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Materials and Methods

1. Trio validation data

1.1 Genetics of Inherited Muscle Disease Cohort

Imprinting was assessed in skeletal muscle from six individuals for whom both individual
and parental genotypes were available, hence allowing for the parental origin of the
alleles to be determined. More specifically, the data set consists of five trios and one
child-mother pair that were exome sequenced as part of a larger cohort (dbGaP accession



phs000655.v1.p1) the six probands each being affected with a neuromuscular disorder of
currently unknown cause.

Exome capture was performed with Agilent SureSelect Human All Exon Kit v2 and the
exome DNA was sequenced using I[llumina HiSeq 2000 sequencer. Sequencing reads
were aligned to the human reference genome (hgl9) before calling single-nucleotide
variants (SN'Vs) and small indels using the GATK version 3.0. A modified version of the
Ensembl Variant Effect Predictor was used for variant annotation. The genotypes of the
probands of the five trios and one parent-child pair were phased using the
PhaseByTransmission tool of the GATK toolkit.

Non-strand specific RNA sequencing was performed for the poly-A selected mRNA
isolated from the skeletal muscle biopsies using Illumina Tru Seq RNA Sample
Preparation protocol with 76 bp paired-end sequencing reads. The sequencing was done
on an [llumina HiSeq 2000 with five of the individuals sequenced to coverage of 5S0M
and one to S00M of mapped paired-end reads. RNA-seq reads were aligned using Tophat
version v1.4.1 with the UCSC human genome release version hg19 as the reference.

All exome and RNA sequencing was performed at the Broad Institute of Harvard and

MIT following the same protocols used in the GTEx project, and the same ASE pipeline
was used for this a data as for the GTEx data.

1.2 Genes-environments & Admixture in Latino Americans (GALA II)

Imprinting was assessed in nasal epithelium and whole blood from 10 trios from the
GALA 1II cohort (Torgerson et al. 2011). More specifically, the data set consists of ten
trios of Puerto Rican/Latino origin that were exome-sequenced. The ten probands were
then RNA-sequenced in both tissues. Latino asthmatic probands and parents are Puerto
Rican islanders recruited as part of the ongoing Genes Environments & Admixture in
Latino Americans (GALA II) study described elsewhere (Borrell et al. 2013; Kumar et al.
2013; Nishimura et al. 2013). The nasal airway epithelium RNA-seq data used was
previously published in a separate analysis of asthma differential expression (Poole et al.
2014). Probands had no history of smoking or recent nasal steroid use (within 4 weeks of
recruitment). Methods for nasal airway brushing collection are described elsewhere
(Poole et al. 2014). The study was approved by local institutional review boards, and
written assent/consent was received from all subjects and their parents.

Exome capture was performed with Nimblegen SeqCap EZ Human Exome Library v3.0
and the exome DNA was sequenced using [llumina HiSeq 2500 sequencer to an average
read depth of 39x. Sequencing reads were aligned to the human reference genome (hg19)
before calling single-nucleotide variants (SNVs) and small indels using the GATK
version 3.3-0. The genotypes of the probands of the ten trios were phased using the
parent-offspring trio phasing of Beagle, and parental origin of each allele was assigned by
matching phased parental haplotypes to offspring haplotypes within a 2000bp window
above and below the SNP. If an exact match could not be found between the parental and
offspring haplotypes, and the parental origin could not be inferred solely from the



genotypes at the SNP, then the parental origin of the allele was considered to be
ambiguous.

Both nasal airway and blood RNA-seq libraries from the 10 probands were constructed
and barcoded with the Illumina Tru Seq RNA Sample Preparation version 2 protocol
(Illumina, San Diego, Calif). Barcoded RNA-seq libraries were run on flow cells of an
Illumina HiSeq 2000 according to standard protocols using 2x100 paired end sequencing.
RNA-seq reads were aligned using Tophat version v2.0.9 with the UCSC human genome
release version hgl9 as the reference. The same ASE pipeline was used for this data as
for the GTEx data.

2. mmPCR-seq validation data

Microfluidic multiplex PCR sequencing (mmPCR-seq) (Zhang et al. 2014) was used to
validate allelic ratios measured by RNA-Seq in 89 sites in 24 genes: ATP10A, COPG2,
CPA4, ERLIN2, GRB10, H19, IGF2, KCNQI1, NAA60, NLRP2, NTM, PEGS3,
PHLDA2, PLAGLI1, PPP1R9A, RB1, RBPS, SLC22A18, SNHG14, SNRPN, SNUREF,
UBE3A, WRB, ZNF331. The analysis was done for 121 GTEx samples from 9
individuals. The details of the experiment are in (Rivas et al. 2015). Briefly, PCR primers
were designed to amplify the loci surrounding each site, and cDNA obtained from the
RNA samples was amplified in multiplex PCR reactions using the Fluidigm Access
Array. The pooled mmPCR libraries were sequenced on a MiSeq yielding 75 bp paired-
end reads, and the data were aligned with STAR (Dobin et al. 2013) — alignment with
TopHat yielded very similar results. Allelic counts were retrieved using an identical
pipeline as for the GTEx RNA-seq data. The low number of individuals in the validation
experiment did not allow us to use the statistical models developed for population-level
RNA-seq data, but the allelic ratios obtained from mmPCR-seq data showed that the
allelic counts themselves are reliable.

3. Long-read RNA-seq validation data

Standard RNA-seq data with relatively short reads can suffer from alignment errors and
difficulty of determining the structure and annotation of the sequenced transcripts (Cho et
al. 2014; Li et al. 2014). To this end, we analyzed long read strand-specific RNA-seq data
(2 x 250 bp) from 34 GTEx samples from 5 individuals.

