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Supplementary Materials and Methods 

 

Statistical analysis of mitochondrial contribution to variability 

We used three different statistical methods to estimate the contribution of variability 

in mitochondrial content to total protein variability. The method described in the 

main text estimates the mitochondrial contribution to variability (MCV) as a ratio of 

two variabilities: the variability of the original protein distribution (quantified by the 

normalized interquartile-range of the distribution) and the variability of the protein 

distribution once the linear correlation with mitochondrial content has been removed 

(IQR ratio in Figure S2). The second method estimates the MCV simply as the 

fraction of variance explained by a linear regression model(Freedman 2009) where 

the mitochondrial content is the independent or explanatory variable (R2 in Figure 

S2). The third method estimates the MCV as a ratio of the variance associated to 

mitochondrial variability and the total variance (Var. Ratio in Figure S2). We follow 

the procedure used by Snijder et al.(Snijder et al. 2009) and divide the CmxRos-

Protein data in bins with equal number of points along the CmxRos axis. The MCV 

is then calculated as: 
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gives the variance of each bin. The three methods yield very similar estimates 

(Figure S2). 

 

Relative influence of cell cycle state and mitochodrial content on protein 

variability in single cells. 

HeLa cells were stained with fluorescent probes for mitochondrial content 

(CmxRos), DNA content (DAPI, used as a reporter of cell cycle state), and different 

protein antibodies, and the levels of each marker were quantified by single-cell live 

microscopy. First we checked that the distribution of DAPI values in a cell 

population reflected the cell cycle stage (showing two peaks in G0/G1 and G2/M 

phases). We then analyzed the simultaneous influence of mitochondrial levels and 

DAPI content on six different proteins of our house-keeping genes set (Figure S3). 



The correlation between protein amount and DAPI is much weaker than that 

between protein and mitochondria, Figure S3A-B. Moreover, there is also a positive 

correlation between mitochondrial content and cell cycle state (Figure S3C). If we 

consider cell cycle state and mitochondrial levels as variables (the predictors or 

independent variables) influencing protein variability (the outcome or dependent 

variable), associations or correlations between the independent variables must be 

removed when asking how much of the variability in outcome can be explained by 

each predictor(Shipley 2004). 

Partial correlations provide a means of assessing the relative importance of each 

predictor in determining the outcome, and the relationships between variables can 

be visualized as undirected graphs where the nodes are the variables and the 

edges represent the partial correlations between them (a procedure also known as 

graphical Gaussian modelling(Opgen-Rhein and Strimmer 2007; Krumsiek et al. 

2011), Figure S3D-I. All proteins analyzed show a much stronger dependence on 

mitochondrial content than on cell cycle state. Partial correlations represent the 

contribution of each predictor to a dependent variable after the contributions of the 

other predictors have been removed both from that predictor and the dependent 

variable, but it is not the only useful measure of dependence. Other useful 

measures are semipartial correlations (where the contributions of other predictors 

are removed from the predictor in question, but not from the dependent variable), 

and LMG coefficients (representing a natural decomposition of the total regression 

coefficient in the contributions from different independent variables(Lindeman et al. 

1980)). Figure S3J displays the average values (for the six proteins) of these 

different statistical measures of causal association, showing the weak dependence 

of protein on cell cycle state, and the strong dependence on mitochondrial content.  

 

 

FLIP experiments and quantification of RNA Pol II rate constants. 

 

A clone stably expressing GFP–RNA Pol II (C23) (das Neves et al., 2010; Hieda et 

al., 2005; Sugaya et al., 2000) was cultured at 39°C, and images were collected 

with the microscope stage heated to 39°C. Fluorescence images were collected 

using a confocal microscope (Zeiss LSM 510 META), with an EC PlnN 40×/1.3 oil 

objective, with the pinhole completely open. We selected a rectangle at the bottom 



half of each nuclei where we applied 100% laser power, in order to bleach all the 

fluorescent molecules in the rectangle. This operation was repeated every 5 s for a 

period of 1,200 s, and we analysed the decay of the fluorescence in the unbleached 

top half. Fluorescence intensity was analysed in MetaMorph 6.1 (Universal 

Imaging). Curves were analysed using Sigma Plot 11.0 for Windows. For the 

analysis we assumed that there were three populations: freely diffusible, bound to 

DNA and fully engaged in transcription (see model in Figure 4). FLIP analysis 

allows to estimate the dissociation constants of the different populations. In order to 

associate these constants to a functional process, we treat cells with inhibitors of 

specific steps of the transcription cycle, and then see which kinetic regime is 

affected. In this way, we can link a decay constant to a specific transcription step 

(Hieda et al. 2005, Sugaya et al. 2000). 

