing signs of imprinting in several tissues. However, 
the long read data indicated expression both from INPP5F and INPP5F_V2, and fully 
distinguishing these transcripts is not possible in our data. Thus, lack of imprinting or 
a leaky signal (Supplementary Figure 1a) could be due to expression from the non-
imprinted INPP5F. 

• SYCE1, THEGL, and MAGI2 have not been classified as imprinted in previous 
studies, and in our analysis there is strong support for imprinting only in the Geuvadis 
or Gencord cell line data sets. For the sake of consistency, these genes are included in 
this study, but we note that their imprinting status in primary tissues remains unclear. 

• SNHG14 is in the middle of a well-known imprinted region, but the annotation of the 
transcripts in this region remains unclear. We observe monoallelic transcription that is 
consistent with the Gencode annotation of SNHG14, but future work is needed to 
describe the full gene annotation of this region. 

• NLRP2 is expressed in a monoallelic manner, but the trio data indicates non-parental 
origin of monoallelic expression (Supplementary Table 7).  

• LPAR6 is a putative novel imprinted gene that is located in an intron of a previously 
identified RB1 gene. In our data, LPAR6 shows a stronger signal of imprinting than 
RB1 – although the signal is particularly strong in LCLs rather than primary tissue 
samples.  

 
  



 
	
  
	
  

	
  

 

Fig. S1.  
	
  
An example of partial imprinting in the INPP5F_V2 in Gencord fibroblasts where the 
silenced allele is expressed albeit in a lower level. The plot depicts shows the alt vs ref 
allele counts for all SNPs and all individuals. Different colors indicate different SNPs. 
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Fig. S2.  
	
  
	
  
Random monoallelic expression (RME) manifested in the in Geuvadis LCL dataset. The 
gene P2RX5 was found to exhibit RME (Gimelbrant et al. 2007). A) shows the alt vs ref 
counts (as explained in Fig. S1). Figure B gives, for every heterozygous site with 
coverage >= 30, the relative frequency of the over-expressed allele (a number between 
0.5 and 1). The monoallelic sites tend to appear in specific individuals, in whom the 
clonality level is presumably high.   
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Fig. S3.  
	
  
eQTL effects on monoallelic expression. Regulatory variants (eQTLs) are expected to 
lead to allelic imbalance in individuals that are heterozygous for eQTLs (max 50% of 
total). We investigated this in eQTL genes (identified by GTEx Consortium) by selecting 
one ASE site per gene per individual i, calculating allelic imbalance of that site as ai = ( 
|0.5-REF/TOTAL| ), and modeling it as ai = βgi + e where gi is an indicator variable for 
whether the individual is heterozygous for the eQTL variant. A) shows the distribution of 
β from that model, showing that for most eQTLs, the effect of eQTLs on ASE is small. 
Other tissues show similar distributions. B) shows the pattern of allelic imbalance in the 
gene with the highest beta in thyroid, ENSG00000144115, with eQTL heterozygotes 
(red) having nearly monoallelic expression compared to homozygotes (black). Note that 
this is the worst case example rather than a typical eQTL effect on ASE. Altogether, an 
eQTL signal could be confused for a signal of imprinting only if the eQTL is extremely 
strong, has a high minor allele frequency, and none of the >=50% of individuals 
homozygous for the eQTL (thus lacking eQTL-induced ASE) have any heterozygous 
sites for ASE analysis. We did not find these patterns in our imprinted genes. 
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Fig. S4.  
	
  
Three Beta distributions characterize the three expression classes of the model. Balanced 
class: The relative frequency of the reference allele is sampled from a Beta distribution 
concentrated around even expression, with a slight bias towards the reference allele. 
Imprinted class: The relative frequency of the allele residing on the over-expressed gene 
copy is sampled from a distribution strongly shifted towards 1. Imbalanced class: The 
relative frequency of the allele residing on the over-expressed gene copy is sampled from 
a high-variance Beta distribution shifted towards 1. Note that according to this 
distribution, it is common for an allele residing on the over-expressed gene copy to have 
an allele ratio less than 0.5. This situation often occurs in practice due to different 
biological and technical effects that cause inconsistency in imbalance levels along the 
gene. 
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Fig. S5.  
	