3.1. Library preparation, sequencing, and data processing

RNA sequencing was performed using a strand specific protocol with poly-A selection of
mRNA. Strand specific RNA sequencing was performed at the Broad Institute using a
large-scale, automated variant of the Illumina Tru Seq™ RNA Sample Preparation
protocol. Briefly, 200 ng of total RNA was used from each sample as the starting
material. This method uses oligo dT beads to select poly-A mRNA from the total RNA
sample. The selected RNA is then heat fragmented and randomly primed before cDNA



synthesis from the RNA template. The resultant cDNA then goes through Illumina
library preparation (end repair, base ‘A’ addition, adapter ligation, and enrichment) using
Broad designed indexed adapters for multiplexing of samples, with 400 bp fragment
size. After enrichment, the samples are qPCR quantified and equimolar pooled before
proceeding to Illumina sequencing which was done on the Illumina HiSeq 2000 to a
target depth of 100M reads. The entire process occurs in a 96-well format and all
samples were electronically tracked through the process in real-time including reagent lot
numbers, specific automation used, time stamps for each process step, and automatic
registration.

RNA-seq data were aligned with Tophat version v1.4.1 to the UCSC human genome
release version hgl9. Gencode version 12 was used as a transcriptome model for the
alignment as well as all gene and isoform quantifications. Unaligned reads were merged
back in to create a final bam. Allele-specific expression was analyzed as for the other
data sets.

3.2. Long read data analysis and results

Allele-specific expression estimates from the 2 x 250 bp and the standard 2 x 75 bp data
are fully concordant (tho = 0.99 based on 707 sites with >=20 reads), showing that
alignment error does not affect to our original estimates of monoallelic expression.
Furthermore, using these data, we manually assessed each of the initial 21 novel or
provisional genes to verify that (1) the transcript structure in the data corresponded to the
gene annotation, (2) SNPs in the ASE analysis were in regions that correspond to the
annotated transcripts, and (3) monoallelic SNPs did not overlap with known imprinted
genes and showed no signs of switching between monoallelic/biallelic expression along
the gene (Supplementary Figure 7).

The long read RNA-seq data showed that 4 out of 21 novel/provisional genes (LA16c-
306E5.2, RP11-701H24.3, AL132709.5, RP11-395B7.2) were inconsistent with the gene
annotations, showing either ambiguous (although often likely imprinted) transcription, or
in one case imprinting derived from heterozygous SNPs that overlapped regions of a
different known imprinted gene. These genes were removed from downstream analysis.
All the other novel/provisional genes were relatively consistent with the Gencode
annotation, although future work is needed to elucidate full transcript structure and gene
annotation in the imprinted regions. See also section 9 for discussion of patterns observed
in specific genes.

4. RNA-seq allele counts

For all the heterozygous sites per individual identified from genetic data, we calculated
the number of REF and ALT alleles in RNA-sequencing data using the same pipeline for
all the data sets — this has also been used in the original papers of each of the studies. We
used only uniquely mapped reads, and required base quality >10. We excluded
heterozygous sites with potential mapping errors: 50bp mapability <1 in the UCSC
mapability track, and >5% bias in simulated RNA-sequencing data (Panousis et al. under
review).



5. Methylation analysis

The Gencord data set includes methylation data from the Illumina 450K array from 107
fibroblast samples, 111 LCL samples, and 66 T-cell samples. In our analysis, we used
normalized P—values; further details of the experiment and data processing are available
in the original publication.

6. Statistical Method

We first describe the proposed model and the filtering steps we take. We then
describe the classification based on the statistics output by our model. We conclude this
section with a simulation study to examine edge properties of our approach.

6.1 Statistical Model

The input to our model is the genotypes (typed and imputed) of each individual, and the
counts of RNA-seq alleles overlapping each SNP in each individual. We use the
following notation for the count data:

n;; - number of reads mapped to SNP ; in individual i

r; - number of reads with the ref allele mapped to SNP ; in individual

h; - number of reads mapped to SNP j in individual i and phased to haplotype 1 (of
unknown parental origin and with arbitrary haplotype numbering; these counts were
generated by phasing the genotypes and combining alleles of the same haplotype)

We perform the analysis for each gene and for each tissue separately. Tissue indices are
therefore discarded from the notation.

We use the following error probabilities:

Pq - genotyping error rate: set to 0.001 for non-imputed SNPs, and to 0.05 for imputed
SNPs

Ps - sequencing error rate: set to 0.001

Pp - phasing error rate (we assume phasing errors in different SNPs along the gene are
independent): set to 0.2

We say that a SNP is informative for a given individual in a given tissue if the individual
is heterozygous and the SNP is covered by >=8 RNA-seq reads. Although our model
accounts for genotyping and phasing error, SNPs covered by a small number of reads are
uninformative. We therefore arbitrarily chose a threshold 8 of reads and show via
simulation that our method is robust to false positives at this depth (see Section 6.5
below). Informativeness is tissue-specific since a heterozygous SNP may be covered and
therefore informative for a given individual in one tissue but not in another. We denote
by site any combination of (individual, informative SNP). Sites are tissue-specific since
informative SNPs are tissue-specific.

A complete list of all symbols is provided in the Supplementary Text.



6.2 Filtering Steps

We first apply a series of filtering steps to address several of the technical and functional
confounders described above:

a. Filtering of RNA-seq reads according to mapping and base quality to reduce the effect
of mapping and sequencing errors, and filtering of SNPs with unreliable mapping to
further remove SNPs where allelic mapping error is likely.

b. To filter out SNPs with high genotyping error rates, SNPs with a Hardy Weinberg p-
value smaller than 10~ are discarded from the analysis. Figure S1b depicts allele counts
for SNPs in a gene for which more than half of the SNPs were removed due to deviation
from HWE. Since multiple SNPs in this gene show only reference counts, this gene could
potentially be handled also by the “flip test” that we describe in (d) below. In the
Geuvadis dataset 2.7% of the SNPs failed the HWE filter.

c. To reduce the effects of NMD, for each gene we discarded individuals carrying a
heterozygous premature stop SNP in that gene. Furthermore, NMD causing variants
result in monoallelic expression only on heterozygous state, and these variants are
typically rare ((Rivas et al. 2015), although see also (Andres et al. 2010)), and it is
therefore very unlikely that NMD could cause a confounded imprinting signal with
monoallelic expression in the vast majority of individuals. (Note that analogously, an
eQTL can cause monoallelic expression only in individuals heterozygous for the eQTL,
i.e. <=50% of individuals under HWE).

d. We apply a tissue-specific “flip test” to verify that the pattern of monoallelic
expression is consistent with imprinting. We assume that with imprinting, the identity of
a monoallelically expressed allele, either ref or alt, is independent of parent of origin, and
therefore has an equal probability of being either of them. Genotyping error, RNA-seq
sequencing error, and allelic bias in RNA-seq mapping are unlikely to flip randomly
between the alleles and will therefore fail this test. €QTLs would cause random flipping
of monoallelic expression only when the regulatory variant and the coding variants
analyzed for monoallelic expression are not in LD; otherwise the SNPs in LD with an
eQTL will also have consistently higher expression on one of the two alleles. We apply
the flip test as follows:

1) For each SNP, we identify all individuals whose expression patterns appear
monoallelic, and classify each such monoallelic site as ref or alt according to the
over-expressed allele. Specifically, monoallelic sites are those for which the
likelihood of the count data under the imprinted model is higher than the likelihoods
under either the balanced or imbalanced models (these models are described next in
section “Generative Model”).

