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Table S1: sequencing statistics for the short- and long-read data. Read length for the short-read 
data is 150 bp, numbers in the table are for trimmed reads. 
 Short reads Synthetic long reads 
Sample # reads N50 Amount # reads N50 Amount 

4 m 263,119,764 135 33.5 gbp 70,342 8,229 490 mbp 
5 m 497,853,726 125 49.6 gbp 86,934 7,962 534 mbp 
6 m 191,665,440 133 23.8 gbp 67,592 8,222 450 mbp 

 

 
 
Figure S1: distribution of synthetic long-read lengths for the three samples.  

 
 
Table S2: statistics for short- and long-read assemblies. Short-read assemblies refer only to 
scaffolds and contigs longer than 1,500 (400) bp. For the long-read data, overall N50 refers to 
both assembled and unassembled data.  

 Short reads Long reads 
Sample % mapped 

reads 
Assembly 

N50 
Assembly 
size (mbp) 

% assembled 
reads 

Overall 
N50 

Amount 

4 m 27  
(35) 

4,262 
(1,752) 

931  
(1,694)  

11 8,324 470 mbp 

5 m 33 
(47) 

5,128 
(2,590) 

1,456  
(2,207) 

14 8,071 505 mbp 

6 m 18 
(25) 

3,747 
(1,474) 

366 
(957)  

6 8,264 440 mbp 
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Figure S2: (a) Number of reads assembled by the assembler Lola compared to the 
number of reads assembled by Minimus 2. (b) Number of assembled contigs that are 
common to both assemblies and number of reads that were assembled by each of the 
assemblers alone. Common contigs for each assembler are those that have identical or 
containing contigs in the other assembler’s assembly.  

 

 
Figure S3: Short-read assemblies before and after scaffolding by Minimus 2 using the 
synthetic long-reads. synthetic long-reads that did not contribute to the scaffolding or 
extending of short-read sequences are not included. (a, b) Distribution of coverage values 
(a) and lengths (b) for assembled scaffolds and contigs affected by long-read data. (c, d, 
e) change in number of scaffolds (c), total number of bps (d) and N50 (e) for short-read 
assemblies as a result of scaffolding with long reads. 
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Figure S4: comparison of long- and short-read RBG-1 assemblies. (a) 210 synthetic 
long-reads and contigs (440 reads) could be aligned to the assembled RBG-1 genome [1] 
covering 75% of its length. (b) The 5 m sample contributed the majority of long- and 
short-reads, no reads were found in the 4 m sample. (c) 89% of the aligned long-read 
sequences were consistent with the assembled short-read genome, 1 % revealed local 
mis-assemblies in the genome. (d) RBG-1 associated reads account for less than 1 % of 
both the long- and short-reads in all cases. 
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Figure S5: Community composition for the 4 m sample, based on species-level 
clustering (99% identity) of rpS3 genes recovered from the long- and short-assemblies. 
Colors in rank abundance curve (bottom) indicate origin of genes (short-/long-read 
sequences), coverages are normalized by number of bps in the 5 m sample. Stacked bar 
graph (top) shows abundance of phyla and Proteobacteria classes in the community, 
stacked boxes indicate abundance of individual species (number of species indicated). 
Phylum/class affiliations for rpS3 genes recovered from long-read sequences with zero 
coverage by the short-read data are provided in the pie chart (phylum colors are identical 
to stacked bar graph).  
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Figure S6: Community composition for the 6 m sample, based on species-level 
clustering (99% identity) of rpS3 genes recovered from the long- and short-read 
assemblies. Colors in rank abundance curve (bottom) indicate origin of genes (short-/ 
long-read sequences), coverages are normalized by number of bps in the 5 m sample. 
Stacked bar graph (top) shows abundance of phyla and Proteobacteria classes in the 
community, stacked boxes indicate abundance of individual species (number of species 
indicated). Phylum/class affiliations for rpS3 genes recovered from long-read sequences 
with zero coverage by the short-read data are provided in the pie chart (phylum colors are 
identical to stacked bar graph). 
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Figure S7: (a) Concatenated ribosomal protein tree containing sequences from cluster 1 
that carry ribosomal protein genes places these sequences within the Deltaproteobacteria 
(refer to concatenated_rp_tree.pdf for complete tree). (b) Taxonomic affiliations of the 
four long-read clusters with 100 reads or more based on best blast hits of protein coding 
genes. 
 
 
 

 
 
Figure S8: (a) taxonomic profiles for 11 clusters with 100 reads or more from the 4 m 
sample (based on best blast hits of protein coding genes). Profiles of all clusters but 
cluster 8 have CP OP8 (Aminicenantes) as the dominant phylum. (b) Concatenated 
ribosomal protein tree that contain sequences from cluster 6 carrying ribosomal protein 
genes supports CP OP8 assignment for these organisms (refer to 
concatenated_rp_tree.pdf for complete tree). 
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Figure S9: Emergent Self Organizing Map (ESOM) using 3-mer frequencies for 
synthetic long-reads in the 4 m (left) and 5 m (right) samples. Each datapoint represents a 
read, colored datapoints show sequences from one of the overlap-based clusters (Fig. S7 
for the 5 m sample and Fig. S8 for the 4 m). Blue datapoints in the 4 m sample (spread 
outside the main cluster of colored datapoints) belong to cluster 8 whose taxonomic 
profile is different from the rest of the clusters.  
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Assembly of synthetic long-reads with Lola 
	
  
In order to assemble the data we wrote a program that implements an overlap strategy for 
assembly. The assembly process consists of 2 steps: (i) identification of overlaps between 
synthetic long-reads and (ii) assembly of reads based on these overlaps. Here we describe 
the two steps. 

