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Supplementary Materials and Methods

Statistical analysis of mitochondrial contribution to variability

We used three different statistical methods to estimate the contribution of variability
in mitochondrial content to total protein variability. The method described in the
main text estimates the mitochondrial contribution to variability (MCV) as a ratio of
two variabilities: the variability of the original protein distribution (quantified by the
normalized interquartile-range of the distribution) and the variability of the protein
distribution once the linear correlation with mitochondrial content has been removed
(IQR ratio in Figure S2). The second method estimates the MCV simply as the
fraction of variance explained by a linear regression model(Freedman 2009) where
the mitochondrial content is the independent or explanatory variable (R? in Figure
S2). The third method estimates the MCV as a ratio of the variance associated to
mitochondrial variability and the total variance (Var. Ratio in Figure S2). We follow
the procedure used by Snijder et al.(Snijder et al. 2009) and divide the CmxRos-
Protein data in bins with equal number of points along the CmxRos axis. The MCV

is then calculated as:
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where 62,..cen iS the variance between the average values of each bin and 62,
gives the variance of each bin. The three methods yield very similar estimates
(Figure S2).

Relative influence of cell cycle state and mitochodrial content on protein
variability in single cells.

HelLa cells were stained with fluorescent probes for mitochondrial content
(CmxRos), DNA content (DAPI, used as a reporter of cell cycle state), and different
protein antibodies, and the levels of each marker were quantified by single-cell live
microscopy. First we checked that the distribution of DAPI values in a cell
population reflected the cell cycle stage (showing two peaks in GO/G1 and G2/M
phases). We then analyzed the simultaneous influence of mitochondrial levels and

DAPI content on six different proteins of our house-keeping genes set (Figure S3).



The correlation between protein amount and DAPI is much weaker than that
between protein and mitochondria, Figure S3A-B. Moreover, there is also a positive
correlation between mitochondrial content and cell cycle state (Figure S3C). If we
consider cell cycle state and mitochondrial levels as variables (the predictors or
independent variables) influencing protein variability (the outcome or dependent
variable), associations or correlations between the independent variables must be
removed when asking how much of the variability in outcome can be explained by
each predictor(Shipley 2004).

Partial correlations provide a means of assessing the relative importance of each
predictor in determining the outcome, and the relationships between variables can
be visualized as undirected graphs where the nodes are the variables and the
edges represent the partial correlations between them (a procedure also known as
graphical Gaussian modelling(Opgen-Rhein and Strimmer 2007; Krumsiek et al.
2011), Figure S3D-I. All proteins analyzed show a much stronger dependence on
mitochondrial content than on cell cycle state. Partial correlations represent the
contribution of each predictor to a dependent variable after the contributions of the
other predictors have been removed both from that predictor and the dependent
variable, but it is not the only useful measure of dependence. Other useful
measures are semipartial correlations (where the contributions of other predictors
are removed from the predictor in question, but not from the dependent variable),
and LMG coefficients (representing a natural decomposition of the total regression
coefficient in the contributions from different independent variables(Lindeman et al.
1980)). Figure S3J displays the average values (for the six proteins) of these
different statistical measures of causal association, showing the weak dependence
of protein on cell cycle state, and the strong dependence on mitochondrial content.

FLIP experiments and quantification of RNA Pol Il rate constants.

A clone stably expressing GFP—RNA Pol Il (C23) (das Neves et al., 2010; Hieda et
al., 2005; Sugaya et al., 2000) was cultured at 39°C, and images were collected
with the microscope stage heated to 39°C. Fluorescence images were collected
using a confocal microscope (Zeiss LSM 510 META), with an EC PInN 40x/1.3 oll

objective, with the pinhole completely open. We selected a rectangle at the bottom



half of each nuclei where we applied 100% laser power, in order to bleach all the
fluorescent molecules in the rectangle. This operation was repeated every 5 s for a
period of 1,200 s, and we analysed the decay of the fluorescence in the unbleached
top half. Fluorescence intensity was analysed in MetaMorph 6.1 (Universal
Imaging). Curves were analysed using Sigma Plot 11.0 for Windows. For the
analysis we assumed that there were three populations: freely diffusible, bound to
DNA and fully engaged in transcription (see model in Figure 4). FLIP analysis
allows to estimate the dissociation constants of the different populations. In order to
associate these constants to a functional process, we treat cells with inhibitors of
specific steps of the transcription cycle, and then see which kinetic regime is
affected. In this way, we can link a decay constant to a specific transcription step
(Hieda et al. 2005, Sugaya et al. 2000).