  
Clonality of samples as assessed from X-chromosome data. A) shows histograms of the 
proportion of biallelic sites in the X-chromosome per sample, in the three data sets used 
in this study. Different genotyping platforms and RNA-seq coverage make the exact 
proportions differ between the data sets; thus we estimated a separate threshold for each 
dataset (show in blue) for a sample to be considered potentially monoclonal. (B) shows 
this breakdown for each tissue. The LCLs of both GTEx and Geuvadis data sets have a 
substantial degree of clonality. (C) shows the very slight correlation of the degree of 
clonality from chrX and overall proportion of ASE in Geuvadis data. This shows that 
genome-wide ASE is not driven by epigenetic effects that are inherited in clonal cell 
lines. Furthermore, the differences between populations show the much higher degree of 
clonality in the CEU and YRI cell lines that are much older than the other cell lines 
(Coriell; personal communication). 
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Fig.	
  S6.	
  	
  
	
  
Genomic	
   regions	
   of	
   all	
   imprinted	
   loci,	
   with	
   the	
   47	
   genes	
   detected	
   as	
   imprinted	
  
marked	
   in	
   red.	
   DMR	
   denotes	
   differentially	
   methylated	
   regions	
   from	
   (Court	
   et	
   al.	
  
2014)	
   and	
   ASM	
   denotes	
   regions	
   with	
   allele-­‐specific	
   methylation	
   according	
   to	
  
(Kuleshov	
  et	
  al.	
  2014).	
  Note	
  that	
  absence	
  of	
  data	
  of	
  DMR	
  or	
  ASM	
  regions	
  does	
  not	
  
necessarily	
   imply	
   their	
   full	
   absence	
   due	
   to	
   potential	
   tissue-­‐specific	
   effects.	
  
(Continues	
  on	
  the	
  next	
  7	
  pages)	
  
	
  



	
  



	
  
	
  



	
  
	
  



	
  
	
  



	
  
	
  



	
  



	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  



 

	
  
	
  
Fig.	
  S7.	
  Transcript	
  structure	
  in	
  the	
  novel	
  or	
  provisional	
  imprinted	
  genes,	
  shown	
  as	
  a	
  
sashimi	
  plot	
  for	
  one	
  sample	
  for	
  each	
  gene,	
  based	
  on	
  GTEx	
  data.	
  The	
  top	
  row	
  shows	
  
the	
   coverage	
   and	
   splicing	
   (loops	
  with	
   numbers)	
   based	
   on	
   all	
   long-­‐read	
   2x250	
   bp	
  
RNA-­‐seq	
  reads	
  in	
  the	
  region.	
  The	
  middle	
  row	
  shows	
  reads	
  that	
  carry	
  the	
  reference	
  
allele	
  of	
  heterozygous	
  sites,	
  and	
  the	
  bottom	
  shows	
  reads	
  that	
  carry	
  the	
  alternative	
  
allele	
  of	
  heterozygous	
  sites.	
  The	
  allelic	
  read	
  data	
  is	
  with	
  2x250	
  bp	
  reads	
  of	
  the	
  same	
  
sample	
   as	
   the	
   full	
   coverage	
   track,	
   when	
   there	
   was	
   a	
   long-­‐read	
   sample	
   with	
   a	
  
heterozygous	
  SNP	
  (these	
  are	
  marked	
  with	
  a	
  red	
  top	
  row).	
  Otherwise	
  allelic	
  data	
  is	
  
from	
   2	
   x	
   75	
   bp	
   reads	
   using	
   different	
   samples	
   from	
   the	
   same	
   tissue	
   for	
   the	
   full	
  
coverage	
  track	
  and	
  the	
  allelic	
  read	
  tracks	
  (these	
  are	
  marked	
  with	
  a	
  grey	
  top	
  row).	
  
The	
  gene	
  annotation	
  in	
  the	
  bottom	
  is	
  Refseq,	
  which	
  is	
  incorporated	
  in	
  IGV;	
  while	
  the	
  
rest	
  of	
  our	
  analysis	
  is	
  based	
  on	
  Gencode	
  v12,	
  these	
  are	
  typically	
  very	
  similar,	
  and	
  it	
  
is	
  known	
  that	
  neither	
  is	
  perfect.	
  