Step I: identifying overlaps. Given a % identity threshold p and an overlap size threshold 
q we consider the following five possible overlap types between a pair of sequences A 
and B that align at p or more percent identity over at least q bps (Fig. S10): 

1. Identity – both A and B overlap throughout their whole lengths.  
2. Contained – either A or B but not both are covered throughout their whole length. 
3. End-end – overlapping regions includes exactly one of A’s ends (5’ or 3’) and 

exactly one of B’s ends such that A’s covered end falls inside B and vice versa. 
4. End-mid – any other overlap that involves exactly one of A or B’s ends. 
5. Shared – any other overlap. 

 

Figure S10: types of overlap (gray regions) between sequences (black lines).	
  

The goal of the first step is to identify all overlaps in the data and decide the type of each 
one. Step (i) is performed as follows: 

1. Remove all reads shorter than q bps. 
2. Run a self-blast of the read database using parameters –F F –r 1 –q -5 –e 1e-20. These 

parameters should result with alignments that have high percent identity and are 
potentially short.  

3. Keep all alignments that are at least 0.6*q bps long (we used q=500) with percent 
identity of at least (p-1) % (we used p=99). These alignments serve as seeds and will 
be further checked. 

4. For each seed compute the coordinates for the maximal overlap possible between the 
two reads. Coordinates are computed considering the seed alignment. Based on 
calculated coordinates decide which overlap types are possible for the pair of reads. 
Go over the next steps until the conditions for one of the overlap types are met.  

5. For potentially identical read pairs align the two sequences using the Needleman-
Wunsch global alignment algorithm [7]. Set overlap type to “identity” if sequences 
align at (p-1)% or more. 

  

End-end End-mid Identity SharedContained
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6. For potential contained overlaps use a variant of the Needleman-Wunsch algorithm 
that finds the best alignment between a whole sequence A vs. part (or whole) of 
sequence B. The algorithm uses the following scoring scheme: 
 
for(i=0; i<=length(A); i++) 
        F(i,0) = d*i; 
for(j=0; j<=length(B); j++) 
        F(0,j) = 0; 
for(i=1; i<=length(A); i++) 
        for(j=1; j<=length(B); j++) { 
                Match = F(i-1,j-1) + S(Ai, Bj) 
                Delete = F(i-1, j) + d 
                Insert = F(i, j-1) + d 
                F(i,j) = max(Match, Insert, Delete) 
        } 
} 
 
Search for best alignment starts at the position with the highest score in row 
F(length(A), *). If alignment at (p-1)% or more was determined overlap type was set 
to “contained”. 

7. For potential edge-edge overlaps we used another variant of the Needleman-Wunsch 
dynamic programming algorithm that finds the best alignment between two sequence 
ends. The following scoring scheme is applied in order to find the best alignment 
between the suffix of A and the prefix of B that is at least q bps long: 
 
for(i=0; i<=length(A); i++) 
        F(i,0) = d*i; 
for(j=0; j<=length(B)-l; j++) 
        F(0,j) = 0; 
for(i=1; i<=length(A); i++) 
        for(j=1; j<=length(B); j++) { 
                Match = F(i-1,j-1) + S(Ai, Bj) 
                Delete = F(i-1, j) + d 
                Insert = F(i, j-1) + d 
                F(i,j) = max(Match, Insert, Delete) 
        } 
} 
 
Search for best alignment starts at the position with the highest score in column  
F(*, length(B)). The overlap type is set to edge-edge if the aligned region is at least q 
bps long at % identity of at least (p-1). 

8. Otherwise the two reads are aligned using the Smith-Waterman local alignment 
algorithm [8]. Overlap type is set to “shared” if overlapping region is at least q bps 
long at (p-1)% identity. 

This part of the tool was implemented in C++. Code is available in Supplementary file 
overlap-1.02.tar.gz and is maintained under https://github.com/CK7/overlap.  
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Step II: assembly. The following process was repeated until no more reads were left that 
could be used as contig starters. 

1. Remove all reads that are contained in another read. Also remove one of every pair of 
identical reads. 

2. Identify an unused read rext with one or more end-end overlaps at p % identity and no 
end-mid overlaps on one side sext ∈{5, 3} and no end-end connections on the other 
end. rext:sext is the extension end, set rext as the current assembled contig. Stop 
assembly if no extension end found. 

3. Pick an unused read rnew and its end snew that has an end-end overlap with rext:sext such 
that adding rnew to the current assembled contig elongates it the most. 

4.  For every other read that overlaps with rext:sext check whether it also has an end-end 
overlap with rnew:snew at (p-1)% identity over its other end. If not – stop assembling 
the current contig and go to (2). 

5. For every other read that overlaps with rnew:snew check whether it also has an end-end 
overlap with rext:sext at (p-1)% identity over its other end. If not – stop assembling the 
current contig and go to (2). Do the same if rnew:snew has an end-mid overlap. 

6. Add rnew to the current assembled contig and mark it as used. Set rext = rnew and sext = 
8-snew (the opposite end of rnew).  

7. If rext:sext has no end-end connections with unassembled reads, or if it has an end-mid 
connection – stop assembling current contig and go to (2). 

8. Otherwise go back to (3) and continue assembling the current contig.  

This part of the program was implemented in perl and is available in Supplementary file 
Lola-1.02.tar.gz (program is maintained under https://github.com/CK7/Lola). 