For the fitting to the exponential decays in Figure S4b, we allowed the three
components to optimize with no restriction (always r>>0.99). These fittings allow us
to estimate the fraction of the different populations and the rate constants K2 and
K4 (Figure 4 and S4g). To obtain the other kinetic constants (K1 and K3) we fitted
our data to the steady-state solution of the kinetic model in Figure 4a. We were
concerned with the possible artifacts induced by FLIP. Therefore, transcription “run
on” experiments were performed on photobleached cells, which demonstrated no
alteration in the transcription pattern or intensity in the bleached area (data not
shown).

Deoxy-Glucose experiments were performed by incubation for 60 min in 25 mM
Deoxy-Glucose plus 10 mM Sodium Azide, previous to the FLIP. Under this
condition ATP levels were depleted by 97%.

To assess the possible role of glycolysis in ATP production in our cell line, we
performed experiments (Figure S4c) where cells were incubated in the absence of
glucose and presence of galactose, showing no difference in ATP content with
respect to control cells.

Estimation of relative mtDNA levels by gPCR

HelLa cells were sorted according to their mitochondrial content into High (H) and
Low (L) subpopulations (inset in Figure Sla). Then, the DNA was extracted using
the Illustra DNA Extraction Kit (BACC2) (RPN-8502) following manufacturer



instructions. DNA was quantified by gPCR using the primers and TagMan
fluorogenic probes specified in Table S2 (Ashley et al. 2005).

Table S2. Sequence of pairs of primers used for gPCR

Target name Forward primer sequence Reverse primer sequence

APP (nuclear) [TTTTTGTGTGCTCTCCCAGGTCT TGGTCACTGGTTGGTTGGC

AAGAAGAGGAATTGAACCTCTGACTG

MitHu (mitoch.) | AGGACAAGAGAAATAAGGCC

cDNA synthesis and qRT-PCR

The isolation and purification of total RNA was performed with TRIzol® Reagent
(Invitrogen) following the manufacturer’s instructions. For cDNA synthesis 1ug total
RNA was incubated with MultiScribe™
Biosystems®) according to the manufacturer’s instructions. Quantitative RT-PCR
(QRT-PCR) was performed using Power SYBR® Green PCR Master Mix (Applied

Reverse Transcriptase (Applied

Biosystems®) and data were collected on an Applied Biosystems® 7500 Real-Time
PCR system. The sequences of the primers used for specific target amplification

are provided in Table S3.

Table S3. Sequence of pairs of primers used for gRT-PCR.

Target

Forward primer sequence Reverse primer sequence
name
ALDOC ACTCGTACCCAGCCCTTTCT TGTGTTTTCCACCCCAATTT
FDFT1 ATAACCAATGCACTGCACCA ATAACAGGCAGCCAAAGTGG
GTF2IRD1 |CACTAAGGGAGCAGGTCCAG CTCTTGATCCGCTTGTAGGG
ALDH3A1 |CCTCGGAGCTGAGTGAGAAC GCCCGTGTACAGGATATGGT
FDPS CTGCAAGCTTTCTTCCTGGT GCAGGCGGTAGATACATGCT
RMI2 GATGCAGGGCAGGGTAGT TGAACCACTCCCATCACCA
NR2F1 GCCTCAAGAAGTGCCTCAAA GATGTAGCCGGACAGGTAGC
MORC3 GTGCAGCTTGACGATGTGTT CACACTGTGAACGGATTTGTG
RPS15A GTGCTTATTAGGCCGTGCTC TTTAGCCTGCCTGTGAGGTT
PCSK9 TCACCGACTTCGAGAATGTG GGTGGGTGCCATGACTGT
PLD1 TCCACTTTGAGGGAGAGGAG GACAGCCGGAGAGATACGTC
SLC2A3 TGAAGGTTTTGTTGGCTGAA GCCGATTGTAGCAACTGTGA




Mathematical model of variability in alternative splicing

The expression levels of different mature mRNAs out of the same genes are
modelled taking into account transcription of pre-mRNA and AS/conversion to
mature mRNA as two condensed steps depending on mitochondrial content (Figure
6d). For a single gene with two different mRNA isoforms, M; and M, , mRNA levels

change in time according to the rate equations:

dP
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dt = alp - 61M1 (SZ)
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where k is the transcription rate for the pre-mRNA (P), oz and o, the conversion
rates of the pre-mRNA to isoforms M; and M, respectively, and &/6, the
degradation rates of the mature isoforms M,/ M,. The steady-state levels of the two

isoforms (quantified by RNA-seq) are given by

k
M =Ny 5 (54)

k
M; = (1—N1)6—2. (§5)

where N, = a,/(a; + a;) gives the fraction of pre-mRNA converted to isoform M;.