For the fitting to the exponential decays in Figure S4b, we allowed the three 

components to optimize with no restriction (always r2>0.99). These fittings allow us 

to estimate the fraction of the different populations and the rate constants K2 and 

K4 (Figure 4 and S4g). To obtain the other kinetic constants (K1 and K3) we fitted 

our data to the steady-state solution of the kinetic model in Figure 4a. We were 

concerned with the possible artifacts induced by FLIP. Therefore, transcription “run 

on” experiments were performed on photobleached cells, which demonstrated no 

alteration in the transcription pattern or intensity in the bleached area (data not 

shown). 

Deoxy-Glucose experiments were performed by incubation for 60 min in 25 mM 

Deoxy-Glucose plus 10 mM Sodium Azide, previous to the FLIP. Under this 

condition ATP levels were depleted by 97%. 

To assess the possible role of glycolysis in ATP production in our cell line, we 

performed experiments (Figure S4c) where cells were incubated in the absence of 

glucose and presence of galactose, showing no difference in ATP content with 

respect to control cells. 

  

Estimation of relative mtDNA levels by qPCR 

HeLa cells were sorted according to their mitochondrial content into High (H) and 

Low (L) subpopulations (inset in Figure S1a). Then, the DNA was extracted using 

the Illustra DNA Extraction Kit (BACC2) (RPN-8502) following manufacturer 



instructions. DNA was quantified by qPCR using the primers and TaqMan 

fluorogenic probes specified in Table S2 (Ashley et al. 2005). 

  

Table S2. Sequence of pairs of primers used for qPCR 

Target name Forward primer sequence Reverse primer sequence 

APP (nuclear) TTTTTGTGTGCTCTCCCAGGTCT TGGTCACTGGTTGGTTGGC

MitHu (mitoch.) AGGACAAGAGAAATAAGGCC AAGAAGAGGAATTGAACCTCTGACTG

 

cDNA synthesis and qRT-PCR 

The isolation and purification of total RNA was performed with TRIzol® Reagent 

(Invitrogen) following the manufacturer’s instructions. For cDNA synthesis 1μg total 

RNA was incubated with MultiScribe™ Reverse Transcriptase (Applied 

Biosystems®) according to the manufacturer’s instructions. Quantitative RT-PCR 

(qRT-PCR) was performed using Power SYBR® Green PCR Master Mix (Applied 

Biosystems®) and data were collected on an Applied Biosystems® 7500 Real-Time 

PCR system. The sequences of the primers used for specific target amplification 

are provided in Table S3. 

                    

Table S3. Sequence of pairs of primers used for qRT-PCR. 

Target 

name 
Forward primer sequence Reverse primer sequence 

ALDOC ACTCGTACCCAGCCCTTTCT TGTGTTTTCCACCCCAATTT 

FDFT1 ATAACCAATGCACTGCACCA ATAACAGGCAGCCAAAGTGG 

GTF2IRD1 CACTAAGGGAGCAGGTCCAG CTCTTGATCCGCTTGTAGGG 

ALDH3A1 CCTCGGAGCTGAGTGAGAAC GCCCGTGTACAGGATATGGT 

FDPS CTGCAAGCTTTCTTCCTGGT GCAGGCGGTAGATACATGCT 

RMI2 GATGCAGGGCAGGGTAGT TGAACCACTCCCATCACCA 

NR2F1 GCCTCAAGAAGTGCCTCAAA GATGTAGCCGGACAGGTAGC 

MORC3 GTGCAGCTTGACGATGTGTT CACACTGTGAACGGATTTGTG 

RPS15A GTGCTTATTAGGCCGTGCTC TTTAGCCTGCCTGTGAGGTT 

PCSK9 TCACCGACTTCGAGAATGTG GGTGGGTGCCATGACTGT 

PLD1 TCCACTTTGAGGGAGAGGAG GACAGCCGGAGAGATACGTC 

SLC2A3 TGAAGGTTTTGTTGGCTGAA GCCGATTGTAGCAACTGTGA 



 

 

Mathematical model of variability in alternative splicing 

 

The expression levels of different mature mRNAs out of the same genes are 

modelled taking into account transcription of pre-mRNA and AS/conversion to 

mature mRNA as two condensed steps depending on mitochondrial content (Figure 

6d). For a single gene with two different mRNA isoforms, M1 and  M2 , mRNA levels 

change in time according to the rate equations: 
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where k  is the transcription rate for the pre-mRNA (P), 1 and 2  the conversion 

rates of the pre-mRNA to isoforms M1 and M2  respectively, and 1/2  the 

degradation rates of the mature isoforms M1/ M2. The steady-state levels of the two 

isoforms (quantified by RNA-seq) are given by 
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where ଵܰ ൌ ଵߙଵ/ሺߙ ൅   .ଶሻ gives the fraction of pre-mRNA converted to isoform  M1ߙ