Scaffolding of short-read assemblies using synthetic long-reads  
 
Scaffolding of the short-read assembly was performed similarly to the assembly of the 
synthetic long-reads. Only synthetic long-reads that overlapped with scaffolds from the 
same depth sample’s corresponding short-read assembly were used for this analysis. 
Once the set of synthetic long-reads that overlaps with the corresponding short-read 
assemblies were identified, we used the assembly program described above in order to 
assemble the data. 
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Reconstruction of syntenic regions  
 
Read clustering. Unassembled synthetic long-reads and assembled contigs from each 
sample were clustered based on end-end, identity or contained overlaps only, using a 90 
% threshold. This threshold roughly represents the expected % identity between similar 
regions of close species.  
 
Gene prediction. Genes for all reads longer than 5 kbp were predicted using prodigal [10] 
with parameters –m and –c. Next, all sequences shorter than 5 kbp as well as regions on 
>5 kbp sequences with no predicted genes were blasted (blastx) against predicted 
proteins. All regions that aligned at 75 % identity over at least 90 % of the hit length, or 
with end-end overlap, were marked as new genes. This process was repeated iteratively 
until no new genes were found. Note that exact start/end coordinates of predicted genes 
were not important for the purpose of the synteny analysis, only the presence of the genes 
was utilized. 
 
Clustering of proteins to protein families. All predicted proteins were clustered into 
families using uclust [11] with a 75 % identity threshold. Singleton families were 
excluded from further analysis.  
 
Reconstructing gene order in syntenic regions. The following steps were taken for all 
reads in each cluster (separately): 
1. Construct neighborhood graph based on gene location on long-read sequences. Nodes 

in the graph represent gene families and edges connect two nodes whose genes were 
found to be neighbors on at least one sequence. Keep weights (number of times each 
gene/neighborhood relation) were observed. 

2. Remove from the graph all edges with weight = 1.  
3. Resolve junctions in the graph. 
4. Identify bubbles, namely components in the graph with exactly one “in” and one 

“out” node connecting them to the rest of the graph and two or more paths connecting 
the in and out nodes within the component. 

5. Identify linear components, i.e. components in the graph with one in and one out node 
that have exactly one path connecting them. 

6. Connect bubbles and linear components that share the same in/out nodes such that no 
other components share the node with them.   

 
Junctions are formed when the same gene family appears in multiple locations on the 
genome (e.g., due to duplication events). Junctions were resolved based on context of the 
members of junction protein families: if certain members only appear together with 
certain genes while other members of the family appear in context with different genes 
then the family could be split into two sub-families with members being clustered based 
on their neighbors. 
Bubbles were identified based on Depth First Search (DFS) with maximal number of 
steps = 10. This is performed using each end of each node as root with all nodes visited 
on each path being kept. Once all paths were visited we try the root with every node 
visited, from closest to furthest, as the pair of in/out nodes to the component: if all paths 
that start at the root node go through the other node, then these two nodes bound a bubble 
component.  
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Code for the program that implements the above algorithm for gene synteny 
reconstruction is available in Supplementary file synteny-1.02.tar.gz and is maintained 
under https://github.com/CK7/synteny.  
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Table S3 Statistics for protein clusters representing marker genes for the Deltaproteobacterium 
recovered from the 5 m sample. Colors indicate median % identity (dark green: >95, light green: 
>90, yellow: >85, orange: >80, red: missing).   
Marker gene # of complete/all proteins Median  % identity (Low, High) 
ribosomal protein L14 35/37 100.0 (96.7, 100.0) 
ribosomal protein L18 13/13 91.5 (86.9, 100.0) 
ribosomal protein S12 6/11 92.2 (89.6, 100.0) 
gyrA 3/6 99.2 (99.1, 99.9) 
ribosomal protein S20 9/9 86.5 (83.5, 100.0) 
ribosomal protein L13 2/2 96.0 (96.0, 96.0) 
ribosomal protein S11 7/8 96.9 (93.8, 100.0) 
ribosomal protein S4 7/9 93.2 (91.7, 100.0) 
ribosomal protein S7 11/11 91.7 (87.8, 100.0) 
ribosomal protein L5 22/25 93.3 (91.2, 100.0) 
ribosomal protein L1 3/3 100.0 (100.0, 100.0) 
ribosomal protein L6P-L9E 12/19 91.1 (89.9, 100.0) 
ribosomal protein L21 5/5 95.2 (85.6, 100.0) 
ribosomal protein L11 3/4 99.3 (99.3, 100.0) 
ribosomal protein S5 12/12 96.4 (86.7, 100.0) 
ribosomal protein L23 15/15 90.5 (87.2, 100.0) 
ribosomal protein S15 2/2 96.6 (96.6, 96.6) 
ribosomal protein L10 2/3 100.0 (100.0, 100.0) 
alanyl tRNA synthetase 6/17 91.2 (89.1, 99.5) 
recA 12/12 97.1 (92.7, 100.0) 
ribosomal protein L3 16/16 93.9 (91.5, 100.0) 
ribosomal protein S2 10/11 96.7 (90.2, 100.0) 
Preprotein translocase subunit SecY 8/11 95.9 (94.5, 100.0) 
ribosomal protein L30 10/10 88.5 (87.1, 100.0) 
ribosomal protein S17 42/45 97.8 (81.7, 100.0) 
leucyl-tRNA synthetase 7/11 96.5 (89.5, 99.9) 
arginyl tRNA synthetase 20/24 97.1 (84.7, 100.0) 
ribosomal protein S3 43/46 98.2 (92.6, 100.0) 
ribosomal protein S19 14/14 96.8 (90.3, 100.0) 
ribosomal protein L16-L10E 45/49 98.5 (91.7, 100.0) 
ribosomal protein L22 14/34 96.4 (93.6, 100.0) 
Valyl-tRNA synthetase 11/15 98.2 (90.2, 100.0) 
Histidyl-tRNA synthetase 10/12 87.9 (84.7, 100.0) 
ribosomal protein S13 8/9 92.9 (90.6, 100.0) 
ribosomal protein S9 2/3 99.2 (99.2, 99.2) 
ribosomal protein S6 5/5 84.1 (82.6, 100) 
ribosomal protein L27 5/5 100.0 (90.6, 100.0) 
ribosomal protein L29 49/49 98.4 (84.6, 100.0) 
Phenylalanyl-tRNA synthetase alpha 4/6 98.3 (98.0, 98.8) 
ribosomal protein L15 9/10 89.0 (87.0, 100.0) 
ribosomal protein L20 4/4 98.3 (96.6, 100.0) 
ribosomal protein S10 13/15 98.1 (97.1, 100.0) 
aspartyl tRNA synthetase 9/9 92.4 (90.8, 99.8) 
ribosomal protein S18 4/4 92.8 (91.1, 100.0) 
ribosomal protein L24 29/33 95.5 (86.6, 100.0) 
ribosomal protein L4 15/16 91.8 (89.9, 100.0) 
ribosomal protein S8 17/20 88.6 (83.3, 100.0) 
ribosomal protein S16 3/3 94.7 (93.6, 98.9) 
ribosomal protein L17 7/8 82.3 (68.4, 100.0) 
ribosomal protein L2 11/16 94.1 (92.3, 100.0) 
ribosomal protein L19 7/7 95.4 (88.7, 100.0) 