	
   The	
   plots	
   are	
   shown	
   for	
   UTS2,	
   PPIEL,	
   DIRAS3,	
   PRSS50,	
   UGT2B4,	
   KIF25,	
  
SYCE1,	
   NTM,	
   LPAR6,	
   RP11-­‐7F17.7,	
   MEG9,	
   SNHG14,	
   ZNF331,	
   NLRP2,	
   CST1,	
   and	
  
finally	
  as	
  an	
  example	
  of	
  an	
  excluded	
  gene,	
  RP11-­‐701H24.3.	
  The	
  NTM	
  gene	
  is	
  too	
  big	
  
to	
  be	
  shown	
  in	
  its	
  entirety,	
  and	
  for	
  some	
  genes,	
  two	
  plots	
  are	
  shown	
  to	
  capture	
  the	
  
entire	
  transcripts.	
  Refseq	
  gene	
  annotation	
  is	
  lacking	
  for	
  RP11-­‐7F17.7	
  and	
  SNHG14,	
  
but	
   the	
   data	
   are	
   consistent	
   with	
   the	
   Gencode	
   annotation	
   used	
   in	
   the	
   rest	
   of	
   the	
  
analysis.	
  MAGI2	
  and	
  THEGL	
  are	
  not	
  shown	
  because	
  they	
  are	
  not	
  imprinted	
  in	
  GTEx	
  
data,	
  but	
  their	
  transcript	
  structure	
  appears	
  consistent	
  with	
  the	
  annotation.	
  This	
  was	
  
not	
   the	
   case	
   for	
   RP11-­‐701H24.3,	
   LA16c-­‐306E5.2,	
   LA16c-­‐306E5.2,	
   and	
   RP11-­‐
395B7.2,	
   which	
   were	
   excluded	
   from	
   downstream	
   analysis.	
   The	
   transcript	
  
annotations	
  for	
  the	
  last	
  three	
  are	
  too	
  large	
  to	
  be	
  shown	
  as	
  a	
  plot.	
  
	
   (Continues	
  on	
  the	
  next	
  6	
  pages)	
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Fig. S8.  
	
  
Known versus novel imprinted genes. Of the 42 imprinted genes identified in this study, 
28 were included in previous catalogs (“known”) and 12 were novel. A) and (b) show the 
number of tissues where the genes are expressed at >0.1 RPKM for known and novel 
genes, respectively. C) and (d) show the proportion of tissues where the genes are 
imprinted ( (IMP + cIMP) / (IMP + cIMP + BI + cBI)) for known and novel genes, 
respectively.  
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Fig.	
  S9.	
  	
  
	
  
Detected	
   imprinted	
   genes	
   classified	
   by	
   previously	
   known	
   imprinting	
   in	
   both	
  
humans	
   and	
   the	
   mouse	
   (green),	
   only	
   in	
   humans	
   (blue	
   for	
   confidently	
   identified,	
  
cyan	
   for	
   provisional),	
   novel	
   genes	
   that	
   are	
   inside	
   known	
   imprinted	
   loci	
   (red)	
   and	
  
fully	
  novel	
  genes	
  (green).	
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Fig.	
  S10.	
  	
  
 
Levels of imprinting (τ) detected in all previously characterized human imprinted genes 
where we had data, excluding those found imprinted and shown in Fig. 2.  
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Fig. S11.  
 
Validation of allelic ratios by mmPCR. Coverage per validated site in the original GTEx 
RNA-seq data (A) and in mmPCR data (B) shows a dramatically higher coverage in 
mmPCR data. The correlation of allelic ratios in the two data sets is high, as shown by 
(C) for sites with >=8 reads (the minimum in our analysis) and in (D) for sites with >=50 
reads. Importantly, while the correlation is not perfect, the patterns do not suggest any 
systematic bias affecting allelic ratios in RNA-seq.  
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Fig. S12.  
	
  
A) Imprinted and biallelic genes per tissue in all the 42 genes classified as imprinted in 
this study. C) Shows the imprinting status of genes with previously known information 
on the expressed parent. The larger amount of paternally expressed genes is a previously 
known fact, but interestingly, biallelic expression is more common in paternally 
imprinted genes (see also Fig. 3a). Furthermore, testis is an outlier in prevalent biallelic 
expression in paternally expressed genes. 
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Fig. S13.  
 
Imprinting status across tissues of each of the genes classified as imprinted in this study 
(A), and previously known genes that were not classified as imprinted and included in (a) 
(C). B) summarizes the data in (A) by showing the distribution of 
(cIMP+IMP)/(cIMP+IMP+cBI+BI) tissues for each gene.  
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Fig. S14.  
	