To simulate the experimental map of relative abundance for different isoform pairs
(Figure 6¢), first we need to assign values to the kinetic parameters and then
consider all possible sources of variability caused by mitochondrial content. Since
we do not have experimental access to the particular transcription and degradation
rates of mMRNA forms with altered AS, we statistically sample these parameters from
a biologically reasonable distribution. We use a recent genome-wide quantification
study of mRNA and protein synthesis and turnover in mouse fibroblasts
(Schwanhausser et al. 2011) as a proxy for these distributions. In Figure S8 we
show Schwanhausser et al. (Schwanhausser et al. 2011) experimental data for
transcription rates (Figure S8a) and mRNA half-lives (Figure S8b) fitted to standard



statistical distributions. The experimental distribution of transcription rates k is well
fitted by a log-normal function
1 —(nk—p)?

ftransc(k; U, 0') = kame 202

with parameters u = 0.6,0 =1 (red line in Figure S5a), while the distribution of

mMRNA half-lives (z, ;) is fitted with a Gamma probability function

—T1/2
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with parameters a = 5.1,b = 2.1 (red line in Figure S5b). The degradation rate §; of
a particular mRNA form is related to the half-life by §; = In 2/1{'/2. To get values of
steady-state levels for pairs of isoforms, Eqs. (S4) and (S5), we generated
independent random values of transcription rate k and degradation rates &/,
within these distributions, while the conversion fraction N; is a uniform random
number between 0 and 1. We note that the mRNA synthesis and degradation rates
given by Schwanhausser et al (Schwanhausser et al. 2011) are mean values
averaged over time and cell population, and may differ from the steady-state values
obtained from kinetic equations such as those in Egs. (S1)-(S3) (Schwanhausser et
al. 2011). Moreover, independent measurements of RNA synthesis and decay
(Dolken et al. 2008; Rabani et al. 2011) yielded shorter RNA half-lives, probably
due to differences in cell lines, culture conditions and/or experimental procedures.
Nevertheless, since we are interested in reproducing, in a statistical sense, relative
(fold-change) differences in expression levels due to different mitochondrial content,
absolute values of the rate constants are not important provided they are estimated
in a consistent way and reproduce the biologically relevant ranges, as is the case in
Schwanhausser et al (Schwanhausser et al. 2011) data.
Mitochondrial content can modulate in several ways the different reaction rates. A
global source of variation in transcription rate is due to coupling between ATP
concentration and transcription elongation by RNA Pol Il (das Neves et al. 2010).
This induces a sigmoidal dependence between mitochondrial levels (quantified by
CmxRos) and transcription elongation (measured as BrU) in a cell population
(Figure S6B). To include this observed variability in our model, we first note that
both BrU and CmxRos levels are normalized by their average values, so that at the
response threshold BrU ~ 1. Thus we assume that the transcription rate k for a

given gene is modulated by mitochondrial content as



k =k, X BrU(Cmx)
where k; is the transcription rate value randomly chosen from the experimental
distribution of Figure S8a and BrU(Cmx) the sigmoidal function fitted to the
experimental data of Figure S6B. To mimic the Low/High cell sorting for RNAseq,
and the spread observed in the experimental BrU levels at similar CmxRos values,
we vary the transcription rate of the gene at the Low condition according to
krow = kr x (BrU(Cmxyow) + 0row * ) (S6)

where Cmx; oy, is @ random number in the interval Cmx; oy, € [0.2,0.5] (variability in
cell sorting at Low), r a normally distributed random number and o,y the
standard deviation around Cmx;,,, (estimated from the error bars in Figure S6B).
We use a similar expression to vary the transcription rate at the High condition
(kuign), With Cmxy ey € [1,2] .