2) For each SNP, we compute a p-value for the null hypothesis that the fraction of ref
sites out of all monoallelic sites was drawn from a binomial distribution with p=0.5.
We remove all SNPs with p-value < 0.001.



We observe that this filter removes many genotyping and mapping errors. Figure Slc
depicts an example of a gene that shows signs of imprinting before the flip test is applied
but not afterwards. In the Geuvadis dataset 0.65% of the SNPs failed the “flip test”.

e. For genes with a small number of individuals the flip test will not be well powered. We
therefore test for imprinting only genes for which at least one SNP with both ref and alt
monoallelic expression patterns have been observed. This will filter out genes in which
monoallelicity either does not exist or is allele-specific and thus possibly driven by
genotyping or mapping errors as discussed above. In the Geuvadis dataset, from the set of
all genes showing some monoallelic expression, only 2215 qualified by this criterion. We
therefore include statistical results of all genes in Supplementary Table S5 such that
future studies with additional samples can leverage our analysis to determine additional
imprinted genes.

6.3 Generative Model

We model individual i’s status in gene g and tissue ¢ as being classified into one of three
allelic expression classes:

(a) BAL (balanced) - The gene is expressed biallelically and evenly from both gene
copies.

(b) IMB (imbalanced) - The gene exhibits allelic imbalance, i.e. one gene copy has a
moderately higher expression level than the other. Such imbalance may result, for
example, from an eQTL, in which case the expression level is sequence-dependent.

(c) IMP (imprinted) - The gene exhibits imprinting, i.e. one gene copy has a considerably
higher expression level than the other, potentially depending on the parental origin. We
assume that in this scenario one of the copies is nearly completely silenced.

Each allelic expression class is characterized by a Beta distribution (see Figure S3). For
the balanced class, the distribution describes the relative expression of the reference allele
level (i.e. the fraction of ref counts out of total counts) of SNPs residing in balanced
genes. For the imbalanced and imprinted classes, the distribution describes the relative
expression level of alleles residing in the over-expressed gene copy in imbalanced and
imprinted genes, respectively. Given the allelic expression class and the phase
information, the expression levels of multiple SNPs in the same gene are independently
drawn from the relevant beta distribution. Independent sampling of relative expression
levels along the gene is done as to account for isoform-specific silencing, splicing QTLs,
and other biological effects that may cause inconsistency in allelic expression patterns in
proximal sites, as well as for over-dispersion due to technical artifacts. Finally, given the
allelic ratio and the total count data in a given site, the reference allele counts are drawn
from the corresponding Binomial distribution.

A gene-specific and tissue-specific multinomial distribution determines the probability
that any given individual belongs to each of the three expression classes. The multinomial
distribution is characterized by the following parameters that sum to 1:

Hgb “! _ fraction of individuals belonging to the balanced class in gene g

Hgimb - fraction of individuals belonging to the imbalanced class in gene g



0,™ - fraction of individuals belonging to the imprinted class in gene g
This model therefore allows for both imprinted and non-imprinted individuals in the same
gene and tissue.

6.4 Model Computations

We first compute the likelihood that the count data observed for SNP j in individual i
results from a genotyping error:

rr 1 1
P =D, [Efbin(rijl Py 1ij) + 5 Fon(rifl 1=y, "ij)]

where f,. (x| p,n) is the binomial probability density function with parameters (p,n),
and P, is set differently for typed and imputed SNPs, as explained above in input data.

We then compute the likelihood of the count data for the entire gene g given that
individual i belongs to the balanced class:

=[] i+ a-n f 2,00 i ()
snpjEg
where fﬁ;’a (x) is the beta probability dens1ty functlon with parameters specific to the
balanced class; this is the distribution from which the relative expression level of the
reference alleles in balanced genes are sampled.

Similarly, the likelihood of the count data for gene g given that individual i belongs to the
imprinted class, and that gene copy 1 is expressed (and gene copy 2 is silenced) is:

Lt = 1_[ P+ (1
snpjEg
—P,) f beta(x) ) Ly (Pl mig) + - £, (i)

- }lijlx, nl‘j)] dx

and the likelihood of the same data given that gene copy 2 is the expressed one is:
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where f’ " (x) is the beta probability density function with parameters specific to the

1mpr1nted class. Note that when a phasing error occurs in a given site, that site would
seem to be expressed from the wrong gene copy. Therefore, given that a genotyping error

did not occur, we draw the counts from the correct distribution with probability (1 - pp)

and from the wrong distribution with probability P,

Since the numbering of the two gene copies is arbitrary, the likelihood of the count data
for gene g given that individual i belongs to the imprinted class follows as:

) impl 1 . 5
imp _ ~rimp
Ly'= 5L +yly

The computations for the imbalanced class are identical to those for the imprinted class,
but replacing £’ with fb » Which is the distribution from which the relative expression
level of the over-expressed alleles in imbalanced genes are drawn.

Estimation of the Beta distribution parameters is described in Section “Estimation of Beta
parameters* below.

6.5 Per-Gene Statistics

For each gene in each tissue we compute a set of statistics to summarize different aspects
of expression and imprinting across individuals.