 15 

Table S4: Statistics for protein clusters representing marker genes for the CP OP8 phylotype 
recovered from the 4 m sample. Color scheme is similar to Table S3. 
Marker gene Complete/Total Median  % identity (Low, High) 
ribosomal protein L14 10/10 100.0 (98.3, 100.0) 
ribosomal protein L18 9/9 98.4 (87.1, 100.0) 
ribosomal protein S12 9/9 96.9 (93.8, 100.0) 
gyrA 3/7 99.3 (99.2, 99.9) 
ribosomal protein S20 9/9 100 (98.8, 100) 
ribosomal protein L13 No hits found  
ribosomal protein S11 14/15 96.9 (93.8, 100.0) 
ribosomal protein S4 15/15 95.2 (91.3, 100.0) 
ribosomal protein S7 7/10 94.9 (93.6, 100.0) 
ribosomal protein L5 8/11 99.4 (98.3, 100.0) 
ribosomal protein L1 7/7 94.3 (93.9, 100.0) 
ribosomal protein L6P-L9E 9/9 98.9 (89.5, 100.0) 
ribosomal protein L21 4/6 97.8 (96.1, 99.4) 
ribosomal protein L11 7/7 95.0 (94.3, 100.0) 
ribosomal protein S5 9/11 97.7 (87.9, 100.0) 
ribosomal protein L23 9/9 93.7 (91.8, 100.0) 
ribosomal protein S15 7/7 100.0 (96.6, 100.0) 
ribosomal protein L10 7/7 87.6 (85.9, 99.4) 
alanyl tRNA synthetase 3/7 98.1 (97.7, 99.4) 
recA 10/13 96.9 (95.6, 100.0) 
ribosomal protein L3 9/9 95.8 (92.5, 100.0) 
ribosomal protein S2 4/4 99.2 (99.2, 100.0) 
Preprotein translocase subunit SecY 10/15 96.5 (95.2, 100.0) 
ribosomal protein L30 12/12 93.0 (88.0, 100.0) 
ribosomal protein S17 10/10 100.0 (93.9, 100.0) 
leucyl-tRNA synthetase 4/9 97.6 (97.2, 99.6) 
arginyl tRNA synthetase No hits found  
ribosomal protein S3 10/10 99.1 (96.8, 100.0) 
ribosomal protein S19 8/8 100.0 (95.8, 100.0) 
ribosomal protein L16-L10E 10/10 99.3 (94.3, 100.0) 
ribosomal protein L22 9/10 99.2 (92.5, 100.0) 
Valyl-tRNA synthetase 3/5 98.3 (98.1, 98.6) 
Histidyl-tRNA synthetase 5/6 96.0 (94.8, 99.8) 
ribosomal protein S13 14/14 97.6 (95.9, 100.0) 
ribosomal protein S9 No hits found  
ribosomal protein S6 6/8 97.8 (96.4, 100.0) 
ribosomal protein L27 6/6 98.8 (97.6, 100.0) 
ribosomal protein L29 10/10 100.0 (92.2, 100.0) 
Phenylalanyl-tRNA synthetase alpha 7/9 93.9 (88.6, 100.0) 
ribosomal protein L15 12/12 92.6 (84.5, 100.0) 
ribosomal protein L20 7/7 97.5 (96.6, 100.0) 
ribosomal protein S10 10/10 98.1 (96.2, 100.0) 
aspartyl tRNA synthetase 4/6 95.1 (94.6, 99.5) 
ribosomal protein S18 8/8 100.0 (97.6, 100.0) 
ribosomal protein L24 11/11 100.0 (90.9, 100.0) 
ribosomal protein L4 9/9 98.1 (92.3, 100.0) 
ribosomal protein S8 8/12 98.5 (93.2, 100.0) 
ribosomal protein S16 8/8 97.6 (92.9, 100.0) 
ribosomal protein L17 14/15 92.1 (83.3, 100.0) 
ribosomal protein L2 7/8 97.1 (94.9, 100.0) 
ribosomal protein L19 8/8 99.1 (98.2, 100.0) 
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Strain variation for the Deltaproteobacteria clade 
 