Mitochondrial levels can also have a global impact on mRNA degradation, affecting
steady state mMRNA levels. As deduced from Figure S7a, variations in mitochondrial
content have a moderate effect on average mRNA half-life (z,,, ~46 min for High
versus ~65 min for Low conditions). We nevertheless included this variability in the
sampled values from the half-life distribution of Figure S8b, along the same lines as

for the transcription rate above,

5LOW
SEOW = 6[( (‘Si” + oLow - r) (S7)

av

where 6] is the random degradation rate for isoform i sampled from the
experimental distribution, 529" the population averaged degradation rate obtained
from Figure S7a in Low condition (0.64 h™), &,, = 6L9W + (SHIGH — §LOW) /2 the
average decay at mean mitochondrial levels, and g,y the variability in average
decay within the population at Low condition (which we take as an upper limit of 0.3
h™ in view of Figure S7a). Variability in the High condition is included with a similar
expression with §%/6#=0.91 h™ and oy;c = 00w

We first checked whether this simple model is able to reproduce the experimental
alternative splicing map observed in Figure 6c, including only the global variability in
transcription elongation and mRNA degradation given by Equations (S6) and (S7).

We generated 8,400 random isoform pairs (equal to the experimental number of



genes with at least two isoforms expressed) and calculated steady state levels of
these isoforms and fold-change expression,

MLHIGH
FCi = In (W)

for each isoform i according to the procedure described above.

The result is shown in Figure S9a, where we plot with solid lines the thresholds
delimiting the domains of altered alternative splicing in Figure 6c¢. Including only
global variability in transcription elongation and degradation is not enough to
produce strongly altered alternative splicing patterns as seen experimentally. We
thus include in a heuristic way other possible sources of variation induced by
mitochondria in our basic reaction steps. Apart from RNA Pol Il elongation, gene
transcription requires a sequence of promoter state transitions, including chromatin
remodelling, assembly of the transcription machinery, and clearance of the
promoter by RNA polymerase. These intermediate steps may be highly variable
(Mao et al. 2010) and be affected by mitochondrial levels directly (by ATP content)
or indirectly, for instance through differential expression of transcriptional
activators/repressors. Use of alternative promoters may be also highly affected by
mitochondrial levels (Figure S10a). These factors could originate -effective
transcription rates with strong differences even for the same gene. To take into
account this within our modelling framework, we took the approach that the
transcription rate k could vary in any way within our initial distribution from one
condition to another (Low versus High), resampling the transcription rate value at
each condition. This variation in transcription rate for the same gene between Low
and High gives a dispersion in fold-change along the diagonal (yellow symbols in
Figure S9b, where no variation in other kinetic rates is considered), and can be
viewed as a gene specific contribution to fold-change variability. When adding
independently variation in transcription elongation as in Figure S9a (global
contribution, the same for all genes) fold-change values are scattered out of the
diagonal (grey symbols in Figure S9b), giving a noticeable fraction of genes in the
UP and DOWN regions of the plane (black and blue symbols respectively) as
observed in the experimental data, Figure 6¢c. We see however that variation of
transcription rate alone is not able to explain the inversions observed in alternative
splicing (red symbols in Figure 6c). Mitochondria can also modify the conversion

rates to AS isoforms by a variety of mechanisms, again direct, such as energetic



modulation of spliceosome assembly, AS regulators or RNA folding, or indirect
through alteration of genes involved in splicing machinery (Figure S10b), or
coupling between alternative splicing and different transcriptional events. Indeed,
there is recent experimental evidence that both chromatin structure and histone
modifications participate in the regulation of alternative splicing (Luco et al. 2011)
and that transcription elongation is also coupled to alternative splicing (Schmidt et
al. 2011; Dujardin et al. 2013; Kornblihtt et al. 2013) . To include these effects in our
model, we assume that the conversion fraction parameter N; can be strongly
modified by mitochondrial levels, and thus make a new random choice of this value
in Low and High conditions. When only this parameter and global transcription
elongation are allowed to vary, we see that fold-changes are highly spread along
the opposite diagonal in the differential expression map, Figure S9c. This gives an
appreciable fraction of genes with the AS pattern inverted (red symbols, INV region)
as observed in the experimental situation (Figure 6c¢). These inversions are
probably due either to coupling mechanisms between transcription elongation
and/or initiation (chromatin remodelling) and alternative splicing, or alterations of
specific splicing genes mediated by mitochondria.