  
Imprinting across 13 sub-regions of the brain. A) shows a heatmap of τ (analogously to 
Fig. 2) for the brain sub-regions, demonstrating a generally consistent pattern across the 
different regions. Closer inspection revealed solid signs of tissue heterogeneity only in  
L3MBTL1, with four example sub-tissues shows in (B) – the top row tissues appear to 
have imprinted genes, whereas the bottom contains biallelic genes.  
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Fig. S15.  
	
  
Allelic ratio of IGF2 of each of the tissues compared to allelic ratio in the brain. Each dot 
represent a SNP in one individual. Most tissues show a clear reversal of the direction of 
imprinting compared to the brain. See also section 9.  
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Fig. S16.  
	
  
Allelic ratio of GRB10 of each of the tissues compared to allelic ratio in the brain. Each 
dot represent a SNP in one individual. Most tissues do not show strong imprinting, but 
for example blood shows an allelic bias to the opposite direction to that in the brain, and 
pituitary glad shows imprinting consistent with the brain.  
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Fig. S17.  
 
Transcript structure in GRB10 for brain, whole blood (WHLBLD) and muscle 
(MSCLSK), of which brain shows a strong signal of imprinting (Fig. S16) while blood 
and muscle show a biased allelic expression in the opposite direction. (A) shows relative 
expression levels of transcripts 1-7 corresponding to ENST00000406641, 
ENST0000047396, ENST00000439599, ENST00000398791, ENST00000461886, 
ENST00000398810, respectively. The sashimi plots in a-c show RNA-seq coverage and 
splicing in brain (red), blood (blue) and muscle (green) with clear differences especially 
in the 5’ end, suggesting different promoters. However, analysis of allelic expression of 
the SNPs located in different parts of the transcripts yielded inconclusive results of 
putative transcript-specific imprinting.  
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Fig. S18.  
	
  
Variable imprinting levels between individuals in GTEx data. In order to avoid potential 
caveats of phasing errors, we calculated τ as an average of all the SNPs of an individual 
for a given gene and tissue. A) Shows a summary per gene, taking an average of the 
tissues, and B) shows an example from KCNQ1, and C) from PPIEL. There is no 
correlation between τ and the number of SNPs per sample, suggesting that individual 
errors e.g. in genotyping are unlikely to drive the patterns. 
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Fig. S19.  
	
  
Gender difference in imprinting in the muscle for genes classified as imprinted in this 
tissue. For each gene, we compared the τ values of males and females: the y-axis shows 
the median τ per gene for males minus median τ per gene for females, and the Mann-
Whitney p-value of the the comparison is on the x-axis.  
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Fig. S20.  
	
  
Distribution of expression levels per tissue of the 42 genes detected as imprinted in this 
study. All the 42 genes were included in each tissue, regardless of their imprinting status.  
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Fig. S21.  
	
  
A) shows expression levels in tissues with imprinted and biallelic genes for the 42 genes 
detected as imprinted at least one tissue in this study, measured as median log2 RPKM. 
The cross denotes the expression level of 2 x imprinted median, which can be considered 
the expected value for tissues with biallelic genes. B) shows the distribution of expression 
levels as log2 RPKM for each biallelic or imprinted gene in all tissues. 
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Fig. S22.  
	
  
Gender differences in gene expression. A) shows log2 fold changes in expression levels 
measures as RPKM from all the tissues per gene. Values above 0 indicate higher 
expression in females. Maternally versus paternally expressed genes do not show 
significant differences in the proportion of genes with higher expression in females or 
males (p = 0.27 based on permutation of maternal/paternal labels. We also performed this 
analysis separately for each tissue (B), but did not find individual genes with significant 
expression differences. However, in muscle and nerve, imprinted genes show more 
differential expression between males and females than other genes. Imprinted genes are 
marked in black, and the nominal p-values are from a Mann-Whitney test of comparing 
absolute log2 fold change distribution of imprinted genes to all other genes.   
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Fig. S23.  
 
Methylation analysis. For each of the three cell types, we show two methylation statistics 
that summarize data across individuals and methylation sites – with the aim to detect 
methylation of only one allele as expected in imprinted loci. Other statistics showed 
similar trends (data not shown). The top row shows the proportion of semimethylated 
sites (sites with methylation beta value x-y) over the total, pooling all sites and 
individuals. The bottom row shows the median deviation from semimethylation (0.5) 
over all sites and individuals. These statistics are compared between imprinted genes in 
each of the three cell types and all other genes, both for gene body and promoters 
(boxplots). The gene names show the same statistics calculated from differentially 
methylated regions (DMRs; (Court et al. 2014)) for genes with a known DMR, with the 
gene names in red indicating an imprinted status in this study for the corresponding cell 
type. The DMRs are for SNRPN, MEG3, ZNF331, KCNQ1, SNURF, FAM50B, PPIEL, 
DLK1, PEG10, IGF2, DIRAS3, PLAGL1, MEST, H19, and GRB10.   
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Fig. S24.  
	