To simulate the experimental map of relative abundance for different isoform pairs 

(Figure 6c), first we need to assign values to the kinetic parameters and then 

consider all possible sources of variability caused by mitochondrial content. Since 

we do not have experimental access to the particular transcription and degradation 

rates of mRNA forms with altered AS, we statistically sample these parameters from 

a biologically reasonable distribution.  We use a recent genome-wide quantification 

study of mRNA and protein synthesis and turnover in mouse fibroblasts 

(Schwanhausser et al. 2011) as a proxy for these distributions. In Figure S8 we 

show Schwanhausser et al. (Schwanhausser et al. 2011) experimental data for 

transcription rates (Figure S8a)  and mRNA half-lives (Figure S8b) fitted to standard 



statistical distributions. The experimental distribution of transcription rates k is well 

fitted by a log-normal function  
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with parameters ߤ ൌ 0.6, ߪ ൌ 1 (red line in Figure S5a), while the distribution of 

mRNA half-lives (߬ଵ/ଶሻ is fitted  with a Gamma probability function  
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with parameters ܽ ൌ 5.1, ܾ ൌ 2.1 (red line in Figure S5b). The degradation rate ߜ௜ of 

a particular mRNA form is related to the half-life by ߜ௜ ൌ ln 2/߬ଵ/ଶ
௜ . To get values of 

steady-state levels for pairs of isoforms, Eqs. (S4) and (S5), we generated 

independent random values of transcription rate k and  degradation rates 1/2  

within these distributions, while the conversion fraction N1 is a uniform random 

number between 0 and 1. We note that the mRNA synthesis and degradation rates 

given by Schwanhausser et al (Schwanhausser et al. 2011) are mean values 

averaged over time and cell population, and may differ from the steady-state values 

obtained from kinetic equations such as those in Eqs. (S1)-(S3) (Schwanhausser et 

al. 2011). Moreover, independent measurements of RNA synthesis and decay 

(Dolken et al. 2008; Rabani et al. 2011) yielded shorter RNA half-lives, probably 

due to differences in cell lines, culture conditions and/or experimental procedures. 

Nevertheless, since we are interested in reproducing, in a statistical sense, relative 

(fold-change) differences in expression levels due to different mitochondrial content, 

absolute values of the rate constants are not important provided they are estimated 

in a consistent way and reproduce the biologically relevant ranges, as is the case in 

Schwanhausser et al  (Schwanhausser et al. 2011) data. 

Mitochondrial content can modulate in several ways the different reaction rates. A 

global source of variation in transcription rate is due to coupling between ATP 

concentration and transcription elongation by RNA Pol II (das Neves et al. 2010). 

This induces a sigmoidal dependence between mitochondrial levels (quantified by 

CmxRos) and transcription elongation (measured as BrU) in a cell population 

(Figure S6B). To include this observed variability in our model, we first note that 

both BrU and CmxRos levels are normalized by their average values, so that at the 

response threshold BrU ~ 1. Thus we assume that the transcription rate k for a 

given gene is modulated by mitochondrial content as 
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where kr is the transcription rate value randomly chosen from the experimental 

distribution of Figure S8a and BrU(Cmx) the sigmoidal function fitted to the 

experimental data of Figure S6B. To mimic the Low/High cell sorting for RNAseq, 

and the spread observed in the experimental BrU levels at similar CmxRos values, 

we vary the transcription rate of the gene at the Low condition according to 
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where ݔ݉ܥ௅ைௐ is a random number in the interval  ݔ݉ܥ௅ைௐ ∈ ሾ0.2,0.5ሿ (variability in 

cell sorting at Low), r a normally distributed random number  and  ߪ௅ைௐ the 

standard deviation around ݔ݉ܥ௅ைௐ (estimated from the error bars in Figure S6B). 

We use a similar expression to vary the transcription rate at the High condition 

(݇ுூீுሻ, with ݔ݉ܥுூீு ∈ ሾ1,2ሿ	.  