The overall likelihood of the RNA-seq data observed for gene g in a given tissue over all
individuals is a function of the parameters (6,”, 6™, ™ ):

o= [ loni o nip s or 1)
indiljieduals
Optimizing over (85,04, 60") vyields (eg 0, ,9;’"”), the maximum likelihood

estimates for these parameters:
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We compute the following likelihood statistics:

max L

05" 05".0¢™)

L,
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IMPGLR, is a generalized likelihood ratio statistic that quantifies the evidence for the
existence of imprinting in gene g. Specifically, it is the ratio of the maximum data
likelihood when allowing for imprinting to the maximum data likelihood under the
assumption that imprinting does not exist in gene g.

L

max
(05°'=0,04"=0,0,""=1)

max L
(Ggalﬂémbﬁ;szo)

IMPLR, =
g

IMPLR, is a likelihood ratio statistic that compares the hypotheses of gene g being
imprinted and not imprinted under the assumption that all individuals share the same
imprinting status. Specifically, it is the ratio of the data likelihood when all individuals
are imprinted to the maximum data likelihood when all individuals are allowed to be
either balanced or imbalanced, but not imprinted, in gene g.

max L

05" 05"0¢")

HETLR, =

max max Lg , max Lg
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HETLR, is a likelihood ratio statistic that quantifies the evidence for the existence of
between-individuals heterogeneity in the imprinting status of gene g. Specifically, it is the
ratio of the maximum data likelihood to the maximum data likelihood under the
assumption that all individuals are either imprinted or not imprinted.

In the above likelihood statistics, maximum likelihood estimates for (0;’"1 , 9;’"1’, 9;"”’ ) are

computed using the Expectation Maximization algorithm.

We compute the probabilities of gene g being balanced, imbalanced or imputed under the
strict assumption that all individuals are either balanced, imbalanced or imputed:

ol P Ll
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In the equations above P’“, P™, P™ are the prior probabilities of a given gene being
balanced, imbalanced and imprinted. We set these probabilities to 0.8, 0.19 and 0.01,
respectively. These are conservative estimates, which are meant to produce a gross
scaling of the probabilities of the three classes.

T, - mean fraction of higher-frequency allele (either ref or alt) out of total counts,
computed over all informative sites in gene g

¢, — mean fraction of reference counts out of total counts, computed over all informative
sites in gene g

6.6 Per-gene, per-individual Statistics

In addition to the statistics summarizing information over all individuals, we
compute a series of statistics for each individual in a given gene and tissue. We denote by
Pl Pt PP the prior probabilities of a given gene being balanced, imbalanced and
imprinted in any given individual. We set these probabilities to 0.8, 0.19 and 0.01,
respectively, identically to the per-gene prior probabilities as described in “Per-Gene
Statistics” above.

We compute the conditional probabilities of gene g in individual i belonging to each of
the three classes as follows:
Zbal _ I;bal L?gal

S P + P+ P"mPng’P

jmb y imb
- oL

T ALl prh it 4 pre it

jmp imp
imp P Lig
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'8 Py + P LRt + PP LY

We count as balanced/imbalanced/imprinted any individual whose zf¢'/zi7"/z;;"
probability exceeds 0.7, respectively. We compute these statistics twice: First considering
all individuals with at least one informative SNP in gene g, and second considering only
individuals with at least two informative SNPs. We denote these sets of statistics as
(ball,imbl,imp1) and (bal2,imb2,imp2), respectively. Compared with the first set, the
second one includes fewer but more confident counts. Finally, the statistics totall, total2

give the total number of individuals with at least 1,2 informative SNPs in gene g,



respectively. Note that not all individuals will be classified into a category as there must
be substantial evidence to exceed the threshold, and therefore ball+imbl+impl is often
smaller than totall (and same for total2).

6.7 Estimation of Beta parameters

For the parameter estimation procedure only we assume a simplistic mixture
model in which the expression pattern of every gene can be classified into one of three
different classes (BAL, IMB, IMP). Each class is characterized by a Beta distribution,
from which the fraction of the over-expressed allele counts are drawn for the relevant

sites. The parameters of the three classes are denoted as (abal’ﬂbal)’ (aimb, tmb) and
(a,-mp, ﬂimp), respectively. The fraction of genes belonging to each class are denoted as
q*?, ¢™" and ¢"™?, respectively.

Given the gene’s class and the number of counts observed in the relevant sites, the
reference counts are assumed to be drawn independently, regardless of the individual of

origin, and discarding phase information. The likelihood of the count data as a function of
the mixture model parameters is computed as

L(R,Nlg a,p) = 1_[ z gelasss 1_[ 1_[ gerr —p )pclm]

ClaSSE snpj € g
genes {bal,imb,imp} zndtwduals

In the equation above R are the ref counts and N are the total counts, provided per
individual and per site, and pge" is computed as explained in section “Model

Computations” above. pfjl.“” is computed per site and per class as follows:

bal P(rz/ |abal' Boap Mij) = f beta MER I n(r,Jlx, n;;)

imb

i = Pri| i, ﬂzmb’ n;j)

f beta (x) szn(rljll X, U) +5 f beta (x) szn(rljlx' lj)

imp

Py = P(r,jla,mp, lmp' n;;)

ffze,a<x> Sl = 5m) 4 5 f A - gl



We use the Stochastic Expectation Maximization (SEM) algorithm (Celeux and Diebolt
1985) to estimate ¢, a and B. SEM is a modification of the EM algorithm in which the
hidden variables are simulated according to their posterior probabilities, instead of being
replaced by their expectations. SEM has been shown to produce stable estimates in
similar problems.

We declare the following hidden indicator variables:

gerr _ {1 if a genotyping error occurred in snp j in individual i
g 0 otherwise

bal — {1 if gene g belongs to the balanced class
0 otherwise

imb {1 if gene g belongs to the imbalanced class
0 otherwise

imp _ {1 if gene g belongs to the imprinted class
0 otherwise

Initialization: We set ¢(® = (g?4©®, gmb©@ gm0y to (1/3 ,1/3,1/3). In order to
initialize the Beta parameters, we compute abs(ﬂ — 0.5) for all sites in the dataset, and
l’l,‘j

use the first decile to set (a?(®, g% the ninth decile to set (@@, and the
tenth decile to set (a?(®,4™(®)) The motivation here is to initialize the distributions to
reflect balanced, moderately imbalanced and highly imbalanced expression patterns,
respectively. Given the sites in the relevant decile, the initialization is performed by
optimizing each (a, f) pair using an interior-point procedure.