Finally, we explored the possibility of gene specific variability induced by
mitochondria in the individual degradation rates &/6, , re-sampling these rates at
each Low/High condition. Changing these parameters alone (Figure S9d), although
increasing variability, does not produce any appreciable number of genes in the
above-threshold domains.

A combination of variability in conversion fraction N; and transcription rate k
including gene specific and global factors as explained above is able to reproduce
the experimental pattern, Figure 6e, along with the relative fractions of genes in
each of the differential expression regions (inset of Figure 6e). We thus conclude
that the observed alterations in AS can be only explained by considering both large
changes in splicing site choice and large variability in pre-mRNA production from
the same gene. Moreover, mitochondria is probably a key modulator of these

processes.



Table S1

Go description Term id adj p value
Catabolism
cellular macromolecule catabolic process G0:0044265 2,15E-24
proteolysis involved in cellular protein catabolic process G0:0051603 7,31E-22
cellular protein catabolic process G0:0044257 7,31E-22
modification-dependent protein catabolic process G0:0019941 2,30E-21
RNA metabolism
RNA processing G0:0006396 3,50E-15
MRNA metabolic process G0:0016071 8,36E-11
chromatin organization G0:0006325 3,24E-09
mMRNA processing G0:0006397 4,20E-09
RNA splicing G0:0008380 9,42E-08
transcription from RNA polymerase |l promoter G0:0006366 1,81E-06
chromatin modification G0:0016568 5,38E-07
histone modification G0:0016570 6,74E-05
Transport
vesicle-mediated transport G0:0016192 7,89E-07
nuclear transport G0:0051169 1,02E-09
nucleocytoplasmic transport G0:0006913 1,33E-09
intracellular protein transport G0:0006886 1,92E-14
intracellular protein transmembrane transport G0:0065002 1,24E-05
protein localization in organelle G0:0033365 1,38E-06
intracellular transport G0:0046907 5,28E-18
protein targeting G0:0006605 1,84E-09
cellular protein localization G0:0034613 5,75E-15
Protein metabolism
translation G0:0006412 6,10E-09
protein complex assembly G0:0006461 4,01E-08
protein folding G0:0006457 3,94E-05
Energy
energy derivation by oxidation of organic compounds G0:0015980 7,35E-05
carboxylic acid metabolic process G0:0019752 4,39E-08
cellular lipid metabolic process G0:0044255 5,88E-10
cellular carbohydrate metabolic process G0:0044262 1,33E-07
electron transport chain G0:0022900 1,13E-05
Cell cycle
M phase of mitotic cell cycle G0:0000087 1,42E-06
M phase G0:0000279 1,68E-06
DNA metabolic process G0:0006259 5,88E-10
mitosis G0:0007067 5,24E-07
DNA damage
cellular response to DNA damage stimulus G0:0034984 9,42E-08
DNA repair G0:0006281 1,13E-06
Others
microtubule cytoskeleton organization G0:0000226 4,91E-06
small GTPase mediated signal transduction G0:0007264 9,13E-06
| regulation of signal transduction G0:0009966 1,95E-05




The gene ontology analysis of genes differentially expressed in cells with
different mitochondria content showed 8 main families of genes with a p value <
10E-4.

As a global trend, the families of genes involved in macromolecule homeostasis
are highlighted. Degradation processes seem to be the ones with higher
representation, followed by RNA metabolism and protein metabolism. Another
family of genes with high score are the genes involved in transport processes,
which in part could be a consequence of the high biosynthetic activity of cells
with high mitochondria content. It is not surprising to find also genes involved in
energy metabolism because cells with more mitochondria require more
intermediate energy precursors. We already have documented that
mitochondria content impact in the length of the cell cycle (das Neves et al
2010), therefore it is not surprising to find that mitochondria affects cell cycle
genes. It is well know the role played by the mitochondria as a source of free
radicals, which can damage DNA. For such reason, it makes sense to find an
effect of mitochondria content on genes involved in DNA damage response.