Mitochondrial levels can also have a global impact on mRNA degradation, affecting 

steady state mRNA levels. As deduced from Figure S7a, variations in mitochondrial 

content have a moderate effect on average mRNA half-life (߬ଵ/ଶ ~46 min for High 

versus ~65 min for Low conditions). We nevertheless included this variability in the 

sampled values from the half-life distribution of Figure S8b, along the same lines as 

for the transcription rate above, 
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where ߜ௜
௥ is the random degradation rate for isoform i sampled from the 

experimental distribution, ߜ௔௩௅ைௐ the population averaged degradation rate obtained 

from Figure S7a in Low condition (0.64 h-1), ߜ௔̅௩ ൌ ௔௩௅ைௐߜ ൅ ሺߜ௔௩ுூீு െ   the	௔௩௅ைௐሻ/2ߜ

average decay at mean mitochondrial levels, and ߪ௅ைௐ the variability in average 

decay within the population at Low condition (which we take as an upper limit of 0.3 

h-1 in view of Figure S7a). Variability in the High condition is included with a similar 

expression with ߜ௔௩ுூீு=0.91 h-1 and ߪுூீு ൌ  .௅ைௐߪ

We first checked whether this simple model is able to reproduce the experimental 

alternative splicing map observed in Figure 6c, including only the global variability in 

transcription elongation and mRNA degradation given by Equations (S6) and (S7). 

We generated 8,400 random isoform pairs (equal to the experimental number of 



genes with at least two isoforms expressed) and calculated steady state levels of 

these isoforms and fold-change expression, 
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ெ೔
ಹ಺ಸಹ

ெ೔
ಽೀೈ൰  

for each isoform i according to the procedure described above. 

The result is shown in Figure S9a, where we plot with solid lines the thresholds 

delimiting the domains of altered alternative splicing in Figure 6c. Including only 

global variability in transcription elongation and degradation is not enough to 

produce strongly altered alternative splicing patterns as seen experimentally. We 

thus include in a heuristic way other possible sources of variation induced by 

mitochondria in our basic reaction steps. Apart from RNA Pol II elongation, gene 

transcription requires a sequence of promoter state transitions, including chromatin 

remodelling, assembly of the transcription machinery, and clearance of the 

promoter by RNA polymerase. These intermediate steps may be highly variable 

(Mao et al. 2010) and be affected by mitochondrial levels directly (by ATP content) 

or indirectly, for instance through differential expression of transcriptional 

activators/repressors. Use of alternative promoters may be also highly affected by 

mitochondrial levels (Figure S10a). These factors could originate effective 

transcription rates with strong differences even for the same gene. To take into 

account this within our modelling framework, we took the approach that the 

transcription rate k could vary in any way within our initial distribution from one 

condition to another (Low versus High), resampling the transcription rate value at 

each condition. This variation in transcription rate for the same gene between Low 

and High gives a dispersion in fold-change along the diagonal (yellow symbols in 

Figure S9b, where no variation in other kinetic rates is considered), and can be 

viewed as a gene specific contribution to fold-change variability. When adding 

independently variation in transcription elongation as in Figure S9a (global 

contribution, the same for all genes) fold-change values are scattered out of the 

diagonal (grey symbols in Figure S9b), giving a noticeable fraction of genes in the 

UP and DOWN regions of the plane (black and blue symbols respectively) as 

observed in the experimental data, Figure 6c. We see however that variation of 

transcription rate alone is not able to explain the inversions observed in alternative 

splicing (red symbols in Figure 6c). Mitochondria can also modify the conversion 

rates to AS isoforms by a variety of mechanisms, again direct, such as energetic 



modulation of spliceosome assembly,  AS regulators or RNA folding, or indirect 

through alteration of genes involved in splicing machinery (Figure S10b), or 

coupling between alternative splicing and different transcriptional events. Indeed, 

there is recent experimental evidence that both chromatin structure and histone 

modifications participate in the regulation of alternative splicing (Luco et al. 2011)  

and that transcription elongation is also coupled to alternative splicing (Schmidt et 

al. 2011; Dujardin et al. 2013; Kornblihtt et al. 2013) . To include these effects in our 

model, we assume that the conversion fraction parameter N1 can be strongly 

modified by mitochondrial levels, and thus make a new random choice of this value 

in Low and High conditions. When only this parameter and global transcription 

elongation are allowed to vary, we see that fold-changes are highly spread along 

the opposite diagonal in the differential expression map, Figure S9c. This gives an 

appreciable fraction of genes with the AS pattern inverted (red symbols, INV region) 

as observed in the experimental situation (Figure 6c). These inversions are 

probably due either to coupling mechanisms between transcription elongation 

and/or initiation (chromatin remodelling) and alternative splicing, or alterations of 

specific splicing genes mediated by mitochondria. 