Iteration: In the ith iteration of the algorithm we perform the two following stages:

1. Drawing from expectation:

a. Draw the hidden variables z2¥, zi", z;"" for every gene g from their
posterior multinomial distributions given ¢'~1 and
((1, ﬂ)(i_l) — (abal(i—l)’ﬂbal(i—l), aimb(i—l)’ﬂimb(i—l), aimp(i—l)’ﬂimp(i—l))'
b. Draw the hidden variables z;;" for every individual i and for every SNP j,

given the gene classifications drawn in 1(a).

2. Maximization: Set ¢’ and (a, f)' by optimizing over the resulting complete data
likelihood. The Beta parameters are obtained using an interior point procedure.

We ran the above procedure on the Geuvadis dataset. Following twenty iterations we
observed that the absolute value of change in all parameters was smaller than 0.01, and
used these estimates as the model’s parameters. The parameter values are (ayq;, B,,) =

(45.5,44.5), @, B,y) = (63,5.7), @iy B,,,,) = (0.64,0.15).

1



6.8 Classification

The complete results of our approach applied to each data set are given in
Supplementary Tables 3-5. Using these data we classified a set of imprinted genes in
each tissue. Given the lack of parental inheritance information we took a conservative
approach, requiring substantial evidence from multiple statistics and filters in order to
classify a gene as imprinted. However, there were many genes that had moderate
evidence of imprinting and these results can be combined with future studies in order to
determine their validity. Below we describe the thresholds for classification in each of the
four categories Imprinted, Biallelic, consistent with Imprinted, and consistent with
Biallelic. Five genes classified as imprinted were removed based on validation results
from the family or long-read RN A-seq analyses (see sections 1 and 3).

Imprinted
For identification of novel genes we required at least five individuals and two

SNPs. For at least one SNP both alleles had to occur as the monoallelically expressed
allele in at least one individual. We did not allow for novel heterogeneously imprinted
genes (hetlr < 1.0), but removed this requirement if the gene was previously identified as
imprinted in humans. If all of these filters were passed a gene was classified as imprinted
if 6,7 > 0.7, 6, < 0.05, and impglr > 31.52 to account for the multiple hypotheses via a
conservative Bonferoni correction for all genes/tissues examined (0.05/N=2532972 gene-
tissue pairs examined). For the smaller set of previously identified genes we required 6,
> 0.5 and impglr > 13.7 (0.05/N=233 known gene-tissue pairs examined). The putatively
imprinted genes defined according to these criteria are listed in Table S4. However, due
to lack of comprehensive family data needed to confirm a parent of origin effect and
formally define a false discovery rate obtained with these thresholds, and because the glr
statistics are not guaranteed to be chi-square distributed due to the boundary condition
of 9;’"" = 0 under the null, in the final analysis described in the main text, focusing on
biological variation in imprinting, we used a more stringent threshold. Specifically, for
novel genes, we required impglr > 50 if 6,7 = 1.00 and impglr > 100 otherwise. For
previously identified genes we required impglr > 40.

Biallelic

We next examined each of these imprinted genes in all tissues to determine,
which tissues showed strong evidence of biallelic expression. We classified a gene as
biallelic if it was not imprinted, and at least half of the individuals were classified as
balanced by our method. Recall that individuals are only classified as biallelic if z?g‘” >
0.7 and that not all individuals are classified as any of balanced, imbalanced or imprinted.
That is, the method will give an unknown classification for ambiguous individuals with a
small number of reads.

For genes with a small number of individuals, SNPs, or reads, there was not
enough information to classify genes de novo as either imprinted or biallelic according to
the metrics above. However, we did examine genes with lower thresholds conditional on
the existence of a classified imprinted gene in at least one tissue. We created two
additional categories “consistent with Imprinted” and “consistent with Biallelic™:



consistent with Imprinted

These are the set of genes in which the statistical model suggested imprinting, but
there was not enough evidence for classification. We required that 6,”” accounted for
90% of the population of individuals. We used the same statistic, 6,7, as in the
classification procedure, but did not include a cutoff for the impglr test statistic allowing
for individuals with low read counts. For example, a gene whose data consists of a single
individual with read counts 20 ref'and 0 alt at a single SNP would be classified into this
category.

consistent with Biallelic

These are the set of genes in which the statistical model suggested biallelic
expression, but there was not enough evidence for classification. We required that the
combined set of biallelic and imbalanced individuals, as determined by the zi’fqal and z
statistics, accounted for at least 50% of the population of classified individuals.

imb
ig

7. Symbol and naming reference

Names and symbols used in this section and Tables S3-S5:

impglr - generalized LR statistic, quantifies the gain in likelihood obtained by
allowing for imprinting in this gene (full description in supp methods)

implr - LR statistic, compares the assumption that all individual are imprinted to the
assumption that none are (full description in supp methods)

hetlr - generalized LR statistic, quantifies the gain in likelihood obtained by allowing
for heterogeneity in imprinting status across individuals (full description in
supp methods)

6., 6, 9™ — estimates for fraction of balanced, imbalanced and imprinted
individuals

zbel, zimb, 7" - probabilities of the gene being balanced, imbalanced and imprinted in
all individuals

bal2 - number of individuals with at least two informative SNPs who are classified
as balanced

imb2 - number of individuals with at least two informative SNPs who are classified
as imbalanced

imp2 - number of individuals with at least two informative SNPs who are classified
as imprinted

total2 - number of individuals with at least two informative SNPs

ball - number of individuals with at least one informative SNP who are classified as
balanced

imb1 - number of individuals with at least one informative SNP who are classified
as imbalanced

imp1 - number of individuals with at least one informative SNP who are classified
as imprinted

totall - number of individuals with at least one informative SNP



both - a SNP monoallelic for both alleles was observed (yes/no)

known - a known imprinted gene (yes/no)

RME - a known random monoallelic expression gene (yes/no)

eQTLt - tissues in which known strong eQTLs exist

eQTLv - linear regression coefficient from allelic ratio ~ het|hom eQTL genotype

indn - number of individuals with at least one informative SNP

snpn- number of SNPs which are informative in at least one individual

indn2 - number of individuals with at least two informative SNP

snpn3 - number of SNPs which are informative in at least three individuals

T, — mean fraction of higher-frequency allele (either ref or alt) out of total counts,
computed over all sites in gene g

¢, - mean the fraction of reference counts out of total counts, computed over all
sites in gene g

8. Known Imprinted Genes in Human and Mouse

The set of known imprinted genes in human and mouse were collected from the Otago
database (Morison et al. 2001) by searching under category for status “imprinted” (Table
S6). Provisional genes and genes with conflicting evidence were not considered amongst
the known set of genes. We also added all genes from the Otago pdf 1101Summary-
table.pdf, and human non-provisional “imprinted” genes from geneimprint.org. In the
event that these data sources are not up to date with the latest literature, some of our
novel genes may in fact be previously known.