  
Examples of methylation landscapes in imprinted loci in MEST (a,b) and SNRPN (c,d) in 
Gencord fibroblast data. The lineplots in (a,c) show the methylation level (beta) as a 
median across individuals (black line) and the grey lines denote 10th and 90th quantiles. 
The arrow shows the gene region, and the cyan bars denotes differentially methylated 
regions. The boxplots in (b,d) are the same data, showing the full population distribution 
of each site and without scaling of the x-axis according to chromosomal position. The red 
boxes are for the gene region, and cyan color denotes differentially methylated regions. 
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Table S1.  
Samples of the primary data sets of this study. The clonality proportion is estimated from 
monoallelic expression in the X chromosome in female samples; see Fig. S5. The 
validation data and samples are described in the text and the Supplementary Text.  

Table S2.  
Sources and characteristic of monoallelic expression 	
  

Table S3.  
Summary statistics of the 42 identified as imprinted. Definitions of the column names are 
in Supplementary Text section 7. 

Table S4.  
Summary statistics of putatively imprinted genes. Definitions of the column names are in 
Supplementary Text section 7. 

Table S5.  
Summary statistics of all analyzed genes. Definitions of the column names are in 
Supplementary Text section 7. 
 
Table S6. 
List of known and putatively imprinted genes in human. HS and MM denote human and 
mouse, respectively, and the notes indicate data source or status other than the Otago 
database (Morison et al. 2001). The classification in our data is summarized across 
tissues with a hierarchy of (consistent with biallelic) < biallelic < (consistent with 
imprinting) < imprinted.  

Table S7.  
Results of the analysis of family validation data.  

Data S1.  
Scatterplots of read counts for the imprinted genes for each tissue, with each dot 
representing read counts per SNP per individual. 

Data S2. 
Scatterplots of read counts for the imprinted genes for each tissue, with each dot 
representing read counts per haplotype per individual, thus combining data from multiple 
SNPs (including imputed variants) when an individual has several heterozygous sites per 
gene.  

Data S3.  
Scatterplots of read counts for the known imprinted genes (as defined in 8) for each 
tissue, with each dot representing read counts per SNP per individual. 



Data S4. 
Scatterplots of read counts for the known imprinted genes (as defined in 8) for each 
tissue, with each dot representing read counts per haplotype per individual, thus 
combining data from multiple SNPs (including imputed variants) when an individual has 
several heterozygous sites per gene.  

Data S5. 
The software implementing all methods described in this paper.   
 

 

References 

 
Andres	
  AM,	
  Dennis	
  MY,	
  Kretzschmar	
  WW,	
  Cannons	
  JL,	
  Lee-­‐Lin	
  SQ,	
  Hurle	
  B,	
  Program	
  

NCS,	
  Schwartzberg	
  PL,	
  Williamson	
  SH,	
  Bustamante	
  CD	
  et	
  al.	
  2010.	
  Balancing	
  
selection	
   maintains	
   a	
   form	
   of	
   ERAP2	
   that	
   undergoes	
   nonsense-­‐mediated	
  
decay	
  and	
  affects	
  antigen	
  presentation.	
  PLoS	
  Genet	
  6(10):	
  e1001157.	
  

Borrell	
  LN,	
  Nguyen	
  EA,	
  Roth	
  LA,	
  Oh	
  SS,	
  Tcheurekdjian	
  H,	
  Sen	
  S,	
  Davis	
  A,	
  Farber	
  HJ,	
  
Avila	
  PC,	
  Brigino-­‐Buenaventura	
  E	
  et	
  al.	
  2013.	
  Childhood	
  obesity	
  and	
  asthma	
  
control	
   in	
   the	
   GALA	
   II	
   and	
   SAGE	
   II	
   studies.	
  American	
   journal	
  of	
   respiratory	
  
and	
  critical	
  care	
  medicine	
  187(7):	
  697-­‐702.	
  