Multiple sequence alignment of the 46 rpS3 genes from the Deltaproteobacteria clade 
reveals several groups of identical and near identical genes (Fig. S11). Clustering of these 
sequences using a 100 % threshold (DNA level) resulted with 28 clusters, 10 of which 
consist of multiple members. Mapping of short reads reads to the rpS3 genes recovered 
from the long reads resulted with many reads that could not be mapped perfectly to any 
of the genes, suggesting that even more closely related versions of this gene may be 
present in the sample. Based on these results we estimate that Deltaproteobacteria clade 
in the 5 m sample consists of several dozen different strains. While the total coverage of 
the rpS3 genes from these strains by the Illumina short read data approaches 1,000x, we 
did not find any rpS3 genes in the Illumina assembly for the 5 m sample that align to any 
of the 46 rpS3 genes considered here at more than 85% identity. Therefore, we attribute 
the lack of short read assembly for these genomes to high sequence heterogeneity that 
cannot be handled by short read assemblers (Fig. S12 and Fig. S13). For comparison, 
mapping of Illumina reads to the rpS3 gene of RBG-1 shows very few SNPs, none of 
them appears in more than a few reads (Fig. S14). This suggests that RBG-1 is 
represented by a single abundant strain, which enables assembly. 
 

Figure S11: multiple sequence alignment of the 46 genes from the rpS3 cluster of the 
Deltaproteobacteria clade (5 m sample). Genes used for mapping of Illumina short reads 
in Fig. S12 and S13 are encircled in purple and orange, respectively.  
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Figure S12: read mapping to one of the rpS3 genes from the Deltaproteobacteria clade 
(encircled in purple in Fig. S11) reveals high degree of strain variation, indicated by 
multiple SNPs (colored dots). 
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Figure S13: read mapping to a different rpS3 genes from the Deltaproteobacteria clade 
(encircled in orange in Fig. S11) shows high number of SNPs as well (colored dots). 
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Figure S14: reads from the 5 m sample that are mapped to the RBG-1 rpS3 gene are 
consistent with the assembled genome, suggesting the presence of a single abundant 
strain in the sample. 

Recovery of 16S rRNA genes and tree construction 
 
16S rRNA genes were recovered from the short- and long-read assemblies using 
rnammer [12] with parameters –multi –S bac,arc. All genes longer than 800 bps were 
clustered using uclust with 99% identity threshold with only one representative from each 
cluster being used. The three best hits for each representative from the SILVA database 
([13], release 115) were used for phylogenetic tree construction. In addition, we included 
a set of 762 reference 16S sequences from sequenced genomes spanning different phyla. 
Sequences were aligned using SSU-ALIGN [14] and manually inspected using Geneious. 
Maximum likelihood trees were reconstructed using RAxML [15] with parameters -f a -
m GTRCAT -N 100. 
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Using the rpS3 gene for community structure inference 
 
To evaluate community structure we considered both the genes encoding the 16S SSU 
rRNA and the ribosomal protein S3 (rpS3). The 16S SSU rRNA gene is a commonly 
accepted phylogenetic marker gene [16], however assembly of this gene from 
metagenomic data often fails due to its high conservation. We were able to identify 355, 
495 and 289 16S rRNA genes from the 4, 5 and 6 m respectively with the majority of 
genes being recovered from the long-read data. Clustering the genes using a 99% identity 
cutoff (capturing roughly the same genus) revealed that roughly one quarter of the genes 
recovered from the long-read sequences, in all samples, were clustered with at least one 
other long-read 16S rRNA gene, compared to none of the genes recovered from short 
reads (Fig. S15). The largest cluster in the 5 m sample, which represented the most 
abundant genus in both the 5 and 6 m samples, did not have any representatives in the 
short-read assemblies but contained 14 (5 m) and 9 (6 m) genes from the long-read 
datasets. In fact, the majority of clusters with at least 3 members in all samples (23/32) 
and the vast majority of clusters with at least 4 members (8/10) were represented by long-
read sequences only. Low clustering levels of the short-read sequences are not due to 
coverage as many genes recovered from synthetic long-read had robust coverage from 
mapped short reads. This highlights the fact that the 16S SSU rRNA gene is not a reliable 
choice for inferring community structure when used directly from assembled 
metagenomic short read data.  
We also considered using the gene cassette of the 16 ribosomal proteins previously 
proposed [17] and used by Castelle et al. [1] for the 5 m sample in this study. This set of 
genes provides a reliable phylogenetic placement that is required for taxonomic 
assignment of novel genomes. On the other hand, at least eight of the genes need to be 
present on the same sequence in order for their sequence to be considered, which may be 
too restrictive for genomes whose assembly is fragmented. As a result, the number of 
organisms that can be detected using concatenated ribosomal proteins may be artificially 
low (see below).  
Here we evaluated community structure for the three samples using the ribosomal protein 
S3 (RpS3), which is the product of a universal single-copy gene. This protein is less 
reliable for high-resolution phylogeny than both the gene encoding the 16S SSU rRNA 
and concatenated ribosomal proteins as it is shorter than either of those options, and thus 
has fewer alignment positions to direct placement. Nevertheless this gene is divergent 
enough to be recovered through metagenomic assembly (unlike the 16S gene) and can be 
recovered from fragmented genomes as well (unlike the ribosomal proteins). The number 
of rpS3 genes recovered from the short-read assembly was significantly higher than the 
16S rRNA genes for all samples (Fig. S15). For comparison, the number of rpS3 genes 
recovered from synthetic long-reads was smaller than the number of 16S genes recovered 
from the same data, both because the 16S gene is twice as long as the rpS3 gene and also 
because the 16S gene sometimes appears in more than one copy per genome (Fig. S15). 
This result suggests that many more species can be detected using the rpS3 gene 
compared to the 16S SSU rRNA gene for short-read assemblies. The number of rpS3 
genes that were recovered from the short-read assembly of the 5 m sample is roughly 
twice the number of ribosomal protein sets reported by Castelle et al. However no rpS3 
genes were assembled from the short-read data for most of the abundant species in all 
samples, probably due to a high degree of strain variation.  
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Figure S15: Pie charts: fraction of 16S SSU rRNA (top row) and rpS3 (bottom row) 
genes in clusters with no other gene of the same technology (dark) or with at least one 
other gene from the same technology (light) for the 4, 5 and 6 m samples. Column bars: 
total number of unclustered 16S SSU rRNA (top) and rpS3 (bottom) genes found using 
each technology. 
 