Supplementary Figures captions

Figure S1. CmxRos is a good reporter of mitochondrial mass.

a.In order to study the suitability of fluorescent probes for mitochondrial content
quantification, we first sorted cells according to MitoTracker Green (MG) uptake in
two subpopulations: High (H) and Low (L), inset in Figure Sla. Then, we quantified
the relative mtDNA levels by gPCR as described in Supplementary Methods in both
subpopulations. The ratios of MG staining and mtDNA levels between H and L
populations show a perfect matching (Figure Sla). Error bars are the standard
deviations of three biological replicates. b.To check whether CmxRos is a faithful
reporter for mitochondrial content in individual cells, we first co-stained cells with
CmxRos and MG, showing a high correlation (r’=0.92, Pearson correlation). In
order to further validate the use of CmxRos we co-stained cells with CmxRos and
several mitochondrial markers. c-e. Three mitochondrial matrix proteins: Aconitase
(ACO2), SOD2 and Pyruvate Dehydrogenase (PDP1) also correlate well with
CmxRos: r=0.88 (Aconitase), r’=0.82 (SOD2), r’= 0.75 (PDP1). f. Complex I, which
is located in the inner membrane, closely matches CmxRos levels (r?=0.88). The
antibodies used were ACO2 (AB110321), Complex-1 (AB109798),
SOD2(AB110300) (Abcam) and PDH (2784) (Cell Signaling).

Figure S2. Mitochondrial contribution to variability using different statistical
methods.

To assess the robustness of our estimate of mitochondrial contribution to global
variability in protein expression, we tested other statistical measures of contribution
to variance (see Supplementary Text). Black histograms: Method discussed in main
text and used in Figures 1, 2 and 3. Gray histograms: Fraction of variance
explained by the coefficient of determination (R? of linear regression. White
histograms: ratio of variance along CmxRos axis to total variance(Snijder et al.
2009). Error bars are standard deviations of three replicates, each with 200-400

cells.

Figure S3. Relative influence of cell cycle state and mitochodrial content on

protein variability in single cells.



A-B. Scatter plots of simultaneous values of DAPI (cell cycle state) and CmxRos
(mitochondrial content) with levels of the protein LDHA. C. Variability of DAPI levels
as a function of CmxRos. The corresponding pairwise correlation coefficients
(Pearson) are shown in the inset. D-I. Partial correlation network of six different
proteins taken from the set analyzed in Figure 1 (red nodes), with respect to
mitochondrial and DNA (DAPI) content. The thickness of the edges is proportional
to the partial correlation coefficient. For each protein, ensembles of 300-400 cells
were analyzed to quantify CmxRos, DAPI and protein levels, and their values z-
score normalized before calculating partial correlations. J. Average value of
association (for the six proteins analyzed, bars representing standard errors), for
the three possible associations between variables (Mitochondria-Protein, DAPI-
Protein and Mitochondria-DAPI). Different measures of statistical and causal
association were tested. Black histograms: pairwise Pearson correlation coefficients
(n). Blue histograms: partial correlation coefficients (pr). Red: Semipartial correlation
coefficients (sr). Gray: LMG coefficients (Ir). See Supplementary Text. These
results show that mitochondrial content appears consistently as a much stronger
predictor of protein variability than cell cycle state.

Figure S4. Kinetics of RNA Pol Il'in vivo.

FLIP analysis of GFP—RNA Pol II. (a) Half of the nucleus was bleached
continuously (white rectangle) as confocal images were collected approximately
every 5 s. (b) Decay in fluorescence intensity of the unbleached area of the nucleus
in the FLIP experiment (intensity, arbitrary units) (n = 60) in a natural log scale. The
data can be fitted to three exponentials showing the existence of three different
kinetic regimes, which according to our model can be assigned to three different
populations of RNA Pol II: free polymerase, engaged RNA Pol Il and elongating
RNA Pol Il. The intercept with the y axis was used to determine the steady state
ratio of initiating and elongating RNA Pol Il, and the slopes were used to estimate
the kinetic rate constants K2 and K4. (c) ATP concentrations relative to control
(blue bars, cells growing in 4.5¢g/l of glucose) in different conditions: Green bars,
cells growing in media without glucose but supplemented with galactose for osmotic
compensation (300 mOsm). Red bars: Cells treated with azide plus deoxyglucose
(see main text). Error bars are standard deviations of three biological replicates. (d)

The total amount of RNA Pol Il is proportional to the amount of mitochondria in



individual cells. (e) Analysis in single cells of the fraction of initiating RNA Pol Il as a
function of the elongation constant K4. Red: Control cells. Blue: D-A treated cells.
The fraction of initiating polymerase molecules is independent of the elongation
constant.(f) Analysis in single cells of the fraction of elongating RNA Pol Il
molecules as a function of the elongation constant K4. Red: Control cells. Blue: D-A
treated cells. The fraction of elongating molecules is proportional to the elongation

constant. (g) Summary of kinetic model parameters and their estimation method.