Finally, we explored the possibility of gene specific variability induced by 

mitochondria in the individual degradation rates 1/2 , re-sampling these rates at 

each Low/High condition. Changing these parameters alone (Figure S9d), although 

increasing variability, does not produce any appreciable number of genes in the 

above-threshold domains.  

A combination of variability in conversion fraction N1 and transcription rate k 

including gene specific and global factors as explained above is able to reproduce 

the experimental pattern, Figure 6e, along with the relative fractions of genes in 

each of the differential expression regions (inset of Figure 6e).  We thus conclude 

that the observed alterations in AS can be only explained by considering both large 

changes in splicing site choice and large variability in pre-mRNA production from 

the same gene. Moreover, mitochondria is probably a key modulator of these 

processes.   

 
 
 
 
 



 
Table S1 

 
Go description Term_id adj_p value 

Catabolism   
cellular macromolecule catabolic process  GO:0044265 2,15E-24 
proteolysis involved in cellular protein catabolic process  GO:0051603 7,31E-22 
cellular protein catabolic process  GO:0044257 7,31E-22 

modification-dependent protein catabolic process  GO:0019941 2,30E-21 
RNA metabolism   

RNA processing  GO:0006396 3,50E-15 

mRNA metabolic process  GO:0016071 8,36E-11 
chromatin organization GO:0006325 3,24E-09 

mRNA processing  GO:0006397 4,20E-09 

RNA splicing GO:0008380 9,42E-08 

transcription from RNA polymerase II promoter  GO:0006366 1,81E-06 
chromatin modification  GO:0016568 5,38E-07 
histone modification  GO:0016570 6,74E-05 

Transport   
vesicle-mediated transport  GO:0016192 7,89E-07 
nuclear transport  GO:0051169 1,02E-09 
nucleocytoplasmic transport  GO:0006913 1,33E-09 

intracellular protein transport  GO:0006886 1,92E-14 

intracellular protein transmembrane transport  GO:0065002 1,24E-05 

protein localization in organelle  GO:0033365 1,38E-06 
intracellular transport GO:0046907 5,28E-18 

protein targeting  GO:0006605 1,84E-09 

cellular protein localization  GO:0034613 5,75E-15 
Protein metabolism   

translation   GO:0006412 6,10E-09 

protein complex assembly  GO:0006461 4,01E-08 

protein folding   GO:0006457 3,94E-05 
Energy   

energy derivation by oxidation of organic compounds  GO:0015980 7,35E-05 
carboxylic acid metabolic process  GO:0019752 4,39E-08 
cellular lipid metabolic process GO:0044255 5,88E-10 
cellular carbohydrate metabolic process  GO:0044262 1,33E-07 
electron transport chain  GO:0022900 1,13E-05 

Cell cycle   
M phase of mitotic cell cycle  GO:0000087 1,42E-06 
M phase  GO:0000279 1,68E-06 
DNA metabolic process  GO:0006259 5,88E-10 
mitosis  GO:0007067 5,24E-07 

DNA damage   
cellular response to DNA damage stimulus  GO:0034984 9,42E-08 
DNA repair  GO:0006281 1,13E-06 

Others   
microtubule cytoskeleton organization  GO:0000226 4,91E-06 
small GTPase mediated signal transduction  GO:0007264 9,13E-06 
regulation of signal transduction GO:0009966 1,95E-05 
 



The gene ontology analysis of genes differentially expressed in cells with 
different mitochondria content showed 8 main families of genes with a p value < 
10E-4. 
As a global trend, the families of genes involved in macromolecule homeostasis 
are highlighted. Degradation processes seem to be the ones with higher 
representation, followed by RNA metabolism and protein metabolism. Another 
family of genes with high score are the genes involved in transport processes, 
which in part could be a consequence of the high biosynthetic activity of cells 
with high mitochondria content. It is not surprising to find also genes involved in 
energy metabolism because cells with more mitochondria require more 
intermediate energy precursors. We already have documented that 
mitochondria content impact in the length of the cell cycle (das Neves et al 
2010), therefore it is not surprising to find that mitochondria affects cell cycle 
genes. It is well know the role played by the mitochondria as a source of free 
radicals, which can damage DNA. For such reason, it makes sense to find an 
effect of mitochondria content on genes involved in DNA damage response. 
 