Computing % identity thresholds for rpS3 for species- and genus-level clustering 
 
In order to generate the rank abundance curves in Fig. 2, S5, and S6, we clustered rpS3 
genes into species and genera groups using thresholds that were calculated according to 
the following model. Our goal was to compute thresholds that will allow us to determine 
whether a pair of rpS3 genes represents two genomes from the same species, same genus 
or something else, based on the % identity of their global alignment (DNA sequence). In 
order to do this we developed the following model that enabled us to compute, for each 
% identity, the fraction of Rps3 protein pairs that are expected to belong to the same 
species and genus. Once these were calculated we chose thresholds for which the 
majority of pairs aligned at this % identity or higher indeed belonged to the same 
species/genus. 
 
Theory: Two rpS3 genes s1 and s2 that are x% similar can be in exactly one of two states 
with respect to a taxonomic level t∈{species, genus, family, order, class, phylum, 
domain, other}: 
 
• State At – s1 and s2 belong to the same taxonomic group at level t but not to any 

taxonomic group at level lower than t (e.g. same genus but not the same species).  
• State Bt - s1 and s2 belong to a taxonomic group at a level different than t 
 
Given % identity x for the global alignment of s1 and s2 it is possible to determine the 
probability that s1 and s2 are in state At given the following information: 
 
• p(x|At’) – the probability that s1 and s2 are x% similar for taxonomic level 

t’∈{species, genus, family, order, class, phylum, domain, other} 
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• p(At’) – the probability that a random pair s1 and s2 will be in state At’ for taxonomic 
level t’.  

 
Both these probabilities may change between different communities and taxonomic 
groups. In fact, it is practically impossible to compute either of them, however we 
provide here rough estimations for both of them (see below). 
In order to compute the probability p(At|x) we will estimate the fraction of pairs in state 
At from all pairs of rpS3 genes that are x% similar. If our sample consists of S cells (and 
thus S copies of the rpS3 gene) then there are S*(S-1)/2 different pairs, of which  
 

N(At’)= p(At’)*S*(S-1)/2 
 
Are in state At’, and 
 

Nx(At’)= p(x|At’)*N(At’) = p(x|At’)*p(At’)*S*(S-1)/2 
 
are both in state At’ and the % identity of their global alignment is x. The probability 
p(At|x) can then be estimated through 
 

p(At|x) = Nx(At’)/Σ Nx(At’) = [p(x|At)*p(At)*S*(S-1)/2]/[ Σp(x|At’)*p(At’)*S*(S-1)/2]   
           = p(x|At)*p(At)/Σ(p(x|At’)*p(At’)) 

   
Which is the probability we are looking for.  
 
Computing p(x|At’). In order to compute these probabilities we used a set of rpS3 genes 
from 1,978 genomes downloaded from the NCBI website. Global alignments for the 
genes were calculated using usearch (-allpairs_global program), and distributions of % 
identity were calculated as follows: 
 
For t in {species, genus, order, class, phylum} do 
   For taxonomic group o at level t do 
      Collect all % identities for all pairs of sequences s1, s2 ∈ o 
      Find the median value and add it to the distribution of t 
      Find s with sum of % identities vs all other s’∈o is the highest 
      Remove all s’ ∈ o except s. 
   End for 
End for 
 
The above procedure was designed to avoid biases that are related to the number of 
sequenced genomes from each taxonomic group by taking one representative from each 
group. 
Our computations showed that no % identity for any pair from t’ ∈ {order, class, 
phylum} was high enough to impact the computation of thresholds for species and genus. 
Consequently we discarded these taxonomic levels as well as the domain level from 
further analysis.   
 
Calculating p(At’). Obtaining these probabilities is practically impossible for various 
reasons: not only the number of cells from each taxonomic group is unknown but even 
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the assignment to taxonomic groups is not available yet for most of the organisms in our 
communities. Note also that p(At’) may be different for different environments. Here we 
estimated p(At’) using the 16S sequences extracted from the long-read sequences, 
assuming that these were sampled randomly from the sample. We clustered the 16S 
sequences based on the following thresholds: 
 
• Species: 99% [18] 
• Genus: 94% [19,20] 
• Family: 90% [19,20] 
 
These values are in no way exact but are expected to roughly divide our 16S rRNA SSU 
sequences into phylotypes at these levels. Sequences were aligned using usearch. Next, 
the different probabilities were estimated based on 100,000 random samplings of 
sequence pairs. Results are summarized in Table S5. 
 
Table S5: frequency of 16S SSU rRNA gene pairs in the 3 depths. Frequency was computed 
through simulations.  