Figure S5. gPCR guantification of mRNA abundance.

We selected genes (see Supplementary Text) with noticeable expression
differences between Low and High conditions (FC > 5) in our RNAseq data and
performed qPCR (SYBR Green) on sorted (with MitoTracker Green) populations
with Low and High mitochondrial content. After quantification, their fold-changes
were corrected by the same factor used to correct RNAseq data (since for the same
amount of mMRNA, Low samples approximately triplicate the number of cells of High
samples as determined by polyA mRNA FISH, Methods). Left panel: Fold-changes
(High/Low) taken from our RNAseq data (blue histograms) compared to fold-
changes determined by gPCR quantification (maroon histograms). Bars are
standard errors of three replicates. Right panel: Scatter plot of logarithmic fold-
changes for RNAseq and gPCR experiments with the corresponding Pearson

correlation coefficient.

Figure S6. Correlation between CmxRos and biosynthetic activities.

Quantitative microscopy was used to gather information of both mitochondria
dosage (CmxRos) and gene expression products and activities. (A) Amount of
double stranded RNA (highly enriched in ribosomal RNA, and thus an indicator of
the cell ribosomal mass), stained with YOYO1, as a function of CmxRos. (B) HelLa
cells stained with CmxRos and then pulsed for 30 min with BrU (a marker of
nascent RNA). We binned the scattered data in CmxRos intervals and calculated

average and standard deviation values, filled circles and error bars. The mean

ao+as (x/K)"

, With
1+(x/K)"

values are well fitted to a sigmoidal function (solid line) of the form

parameters a,=0.45, a;=1.41, K=0.81, n=4.7. (C) Relationship between polyA



RNA(an indicator of total mMRNA content) and CmxRos content. In all panels we

show the value of the Spearman’s correlation coefficient.

Figure S7. Global decay in mRNA and protein content in the two sorted
subpopulations.

A.Red circles: mRNA decay of the Low subpopulation as measured by BrU intensity
decay (Materials and Methods). Blue circles: mRNA decay of the High
subpopulation. We fitted experimental data to exponential functions of the form

In b—ln(%—a)

Cc

+be~¢" , and estimated mRNA half-life with the expression ,,, =

B.Red circles: protein decay of the Low subpopulation (Materials and Methods),
Blue circles: protein decay of the High subpopulation. Experimental data are fitted
to single exponential functions e~¢t. The time span of the x-axis is the average cell

cycle period of HelLa cells (~23 h).

Figure S8.Transcription rates and half-lives distributions of mouse
fibroblasts.

(a) Transcription rate distribution from the experimental data of (Schwanhausser et
al. 2011). Synthesis rates were estimated using RNAseq, metabolic pulse labelling
and a quantitative model of mRNA transcription/degradation in more than 5,000
genes. Red line is a fit to a log-normal distribution. (b) Distribution of half-lives from
the data of (Schwanhausser et al. 2011) for the same set of genes. Red line is a fit

to a Gamma distribution.

Figure S9. Differential expression map of alternative splicing using a two-step
model.

Scatter plot of logarithmic fold-changes of pairs of alternatively spliced isoforms
generated with our two-step model. Transcription and degradation rates are
sampled from the experimental distributions in Figure S8, and the conversion
fraction is a uniform random number in the unit interval (see Supplementary Text).

Different panels show the effect of different sources of variability. (a) Only global



variability due to transcription elongation and global differences in decay (according
to our experimental results in Figure S6B and Figure S8A). (b) Adding gene specific
variability in transcription rate alters the AS pattern with an appreciable fraction of
genes in the UP and DOWN domains (black and blue dots respectively). The yellow
line corresponds to the suppression of extrinsic variability in transcription elongation
and decay. (c) Adding gene specific variability in isoform conversion fraction
changes the AS differential expression map favouring inversions of expression (INV
domain, red dots). (d) Adding large gene specific variability only in RNA half-life
does not explain the appearance of the different domains of altered AS. Black lines
in all panels mark the threshold values in FC used in the analysis of Figures 6¢ and
6e.