Celeux	
   G,	
   Diebolt	
   J.	
   1985.	
   The	
   SEM	
   algorithm:	
   a	
   probabilistic	
   teacher	
   algorithm	
  
derived	
   from	
   the	
   EM	
   algorithm	
   for	
   the	
   mixture	
   problem.	
   Computational	
  
statistics	
  quaterly	
  2(1):	
  73-­‐82.	
  

Cho	
   H,	
   Davis	
   J,	
   Li	
   X,	
   Smith	
   KS,	
   Battle	
   A,	
   Montgomery	
   SB.	
   2014.	
   High-­‐resolution	
  
transcriptome	
   analysis	
   with	
   long-­‐read	
   RNA	
   sequencing.	
   PLoS	
   One	
   9(9):	
  
e108095.	
  

Court	
   F,	
   Tayama	
   C,	
   Romanelli	
   V,	
   Martin-­‐Trujillo	
   A,	
   Iglesias-­‐Platas	
   I,	
   Okamura	
   K,	
  
Sugahara	
  N,	
  Simon	
  C,	
  Moore	
  H,	
  Harness	
  JV	
  et	
  al.	
  2014.	
  Genome-­‐wide	
  parent-­‐
of-­‐origin	
   DNA	
   methylation	
   analysis	
   reveals	
   the	
   intricacies	
   of	
   human	
  
imprinting	
  and	
  suggests	
  a	
  germline	
  methylation-­‐independent	
  mechanism	
  of	
  
establishment.	
  Genome	
  Res	
  24(4):	
  554-­‐569.	
  

Dobin	
  A,	
  Davis	
  CA,	
  Schlesinger	
  F,	
  Drenkow	
  J,	
  Zaleski	
  C,	
   Jha	
  S,	
  Batut	
  P,	
  Chaisson	
  M,	
  
Gingeras	
  TR.	
  2013.	
  STAR:	
  ultrafast	
  universal	
  RNA-­‐seq	
  aligner.	
  Bioinformatics	
  
29(1):	
  15-­‐21.	
  

Gimelbrant	
  A,	
  Hutchinson	
  JN,	
  Thompson	
  BR,	
  Chess	
  A.	
  2007.	
  Widespread	
  monoallelic	
  
expression	
  on	
  human	
  autosomes.	
  Science	
  318(5853):	
  1136-­‐1140.	
  

Jeon	
   Y,	
   Sarma	
   K,	
   Lee	
   JT.	
   2012.	
   New	
   and	
   Xisting	
   regulatory	
   mechanisms	
   of	
   X	
  
chromosome	
   inactivation.	
  Current	
  opinion	
   in	
  genetics	
  &	
  development	
  22(2):	
  
62-­‐71.	
  



Kuleshov	
  V,	
  Xie	
  D,	
  Chen	
  R,	
  Pushkarev	
  D,	
  Ma	
  Z,	
  Blauwkamp	
  T,	
  Kertesz	
  M,	
  Snyder	
  M.	
  
2014.	
  Whole-­‐genome	
  haplotyping	
  using	
   long	
   reads	
   and	
   statistical	
  methods.	
  
Nat	
  Biotechnol	
  32(3):	
  261-­‐266.	
  

Kumar	
   R,	
   Nguyen	
   EA,	
   Roth	
   LA,	
   Oh	
   SS,	
   Gignoux	
   CR,	
   Huntsman	
   S,	
   Eng	
   C,	
   Moreno-­‐
Estrada	
  A,	
  Sandoval	
  K,	
  Penaloza-­‐Espinosa	
  RI	
  et	
  al.	
  2013.	
  Factors	
  associated	
  
with	
  degree	
  of	
  atopy	
  in	
  Latino	
  children	
  in	
  a	
  nationwide	
  pediatric	
  sample:	
  the	
  
Genes-­‐environments	
   and	
   Admixture	
   in	
   Latino	
   Asthmatics	
   (GALA	
   II)	
   study.	
  
The	
  Journal	
  of	
  allergy	
  and	
  clinical	
  immunology	
  132(4):	
  896-­‐905	
  e891.	
  

Li	
   S,	
   Tighe	
   SW,	
   Nicolet	
   CM,	
   Grove	
   D,	
   Levy	
   S,	
   Farmerie	
   W,	
   Viale	
   A,	
   Wright	
   C,	
  
Schweitzer	
  PA,	
  Gao	
  Y	
  et	
  al.	
  2014.	
  Multi-­‐platform	
  assessment	
  of	
  transcriptome	
  
profiling	
  using	
  RNA-­‐seq	
   in	
   the	
  ABRF	
  next-­‐generation	
  sequencing	
  study.	
  Nat	
  
Biotechnol	
  32(9):	
  915-­‐925.	
  