 4 m: # (%) 5 m: # (%) 6 m: # (%) 
Species 829 (0.83) 824 (0.82) 940 (0.94) 
Genus 692 (0.69) 544 (0.54) 1,205 (1.21) 
Family 833 (0.83) 552 (0.55) 1121 (1.12) 
Other 97,646 (97.65) 98,080 (98.08) 96,734 (96.73) 

  
Calculating thresholds. Using the above we calculated the expected fraction of rpS3 gene 
pairs that belong to the same species and genus for the 3 samples (Table S6). Based on 
these calculations we conclude that thresholds of 99% for species and 90% for genus 
levels provide a reasonable level of confidence (> ~80%) in the relatedness of pairs of 
rpS3 genes. 
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Table S6: fraction of rpS3 gene pairs that align at % identity and share the same species (genus) 
for each sample. For example: 95.1% of the rpS3 pairs that align at 100 % identity in the 4 m 
sample share the same species while 100% of these pairs share the same genus. This means that 
4.9% of rps3 genes that align at 100% identity belong to different species under the same genus. 
From this table we conclude that the majority (~70% or more) of rps3 genes that align at 99% or 
more belong to the same species and therefore use this number as a threshold for species-based 
clustering. Similarly, >70% of pairs that align at 88% identity or more belong to the same genus.   

 4 m 5 m 6 m 
% identity Species Genus Species Genus Species Genus 

100.0 95.1 100.0 96.1 100.0 92.6 100.0 
99.0 77.5 100.0 81.3 100.0 68.9 100.0 
98.0 50.5 100.0 56.3 100.0 39.7 100.0 
97.0 61.2 91.3 67.4 93.5 51.8 91.2 
96.0 38.4 100.0 44.1 100.0 28.7 100.0 
95.0 0.0 100.0 0.0 100.0 0.0 100.0 
94.0 22.8 79.7 28.0 83.3 16.9 82.1 
93.0 0.0 100.0 0.0 100.0 0.0 100.0 
92.0 27.7 100.0 32.6 100.0 19.8 100.0 
91.0 11.2 100.0 13.8 100.0 7.6 100.0 
90.0 0.0 83.6 0.0 85.7 0.0 86.9 
89.0 0.0 70.6 0.0 73.9 0.0 75.7 
88.0 0.0 70.6 0.0 73.9 0.0 75.7 
87.0 0.0 43.9 0.0 48.1 0.0 50.4 
86.0 0.0 61.7 0.0 65.6 0.0 67.7 
85.0 0.0 53.8 0.0 57.9 0.0 60.2 
84.0 18.6 64.9 23.6 70.1 14.1 68.4 
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Estimating a lower bound for the number of species in the samples 
 
Our sequencing efforts were far from being exhaustive, as indicated by the relatively low 
rates of both long and short reads going into assemblies. rpS3-based rarefaction curves 
for the three samples (Fig. S16) provided showed that our sequencing efforts are indeed 
far from being sufficient. In order to get a general sense of how complex our samples are 
we tried to put a lower bound on the number of most abundant species which we were 
able to sample. In other words, we were trying to answer the following question: 
assuming that all species in the sample are sorted by their rank (as in a rank abundance 
curve), what would be the rank of the least abundant species we were able to sample?  
 

 
Figure S16: rarefaction curves for the three samples based on rpS3 genes found on 
synthetic long reads only. For the 6 m sample each species was detected exactly once. 
Illumina assembled rpS3 genes were not used because they represent only the fraction of 
community that is abundant enough. 

  
To answer this question we “divided” the population into two fractions based on a 
coverage threshold and estimated a lower bound on the number of species in each. The 
threshold that was chosen is 2x because this is about the coverage in which short reads 
start to assemble. We estimated a lower bound on the number of species as follows: 
1. Count the number of species with coverage > 2x from both the short-read assemblies 

and synthetic long reads, based on rpS3 clustering (we will denote this number N>2). 
We assume that for the > 2x the combination of short- and long-read datasets provide 
a good approximation for community structure because the short-read data is 
expected to be assembled for species represented by single strains and the long-read 
data is expected to uncover multi-strain species (at least the abundant ones). In any 
case the number computed here is not expected to exceed the true number. 

 
The following steps are taken to determine N≤2, an upper bound on the number of species 
with coverage ≤ 2x. 
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2. Summarize the coverage for species with coverage > 2x based on the coverage of 

rpS3 genes from both the short-read assemblies and synthetic long-reads.  
3. Use the fraction of short reads that mapped to single copy genes from synthetic long-

reads with coverage > 2x as an estimator for the portion of the community occupied 
by these organisms. (complementary frequencies to the gray bars in Fig. S18). Both 
long and short reads are assumed to be sampled randomly with equal probability 
from the entire community regardless of genome abundance and could therefore be 
used for this purpose (unlike the assembled short-read sequences that represent only 
genomes with sufficient coverage). 

4. Compute the relative abundance of the least abundant species with > 2x coverage by 
dividing the coverage of the least abundant species with coverage > 2x by the sum of 
coverages for all species with coverage > 2x (computed in (2)) and normalizing this 
value by the share of these species in the community (from (3)). 

5. The relative abundance of any of the species with coverage ≤ 2x will be smaller than 
the relative abundance computed in (4). Dividing the relative frequency of species 
with ≤ 2x by the relative abundance of the least abundant species from the > 2x group 
will therefore give us a lower bound on the number of species in this fraction. We 
will denote this number by N≤2x. 

6. The total number of species in the “pool” of species that were sampled is given by 
N= N>2x + N≤2x. 

 
The calculated lower bounds on the number of species in the 3 samples were around 900 
for the 4 and 6 m samples and around 3,000 for the 5 m samples. We estimate that the 
true numbers are significantly higher because dozens of species with less that 2x 
coverage were detected in each of the samples, suggesting that the lowest relative 
abundance in the >2x fraction is in fact a very strict estimator.  