We compared all identified imprinted genes with imprinting status in the mouse as
retrieved from the Otago database and the results are shown in Figure S9. The results
indicate that while there exists a high overlap between human and mouse imprinted
genes, there are also uniquely human/mouse imprinted genes. However, not all
tissues/developmental stages have been examined for imprinting.

9. Additional notes on specific genes

In this section, we briefly discuss the imprinting patterns of individual genes, based on
additional inspection, especially of the novel imprinted genes discovered in this study,
and other noteworthy observations.

e [GF2: We verified with visual inspection of both the long- and short-read RNA-seq
data that the /GF2 locus does not show signs of ambiguous transcription that could
explain the different expressed allele in brain and muscle. Specifically, RNA-seq
reads in the IGF2 region do not overlap the nearby H19 gene.

e INPPSF: The 3’ exons of INPP5F overlap INPP5SF V2, which is annotated as a
transcript of INPP5SF according to both Gencode and RefSeq even though it is a
previously known imprinted retrogene inside the non-imprinted /NPP5F (Monk et al.
2011). Because of this, and all of our ASE data from /NPP5F being from the region



overlapping INPP5F V2, we treated INPP5F V2 as a separate gene (except in gene
expression level analysis), observing signs of imprinting in several tissues. However,
the long read data indicated expression both from INPP5F and INPP5F V2, and fully
distinguishing these transcripts is not possible in our data. Thus, lack of imprinting or
a leaky signal (Supplementary Figure 1a) could be due to expression from the non-
imprinted INPP5F.

SYCEI, THEGL, and MAGI2 have not been classified as imprinted in previous
studies, and in our analysis there is strong support for imprinting only in the Geuvadis
or Gencord cell line data sets. For the sake of consistency, these genes are included in
this study, but we note that their imprinting status in primary tissues remains unclear.
SNHG 14 is in the middle of a well-known imprinted region, but the annotation of the
transcripts in this region remains unclear. We observe monoallelic transcription that is
consistent with the Gencode annotation of SNHGI4, but future work is needed to
describe the full gene annotation of this region.

NLRP2 is expressed in a monoallelic manner, but the trio data indicates non-parental
origin of monoallelic expression (Supplementary Table 7).

LPARG is a putative novel imprinted gene that is located in an intron of a previously
identified RB1 gene. In our data, LPAR6 shows a stronger signal of imprinting than
RB1 — although the signal is particularly strong in LCLs rather than primary tissue
samples.
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Fig. S1.

An example of partial imprinting in the INPP5F V2 in Gencord fibroblasts where the
silenced allele is expressed albeit in a lower level. The plot depicts shows the alt vs ref
allele counts for all SNPs and all individuals. Different colors indicate different SNPs.
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Fig. S2.

Random monoallelic expression (RME) manifested in the in Geuvadis LCL dataset. The
gene P2RXS was found to exhibit RME (Gimelbrant et al. 2007). A) shows the alt vs ref
counts (as explained in Fig. S1). Figure B gives, for every heterozygous site with
coverage >= 30, the relative frequency of the over-expressed allele (a number between
0.5 and 1). The monoallelic sites tend to appear in specific individuals, in whom the
clonality level is presumably high.
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eQTL effects on monoallelic expression. Regulatory variants (eQTLs) are expected to
lead to allelic imbalance in individuals that are heterozygous for eQTLs (max 50% of
total). We investigated this in eQTL genes (identified by GTEx Consortium) by selecting
one ASE site per gene per individual i, calculating allelic imbalance of that site as a; = (
|0.5-REF/TOTAL] ), and modeling it as a; = Bg; + e where g; is an indicator variable for
whether the individual is heterozygous for the eQTL variant. A) shows the distribution of
B from that model, showing that for most eQTLs, the effect of eQTLs on ASE is small.
Other tissues show similar distributions. B) shows the pattern of allelic imbalance in the
gene with the highest beta in thyroid, ENSG00000144115, with eQTL heterozygotes
(red) having nearly monoallelic expression compared to homozygotes (black). Note that
this is the worst case example rather than a typical eQTL effect on ASE. Altogether, an
eQTL signal could be confused for a signal of imprinting only if the eQTL is extremely
strong, has a high minor allele frequency, and none of the >=50% of individuals
homozygous for the eQTL (thus lacking eQTL-induced ASE) have any heterozygous
sites for ASE analysis. We did not find these patterns in our imprinted genes.
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Fig. S4.

Three Beta distributions characterize the three expression classes of the model. Balanced
class: The relative frequency of the reference allele is sampled from a Beta distribution
concentrated around even expression, with a slight bias towards the reference allele.
Imprinted class: The relative frequency of the allele residing on the over-expressed gene
copy is sampled from a distribution strongly shifted towards 1. Imbalanced class: The
relative frequency of the allele residing on the over-expressed gene copy is sampled from
a high-variance Beta distribution shifted towards 1. Note that according to this
distribution, it is common for an allele residing on the over-expressed gene copy to have
an allele ratio less than 0.5. This situation often occurs in practice due to different
biological and technical effects that cause inconsistency in imbalance levels along the

gene.
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Fig. S5.