Supplementary Figures captions 

 

Figure S1. CmxRos is a good reporter of mitochondrial mass. 

a.In order to study the suitability of fluorescent probes for mitochondrial content 

quantification, we first sorted cells according to MitoTracker Green (MG) uptake in 

two subpopulations: High (H) and Low (L), inset in Figure S1a. Then, we quantified 

the relative mtDNA levels by qPCR as described in Supplementary Methods in both 

subpopulations. The ratios of MG staining and mtDNA levels between H and L 

populations show a perfect matching (Figure S1a). Error bars are the standard 

deviations of three biological replicates. b.To check whether CmxRos is a faithful 

reporter for mitochondrial content in individual cells, we first co-stained cells with 

CmxRos and MG, showing a high correlation (r2=0.92, Pearson correlation). In 

order to further validate the use of CmxRos we co-stained cells with CmxRos and 

several mitochondrial markers. c-e. Three mitochondrial matrix proteins: Aconitase 

(ACO2), SOD2 and Pyruvate Dehydrogenase (PDP1) also correlate well with 

CmxRos: r2=0.88 (Aconitase), r2=0.82 (SOD2), r2= 0.75 (PDP1). f. Complex I, which 

is located in the inner membrane, closely matches CmxRos levels (r2=0.88). The 

antibodies used were ACO2 (AB110321), Complex-1 (AB109798), 

SOD2(AB110300) (Abcam) and PDH (2784) (Cell Signaling). 

 

Figure S2. Mitochondrial contribution to variability using different statistical 

methods.   

To assess the robustness of our estimate of mitochondrial contribution to global 

variability in protein expression, we tested other statistical measures of contribution 

to variance (see Supplementary Text). Black histograms: Method discussed in main 

text and used in Figures 1, 2 and 3. Gray histograms: Fraction of variance 

explained by the coefficient of determination (R2) of linear regression. White 

histograms: ratio of variance along CmxRos axis to total variance(Snijder et al. 

2009). Error bars are standard deviations of three replicates, each with 200-400 

cells.  

 

Figure S3. Relative influence of cell cycle state and mitochodrial content on 

protein variability in single cells. 



A-B. Scatter plots of simultaneous values of DAPI (cell cycle state) and CmxRos 

(mitochondrial content) with levels of the protein LDHA. C. Variability of DAPI levels 

as a function of CmxRos. The corresponding pairwise correlation coefficients 

(Pearson) are shown in the inset. D-I. Partial correlation network of six different 

proteins taken from the set analyzed in Figure 1 (red nodes), with respect to 

mitochondrial and DNA (DAPI) content. The thickness of the edges is proportional 

to the partial correlation coefficient. For each protein, ensembles of 300-400 cells 

were analyzed to quantify CmxRos, DAPI and protein levels, and their values z-

score normalized before calculating partial correlations. J. Average value of 

association (for the six proteins analyzed, bars representing standard errors), for 

the three possible associations between variables (Mitochondria-Protein, DAPI-

Protein and Mitochondria-DAPI). Different measures of statistical and causal 

association were tested. Black histograms: pairwise Pearson correlation coefficients 

(r). Blue histograms: partial correlation coefficients (pr). Red: Semipartial correlation 

coefficients (sr).  Gray: LMG coefficients (lr). See Supplementary Text. These 

results show that mitochondrial content appears consistently as a much stronger 

predictor of protein variability than cell cycle state.    

 

Figure S4. Kinetics of RNA Pol II in vivo.  

FLIP analysis of GFP–RNA Pol II. (a) Half of the nucleus was bleached 

continuously (white rectangle) as confocal images were collected approximately 

every 5 s. (b) Decay in fluorescence intensity of the unbleached area of the nucleus 

in the FLIP experiment (intensity, arbitrary units) (n = 60) in a natural log scale. The 

data can be fitted to three exponentials showing the existence of three different 

kinetic regimes, which according to our model can be assigned to three different 

populations of RNA Pol II: free polymerase, engaged RNA Pol II and elongating 

RNA Pol II. The intercept with the y axis was used to determine the steady state 

ratio of initiating and elongating RNA Pol II, and the slopes were used to estimate 

the kinetic rate constants K2 and K4.  (c) ATP concentrations relative to control 

(blue bars, cells growing in 4.5g/l of glucose) in different conditions: Green bars, 

cells growing in media without glucose but supplemented with galactose for osmotic 

compensation (300 mOsm). Red bars: Cells treated with azide plus deoxyglucose 

(see main text). Error bars are standard deviations of three biological replicates. (d) 

The total amount of RNA Pol II is proportional to the amount of mitochondria in 



individual cells. (e) Analysis in single cells of the fraction of initiating RNA Pol II as a 

function of the elongation constant K4. Red: Control cells. Blue: D-A treated cells. 

The fraction of initiating polymerase molecules is independent of the elongation 

constant.(f) Analysis in single cells of the fraction of elongating RNA Pol II 

molecules as a function of the elongation constant K4. Red: Control cells. Blue: D-A 

treated cells. The fraction of elongating molecules is proportional to the elongation 

constant. (g) Summary of kinetic model parameters and their estimation method. 