Monk	
   D,	
   Arnaud	
   P,	
   Frost	
   JM,	
   Wood	
   AJ,	
   Cowley	
   M,	
   Martin-­‐Trujillo	
   A,	
   Guillaumet-­‐
Adkins	
   A,	
   Iglesias	
   Platas	
   I,	
   Camprubi	
   C,	
   Bourc'his	
   D	
   et	
   al.	
   2011.	
   Human	
  
imprinted	
   retrogenes	
   exhibit	
   non-­‐canonical	
   imprint	
   chromatin	
   signatures	
  
and	
   reside	
   in	
   non-­‐imprinted	
   host	
   genes.	
   Nucleic	
   Acids	
   Res	
   39(11):	
   4577-­‐
4586.	
  

Morison	
  IM,	
  Paton	
  CJ,	
  Cleverley	
  SD.	
  2001.	
  The	
  imprinted	
  gene	
  and	
  parent-­‐of-­‐origin	
  
effect	
  database.	
  Nucleic	
  Acids	
  Res	
  29(1):	
  275-­‐276.	
  

Nishimura	
  KK,	
  Galanter	
  JM,	
  Roth	
  LA,	
  Oh	
  SS,	
  Thakur	
  N,	
  Nguyen	
  EA,	
  Thyne	
  S,	
  Farber	
  
HJ,	
  Serebrisky	
  D,	
  Kumar	
  R	
  et	
  al.	
  2013.	
  Early-­‐life	
  air	
  pollution	
  and	
  asthma	
  risk	
  
in	
  minority	
   children.	
   The	
  GALA	
   II	
   and	
   SAGE	
   II	
   studies.	
  American	
   journal	
  of	
  
respiratory	
  and	
  critical	
  care	
  medicine	
  188(3):	
  309-­‐318.	
  

Poole	
   A,	
   Urbanek	
   C,	
   Eng	
   C,	
   Schageman	
   J,	
   Jacobson	
   S,	
   O'Connor	
   BP,	
   Galanter	
   JM,	
  
Gignoux	
  CR,	
  Roth	
  LA,	
  Kumar	
  R	
  et	
  al.	
  2014.	
  Dissecting	
  childhood	
  asthma	
  with	
  
nasal	
  transcriptomics	
  distinguishes	
  subphenotypes	
  of	
  disease.	
  The	
  Journal	
  of	
  
allergy	
  and	
  clinical	
  immunology	
  133(3):	
  670-­‐678	
  e612.	
  

Rivas	
  MA,	
  Pirinen	
  M,	
  Conrad	
  DF,	
  Lek	
  M,	
  Tsang	
  EK,	
  Karczewski	
  KJ,	
  Maller	
  JB,	
  Kukurba	
  
KR,	
  DeLuca	
  D,	
  Fromer	
  M	
  et	
  al.	
  2015.	
  Impact	
  of	
  predicted	
  protein-­‐truncating	
  
genetic	
  variants	
  on	
  the	
  human	
  transcriptome.	
  Submitted.	
  

Torgerson	
  DG,	
  Ampleford	
  EJ,	
  Chiu	
  GY,	
  Gauderman	
  WJ,	
  Gignoux	
  CR,	
  Graves	
  PE,	
  Himes	
  
BE,	
  Levin	
  AM,	
  Mathias	
  RA,	
  Hancock	
  DB	
  et	
  al.	
  2011.	
  Meta-­‐analysis	
  of	
  genome-­‐
wide	
   association	
   studies	
   of	
   asthma	
   in	
   ethnically	
   diverse	
   North	
   American	
  
populations.	
  Nat	
  Genet	
  43(9):	
  887-­‐892.	
  

Zhang	
   R,	
   Li	
   X,	
   Ramaswami	
   G,	
   Smith	
   KS,	
   Turecki	
   G,	
   Montgomery	
   SB,	
   Li	
   JB.	
   2014.	
  
Quantifying	
  RNA	
  allelic	
  ratios	
  by	
  microfluidic	
  multiplex	
  PCR	
  and	
  sequencing.	
  
Nat	
  Methods	
  11(1):	
  51-­‐54.	
  

 
	
  