Figure S10. Usage of alternative promoters in alternative splicing and
expression of splicing genes.

A. Distribution of logarithmic fold-changes induced by different mitochondrial
content on RNA isoforms transcribed from different transcription start sites (TSS).
The black line shows the distribution for isoforms in the UP domain (FC > 10) and
the blue line in the DOWN domain (FC < 0.1). Inset: Usage of alternative promoters
quantified as the ratio of isoforms transcribed from different TSS in each domain
(relative to the total number of isoforms in the domain). As can be seen, ~70% of
the total isoforms in UP and DOWN domains are expressed from alternative
promoters. B. Cumulative distribution of logarithmic fold-changes (High/Low) in the
expression of genes coding for splicing factors. The dashed red line marks the
threshold for three-fold differences in expression between the two populations,
which affect ~47% of the splicing genes (grey shaded area).

Figure S11. Influence of mitochondrial content on epigenetic modification of
chromatin.

a.Cartoon showing the effect of high mitochondrial content on methylation and
acetylation of chromatin. The steady state of histone methylation is the balance
between methylation and demethylation reactions. Histone methylation is catalyzed
by histone methyl transferases and the substrate S-adenosyl-Lmethionine (SAM).
SAM is produced by the reaction L-methionine + ATP. Thus, SAM links energy
production to histone methylation. H3K36me2 and H3K4me3 are demethylated by



the action of KDM2 which is activated by 2-oxoglutarate, whose concentration
depends on ADP/ATP among others (Salminen et al. 2014). Then in cells with high
mitochondria content, the ratio ADP/ATP must be low and so 2-oxoglutarate,
keeping KDM2 activity low. Therefore, cells with high mitochondria content must
show more methylated chromatin. Likewise, the balance between acetylation and
deacetylation reactions determine the levels of acetylated histones. Histone
acetylation is catalyzed by histone acetyl transferases (HATs) which use as a
precursor Acetyl-CoA. This factor is produced by Pyruvate Dehydrogenase
Complex (PDC). Cells with high mitochondrial abundance must contain a high
concentration of Pyruvate because most glycolitic enzymes co-variate with
mitochondria (Figure 1e). Furthermore, Pyruvate inhibits histone deacetylases
HDAC1 and HDAC3 (Choudhary et al. 2014). b. In cells with low mitochondrial
content the concentration of ATP is low and therefore the activity of the methylation
reaction is reduced. Moreover, in those cells the ratio ADP/ATP must be higher,
favouring the formation of 2-oxoglutarate activating histone demethylases (HDM)
like KDM2. Likewise, acetylation reaction must have low activity due to reduced
levels of Pyruvate. Moreover, the low concentration of Pyruvate release the
repression of HDACs. Furthermore, cells with low mitochondrial content are
expected to have a high ratio of NAD+/NADH (Jang et al. 2012) which is the
regulator of Sirtuins activity, catalyzing histone deacetylation (Choudhary et al.
2014).

Figure S12. Influence of ROS on transcription and ATP content.

A.Contribution of oxidative stress to Br-RNA synthesis. Cells were grown for 2
hours in presence of 2 and 1 mM DTT(antioxidant), or 50 and 100 microM
Diamide(prooxidant). Then, BrU was added to the medium for half an hour, cells
were fixed and immunolabeled for Br-RNA. This panel shows a clear dependency
of Br-RNA incorporation (RNA Pol Il activity) on antioxidant capabilities of the cell.
Bars show the average of 200 cells, together with the corresponding standard
deviation. B. ATP is affected by antioxidants and prooxidants. Cells were grown in
125 microM DTT or 50 microM Diamide, for up to 12 h. Bars are the average of
three independent experiments. Error bars are SD. This panel shows that DTT
increases relative ATP production (presumably by improving mitochondrial function)

and Diamide decreases relative ATP levels. Therefore, we cannot attribute the



increase of Br-RNA in antioxidant conditions only to the reduction of ROS, since
ATP is also increased in these conditions. C. Cells were co-stained with
MitotrackerGreen and Mitosox (a superoxide reporter) for 2 h. The blue dots are the
average values of sampling in bins, and the solid line the best fit to these dots. The
slope is close to one (0.93) which shows that the production of superoxide is
completely matched by the amount of mitochondria. This means that cells have the
same relative production of superoxide, as shown in panel D. Therefore retrograde
signalling does not apply to our condition.
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