Clonality of samples as assessed from X-chromosome data. A) shows histograms of the
proportion of biallelic sites in the X-chromosome per sample, in the three data sets used
in this study. Different genotyping platforms and RNA-seq coverage make the exact
proportions differ between the data sets; thus we estimated a separate threshold for each
dataset (show in blue) for a sample to be considered potentially monoclonal. (B) shows
this breakdown for each tissue. The LCLs of both GTEx and Geuvadis data sets have a
substantial degree of clonality. (C) shows the very slight correlation of the degree of
clonality from chrX and overall proportion of ASE in Geuvadis data. This shows that
genome-wide ASE is not driven by epigenetic effects that are inherited in clonal cell
lines. Furthermore, the differences between populations show the much higher degree of
clonality in the CEU and YRI cell lines that are much older than the other cell lines
(Coriell; personal communication).
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Fig. S6.

Genomic regions of all imprinted loci, with the 47 genes detected as imprinted
marked in red. DMR denotes differentially methylated regions from (Court et al.
2014) and ASM denotes regions with allele-specific methylation according to
(Kuleshov et al. 2014). Note that absence of data of DMR or ASM regions does not

necessarily imply their full absence due to potential tissue-specific effects.
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Fig. S7. Transcript structure in the novel or provisional imprinted genes, shown as a
sashimi plot for one sample for each gene, based on GTEx data. The top row shows
the coverage and splicing (loops with numbers) based on all long-read 2x250 bp
RNA-seq reads in the region. The middle row shows reads that carry the reference
allele of heterozygous sites, and the bottom shows reads that carry the alternative
allele of heterozygous sites. The allelic read data is with 2x250 bp reads of the same
sample as the full coverage track, when there was a long-read sample with a
heterozygous SNP (these are marked with a red top row). Otherwise allelic data is
from 2 x 75 bp reads using different samples from the same tissue for the full
coverage track and the allelic read tracks (these are marked with a grey top row).
The gene annotation in the bottom is Refseq, which is incorporated in IGV; while the
rest of our analysis is based on Gencode v12, these are typically very similar, and it
is known that neither is perfect.

The plots are shown for UTS2, PPIEL, DIRAS3, PRSS50, UGT2B4, KIF25,
SYCE1, NTM, LPAR6, RP11-7F17.7, MEGY9, SNHG14, ZNF331, NLRP2, CST1, and
finally as an example of an excluded gene, RP11-701H24.3. The NTM gene is too big
to be shown in its entirety, and for some genes, two plots are shown to capture the
entire transcripts. Refseq gene annotation is lacking for RP11-7F17.7 and SNHG14,
but the data are consistent with the Gencode annotation used in the rest of the
analysis. MAGI2 and THEGL are not shown because they are not imprinted in GTEx
data, but their transcript structure appears consistent with the annotation. This was
not the case for RP11-701H24.3, LA16c-306E5.2, LA16¢c-306E5.2, and RP11-
395B7.2, which were excluded from downstream analysis. The transcript
annotations for the last three are too large to be shown as a plot.

(Continues on the next 6 pages)
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Fig. S8.

Known versus novel imprinted genes. Of the 42 imprinted genes identified in this study,
28 were included in previous catalogs (“known”) and 12 were novel. A) and (b) show the
number of tissues where the genes are expressed at >0.1 RPKM for known and novel
genes, respectively. C) and (d) show the proportion of tissues where the genes are
imprinted ( (IMP + cIMP) / (IMP + c¢IMP + BI + ¢BI)) for known and novel genes,
respectively.



PEG10, SNRPN, ZDBF2, KCNQ1,
MEG3, MEST, H19, IGF2, DLK1,
PLAGL1, GRB10, SNURF, NAP1L5,

0 _ PEG3, NDN, UBE3A, MEGS,
v MAGEL2
FAM50B, CPA4, THEGL, PPIEL, UTS2,
INPP5F_V2, ZNF597, SYCE1, RP11-7F17.7,
L3MBTL1, PWRNT, PRSS50, KIF25,
@ oS IGF2-AS, SGK2 UGT2B4, CST1
o NLRP2,
0] MAGI2,
ZNF331,
DIRASS, LPARS,
o NTM MEG9,
SNHG14
o - . -
= c 3 (3] ©
s Q o o >
T o o . o
& (95} ) S Z
g T T 2
o
C
X
[0}
>
o
pd
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Detected imprinted genes classified by previously known imprinting in both
humans and the mouse (green), only in humans (blue for confidently identified,
cyan for provisional), novel genes that are inside known imprinted loci (red) and
fully novel genes (green).
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Fig. S10.

Levels of imprinting (t) detected in all previously characterized human imprinted genes
where we had data, excluding those found imprinted and shown in Fig. 2.
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Validation of allelic ratios by mmPCR. Coverage per validated site in the original GTEx
RNA-seq data (A) and in mmPCR data (B) shows a dramatically higher coverage in
mmPCR data. The correlation of allelic ratios in the two data sets is high, as shown by
(C) for sites with >=8 reads (the minimum in our analysis) and in (D) for sites with >=50
reads. Importantly, while the correlation is not perfect, the patterns do not suggest any
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A) Imprinted and biallelic genes per tissue in all the 42 genes classified as imprinted in
this study. C) Shows the imprinting status of genes with previously known information
on the expressed parent. The larger amount of paternally expressed genes is a previously
known fact, but interestingly, biallelic expression is more common in paternally
imprinted genes (see also Fig. 3a). Furthermore, testis is an outlier in prevalent biallelic
expression in paternally expressed genes.
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Fig. S13.

Imprinting status across tissues of each of the genes classified as imprinted in this study
(A), and previously known genes that were not classified as imprinted and included in (a)
(C). B) summarizes the data in (A) by showing the distribution of
(cIMP+IMP)/(cIMP+IMP+cBI+BI) tissues for each gene.
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Imprinting across 13 sub-regions of the brain. A) shows a heatmap of T (analogously to
Fig. 2) for the brain sub-regions, demonstrating a generally consistent pattern across the
different regions. Closer inspection revealed solid signs of tissue heterogeneity only in
L3MBTLI1, with four example sub-tissues shows in (B) — the top row tissues appear to
have imprinted genes, whereas the bottom contains biallelic genes.
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represent a SNP in one individual. Most tissues show a clear reversal of the direction of
imprinting compared to the brain. See also section 9.
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Allelic ratio of GRB10 of each of the tissues compared to allelic ratio in the brain. Each
dot represent a SNP in one individual. Most tissues do not show strong imprinting, but
for example blood shows an allelic bias to the opposite direction to that in the brain, and
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Fig. S17.