 

Figure S5. qPCR quantification of mRNA abundance. 

We selected genes (see Supplementary Text) with noticeable expression 

differences between Low and High conditions (FC > 5) in our RNAseq data and 

performed qPCR (SYBR Green) on sorted (with MitoTracker Green) populations 

with Low and High mitochondrial content. After quantification, their fold-changes 

were corrected by the same factor used to correct RNAseq data (since for the same 

amount of mRNA, Low samples approximately triplicate the number of cells of High 

samples as determined by polyA mRNA FISH, Methods). Left panel: Fold-changes 

(High/Low) taken from our RNAseq data (blue histograms) compared to fold-

changes determined by qPCR quantification (maroon histograms). Bars are 

standard errors of three replicates. Right panel: Scatter plot of logarithmic fold-

changes for RNAseq and qPCR experiments with the corresponding Pearson 

correlation coefficient.   

 

 

Figure S6. Correlation between CmxRos and biosynthetic activities. 

Quantitative microscopy was used to gather information of both mitochondria 

dosage (CmxRos) and gene expression products and activities. (A) Amount  of 

double stranded RNA (highly enriched in ribosomal RNA, and thus an indicator of 

the cell ribosomal mass), stained with YOYO1, as a function of CmxRos. (B) HeLa 

cells stained with CmxRos and then pulsed for 30 min with BrU (a marker of 

nascent RNA). We binned the scattered data in CmxRos intervals and calculated 

average and standard deviation values, filled circles and error bars. The mean 

values are well fitted to a sigmoidal function (solid line) of the form  
௔೚ା௔భሺ௫/௄ሻ೙

ଵାሺ௫/௄ሻ೙
 , with 

parameters a0=0.45, a1=1.41, K=0.81, n=4.7. (C) Relationship between polyA 



RNA(an indicator of  total mRNA content) and CmxRos content. In all panels we 

show the value of the Spearman’s correlation coefficient. 

 

Figure S7. Global decay in mRNA and protein content in the two sorted 

subpopulations.  

A.Red circles: mRNA decay of the Low subpopulation as measured by BrU intensity 

decay (Materials and Methods). Blue circles: mRNA decay of the High 

subpopulation. We fitted experimental data to exponential functions of the form 

൅ܾ݁ି௖௧ , and estimated mRNA half-life with the expression ߬ଵ/ଶ ൌ
୪୬௕ି୪୬ቀభ

మ
ି௔ቁ

௖
. 

B.Red circles: protein decay of the Low subpopulation (Materials and Methods), 

Blue circles: protein decay of the High subpopulation. Experimental data are fitted 

to single exponential functions ݁ି௖௧. The time span of the x-axis is the average cell 

cycle period of HeLa cells (~23 h). 

 

 
 

Figure S8.Transcription rates and half-lives distributions of mouse 

fibroblasts. 

(a) Transcription rate distribution from the experimental data of (Schwanhausser et 

al. 2011). Synthesis rates were estimated using RNAseq, metabolic pulse labelling 

and a quantitative model of mRNA transcription/degradation in more than 5,000 

genes. Red line is a fit to a log-normal distribution. (b) Distribution of half-lives from 

the data of (Schwanhausser et al. 2011) for the same set of genes. Red line is a fit 

to a Gamma distribution. 

 

 

 

Figure S9. Differential expression map of alternative splicing using a two-step 

model. 

Scatter plot of logarithmic fold-changes of pairs of alternatively spliced isoforms 

generated with our two-step model. Transcription and degradation rates are 

sampled from the experimental distributions in Figure S8, and the conversion 

fraction is a uniform random number in the unit interval (see Supplementary Text). 

Different panels show the effect of different sources of variability. (a) Only global 



variability due to transcription elongation and global differences in decay (according 

to our experimental results in Figure S6B and Figure S8A). (b) Adding gene specific 

variability in transcription rate alters the AS pattern with an appreciable fraction of 

genes in the UP and DOWN domains (black and blue dots respectively). The yellow 

line corresponds to the suppression of extrinsic variability in transcription elongation 

and decay. (c) Adding gene specific variability in isoform conversion fraction 

changes the AS differential expression map favouring inversions of expression (INV 

domain, red dots). (d) Adding large gene specific variability only in RNA half-life 

does not explain the appearance of the different domains of altered AS. Black lines 

in all panels mark the threshold values in FC used in the analysis of Figures 6c and 

6e. 

 

Figure S10.  Usage of alternative promoters in alternative splicing and 

expression of splicing genes. 