Transcript structure in GRB10 for brain, whole blood (WHLBLD) and muscle
(MSCLSK), of which brain shows a strong signal of imprinting (Fig. S16) while blood
and muscle show a biased allelic expression in the opposite direction. (A) shows relative
expression levels of transcripts 1-7 corresponding to ENST00000406641,
ENST0000047396, ENST00000439599, ENST00000398791, ENST00000461886,
ENST00000398810, respectively. The sashimi plots in a-c show RNA-seq coverage and
splicing in brain (red), blood (blue) and muscle (green) with clear differences especially
in the 5’ end, suggesting different promoters. However, analysis of allelic expression of
the SNPs located in different parts of the transcripts yielded inconclusive results of
putative transcript-specific imprinting.
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Variable imprinting levels between individuals in GTEx data. In order to avoid potential
caveats of phasing errors, we calculated t as an average of all the SNPs of an individual
for a given gene and tissue. A) Shows a summary per gene, taking an average of the
tissues, and B) shows an example from KCNQI, and C) from PPIEL. There is no
correlation between t and the number of SNPs per sample, suggesting that individual
errors e.g. in genotyping are unlikely to drive the patterns.
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Gender difference in imprinting in the muscle for genes classified as imprinted in this
tissue. For each gene, we compared the T values of males and females: the y-axis shows
the median T per gene for males minus median T per gene for females, and the Mann-
Whitney p-value of the the comparison is on the x-axis.
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Fig. S20.

Distribution of expression levels per tissue of the 42 genes detected as imprinted in this
study. All the 42 genes were included in each tissue, regardless of their imprinting status.
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Fig. S21.

A) shows expression levels in tissues with imprinted and biallelic genes for the 42 genes
detected as imprinted at least one tissue in this study, measured as median log2 RPKM.
The cross denotes the expression level of 2 x imprinted median, which can be considered
the expected value for tissues with biallelic genes. B) shows the distribution of expression
levels as log2 RPKM for each biallelic or imprinted gene in all tissues.
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Fig. S22.

Gender differences in gene expression. A) shows log2 fold changes in expression levels
measures as RPKM from all the tissues per gene. Values above 0 indicate higher
expression in females. Maternally versus paternally expressed genes do not show
significant differences in the proportion of genes with higher expression in females or
males (p = 0.27 based on permutation of maternal/paternal labels. We also performed this
analysis separately for each tissue (B), but did not find individual genes with significant
expression differences. However, in muscle and nerve, imprinted genes show more
differential expression between males and females than other genes. Imprinted genes are
marked in black, and the nominal p-values are from a Mann-Whitney test of comparing
absolute log2 fold change distribution of imprinted genes to all other genes.
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Methylation analysis. For each of the three cell types, we show two methylation statistics
that summarize data across individuals and methylation sites — with the aim to detect
methylation of only one allele as expected in imprinted loci. Other statistics showed
similar trends (data not shown). The top row shows the proportion of semimethylated
sites (sites with methylation beta value x-y) over the total, pooling all sites and
individuals. The bottom row shows the median deviation from semimethylation (0.5)
over all sites and individuals. These statistics are compared between imprinted genes in
each of the three cell types and all other genes, both for gene body and promoters
(boxplots). The gene names show the same statistics calculated from differentially
methylated regions (DMRs; (Court et al. 2014)) for genes with a known DMR, with the
gene names in red indicating an imprinted status in this study for the corresponding cell
type. The DMRs are for SNRPN, MEG3, ZNF331, KCNQI1, SNURF, FAM50B, PPIEL,
DLKI1, PEG10, IGF2, DIRAS3, PLAGLI1, MEST, H19, and GRB10.
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Fig. S24.

Examples of methylation landscapes in imprinted loci in MEST (a,b) and SNRPN (c,d) in
Gencord fibroblast data. The lineplots in (a,c) show the methylation level (beta) as a
median across individuals (black line) and the grey lines denote 10™ and 90" quantiles.
The arrow shows the gene region, and the cyan bars denotes differentially methylated
regions. The boxplots in (b,d) are the same data, showing the full population distribution
of each site and without scaling of the x-axis according to chromosomal position. The red
boxes are for the gene region, and cyan color denotes differentially methylated regions.



Table S1.

Samples of the primary data sets of this study. The clonality proportion is estimated from
monoallelic expression in the X chromosome in female samples; see Fig. S5. The
validation data and samples are described in the text and the Supplementary Text.

Table S2.
Sources and characteristic of monoallelic expression

Table S3.
Summary statistics of the 42 identified as imprinted. Definitions of the column names are
in Supplementary Text section 7.

Table S4.
Summary statistics of putatively imprinted genes. Definitions of the column names are in
Supplementary Text section 7.

Table SS.
Summary statistics of all analyzed genes. Definitions of the column names are in
Supplementary Text section 7.

Table Sé6.

List of known and putatively imprinted genes in human. HS and MM denote human and
mouse, respectively, and the notes indicate data source or status other than the Otago
database (Morison et al. 2001). The classification in our data is summarized across
tissues with a hierarchy of (consistent with biallelic) < biallelic < (consistent with
imprinting) < imprinted.

Table S7.
Results of the analysis of family validation data.

Data S1.
Scatterplots of read counts for the imprinted genes for each tissue, with each dot
representing read counts per SNP per individual.

Data S2.

Scatterplots of read counts for the imprinted genes for each tissue, with each dot
representing read counts per haplotype per individual, thus combining data from multiple
SNPs (including imputed variants) when an individual has several heterozygous sites per
gene.

Data S3.
Scatterplots of read counts for the known imprinted genes (as defined in 8) for each
tissue, with each dot representing read counts per SNP per individual.



Data S4.

Scatterplots of read counts for the known imprinted genes (as defined in 8) for each
tissue, with each dot representing read counts per haplotype per individual, thus
combining data from multiple SNPs (including imputed variants) when an individual has
several heterozygous sites per gene.

Data SS.
The software implementing all methods described in this paper.
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