A. Distribution of logarithmic fold-changes induced by different mitochondrial 

content on RNA isoforms transcribed from different transcription start sites (TSS).  

The black line shows the distribution for isoforms in the UP domain (FC > 10) and 

the blue line in the DOWN domain (FC < 0.1).  Inset: Usage of alternative promoters 

quantified as the ratio of isoforms transcribed from different TSS in each domain 

(relative to the total number of isoforms in the domain). As can be seen, ~70% of 

the total isoforms in UP and DOWN domains are expressed from alternative 

promoters. B. Cumulative distribution of logarithmic fold-changes (High/Low) in the 

expression of genes coding for splicing factors. The dashed red line marks the 

threshold for three-fold differences in expression between the two populations, 

which affect ~47% of the splicing genes (grey shaded area).  

 

Figure S11. Influence of mitochondrial content on epigenetic modification of 

chromatin. 

a.Cartoon showing the effect of high mitochondrial content on methylation and 

acetylation of chromatin. The steady state of histone methylation is the balance 

between methylation and demethylation reactions. Histone methylation is catalyzed 

by histone methyl transferases and the substrate S-adenosyl-Lmethionine (SAM). 

SAM is produced by the reaction L-methionine + ATP. Thus, SAM links energy 

production to histone methylation. H3K36me2 and H3K4me3 are demethylated by 



the action of KDM2 which is activated by 2-oxoglutarate, whose concentration 

depends on ADP/ATP among others  (Salminen et al. 2014). Then in cells with high 

mitochondria content, the ratio ADP/ATP must be low and so 2-oxoglutarate, 

keeping KDM2 activity low. Therefore, cells with high mitochondria content must 

show more methylated chromatin. Likewise, the balance between acetylation and 

deacetylation reactions determine the levels of acetylated histones. Histone 

acetylation is catalyzed by histone acetyl transferases (HATs) which use as a 

precursor Acetyl-CoA. This factor is produced by Pyruvate Dehydrogenase 

Complex (PDC). Cells with high mitochondrial abundance must contain a high 

concentration of Pyruvate because most glycolitic enzymes co-variate with 

mitochondria (Figure 1e). Furthermore, Pyruvate inhibits histone deacetylases 

HDAC1 and HDAC3 (Choudhary et al. 2014). b. In cells with low mitochondrial 

content the concentration of ATP is low and therefore the activity of the methylation 

reaction is reduced. Moreover, in those cells the ratio ADP/ATP must be higher, 

favouring the formation of 2-oxoglutarate activating histone demethylases (HDM) 

like KDM2. Likewise, acetylation reaction must have low activity due to reduced 

levels of Pyruvate. Moreover, the low concentration of Pyruvate release the 

repression of HDACs. Furthermore, cells with low mitochondrial content are 

expected to have a high ratio of NAD+/NADH (Jang et al. 2012) which is the 

regulator of Sirtuins activity, catalyzing histone deacetylation (Choudhary et al. 

2014). 

 

Figure S12. Influence of ROS on transcription and ATP content. 

A.Contribution of oxidative stress to Br-RNA synthesis. Cells were grown for 2 

hours in presence of 2 and 1 mM DTT(antioxidant), or 50 and 100 microM 

Diamide(prooxidant). Then, BrU was added to the medium for half an hour, cells 

were fixed and immunolabeled for Br-RNA.  This panel shows a clear dependency 

of Br-RNA incorporation (RNA Pol II activity) on antioxidant capabilities of the cell. 

Bars show the average of 200 cells, together with the corresponding standard 

deviation. B. ATP is affected by antioxidants and prooxidants. Cells were grown in 

125 microM DTT or 50 microM Diamide, for up to 12 h. Bars are the average of 

three independent experiments. Error bars are SD. This panel shows that DTT 

increases relative ATP production (presumably by improving mitochondrial function) 

and Diamide decreases relative ATP levels. Therefore, we cannot attribute the 



increase of Br-RNA in antioxidant conditions only to the reduction of ROS, since 

ATP is also increased in these conditions. C. Cells were co-stained with 

MitotrackerGreen and Mitosox (a superoxide reporter) for 2 h. The blue dots are the 

average values of sampling in bins, and the solid line the best fit to these dots. The 

slope is close to one (0.93) which shows that the production of superoxide is 

completely matched by the amount of mitochondria. This means that cells have the 

same relative production of superoxide, as shown in panel D. Therefore retrograde 

signalling does not apply to our condition.  
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Symbol Meaning Method for determination 

K1 DNA entry constant Model solution 

K2 Abortive constant Best fit experiment 

K3 Initiation constant Model solution 
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