Internal controls on contamination	
  
 
In order to identify potential contamination in our datasets we used two different 
approaches. First, we aligned (using BLAST) the long reads against an extended version 
of the uniref90 database (refer to Fig. S17 for a summary of the taxonomic profiling for 
the three samples). The extended version of uniref90 includes also other genomes 
recovered from Rifle. Using this analysis it is possible to identify DNA that is clearly 
foreign to the samples. Second, we manually checked the data using the ggKBase 
platform and other tools in order to search for suspicious DNA. This approach proved to 
be efficient in the past in identifying contaminations. For the current study we identified a 
few dozen reads (out of several tens of thousands) that originated from a cloning vector, 
as well as a few dozens identical long reads that seemed to be an artifact of the 
sequencing process. The vast majority of the data, however, appears to be reliable 



 27 

 
Figure S17: Distribution of domains and phyla of best hits for predicted proteins on 
assembled and unassembled synthetic long-reads.  
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Table S7: Statistics of 51 marker gene families in the 4 m sample. Expected, observed columns: 
expected (based on 37.9 % of bps) and observed number of proteins on ≤ 2x coverage reads. 
  Total Expected Observed Observed freq p-value 
Total 5603 1939 1751 0.31 1.0000 
Histidyl-tRNA synthetase 136 51.5 47 0.35 0.7615 
Phenylalanyl-tRNA synthetase alpha 85 32.2 36 0.42 0.1688 
Preprotein translocase subunit SecY 134 50.7 46 0.34 0.7764 
Valyl-tRNA synthetase 120 45.4 47 0.39 0.3496 
alanyl tRNA synthetase 106 40.1 43 0.41 0.2514 
arginyl tRNA synthetase 70 26.5 36 0.51 0.0077 
aspartyl tRNA synthetase 100 37.9 37 0.37 0.5295 
gyrA 115 43.5 42 0.37 0.5796 
leucyl-tRNA synthetase 106 40.1 37 0.35 0.7017 
recA 129 48.8 46 0.36 0.6656 
ribosomal protein L1 100 37.9 22 0.22 0.9995 
ribosomal protein L10 89 33.7 24 0.27 0.9799 
ribosomal protein L11 119 45.1 30 0.25 0.9977 
ribosomal protein L13 113 42.8 35 0.31 0.9237 
ribosomal protein L14 117 44.3 35 0.30 0.9557 
ribosomal protein L15 119 45.1 32 0.27 0.9924 
ribosomal protein L16-L10E 106 40.1 31 0.29 0.9605 
ribosomal protein L17 116 43.9 41 0.35 0.6791 
ribosomal protein L18 117 44.3 35 0.30 0.9557 
ribosomal protein L19 87 32.9 36 0.41 0.2169 
ribosomal protein L2 104 39.4 33 0.32 0.8849 
ribosomal protein L20 104 39.4 39 0.38 0.4900 
ribosomal protein L21 97 36.7 28 0.29 0.9600 
ribosomal protein L22 99 37.5 31 0.31 0.8949 
ribosomal protein L23 113 42.8 32 0.28 0.9789 
ribosomal protein L24 107 40.5 27 0.25 0.9961 
ribosomal protein L27 99 37.5 26 0.26 0.9901 
ribosomal protein L29 109 41.3 29 0.27 0.9913 
ribosomal protein L3 111 42 34 0.31 0.9322 
ribosomal protein L30 91 34.4 23 0.25 0.9924 
ribosomal protein L4 107 40.5 31 0.29 0.9661 
ribosomal protein L5 105 39.7 31 0.30 0.9541 
ribosomal protein L6P-L9E 125 47.3 36 0.29 0.9790 
ribosomal protein S10 116 43.9 29 0.25 0.9977 
ribosomal protein S11 131 49.6 36 0.27 0.9920 
ribosomal protein S12 120 45.4 32 0.27 0.9936 
ribosomal protein S13 139 52.6 40 0.29 0.9846 
ribosomal protein S15 108 40.9 38 0.35 0.6829 
ribosomal protein S16 87 32.9 26 0.30 0.9253 
ribosomal protein S17 122 46.2 36 0.30 0.9670 
ribosomal protein S18 90 34.1 26 0.29 0.9528 
ribosomal protein S19 101 38.2 33 0.33 0.8364 
ribosomal protein S2 91 34.4 27 0.30 0.9362 
ribosomal protein S20 92 34.8 33 0.36 0.6125 
ribosomal protein S3 97 36.7 30 0.31 0.9063 
ribosomal protein S4 137 51.9 46 0.34 0.8301 
ribosomal protein S5 137 51.9 40 0.29 0.9792 
ribosomal protein S6 105 39.7 32 0.30 0.9304 
ribosomal protein S7 139 52.6 41 0.29 0.9761 
ribosomal protein S8 118 44.7 35 0.30 0.9616 
ribosomal protein S9 118 44.7 33 0.28 0.9848 
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Table S8: Statistics of 51 marker gene families in the 5 m sample. Expected, observed columns: 
expected (based on 34.6 % of bps) and observed number of proteins on ≤ 2x coverage reads. 
  Total Expected Observed Observed freq p-value 
Total 5852 2025 1827 0.31 1.0000 
Histidyl-tRNA synthetase 134 46.3 42 0.31 0.7570 
Phenylalanyl-tRNA synthetase alpha 118 40.8 40 0.34 0.5213 
Preprotein translocase subunit SecY 107 37 29 0.27 0.9389 
Valyl-tRNA synthetase 151 52.2 49 0.32 0.6782 
alanyl tRNA synthetase 103 35.6 37 0.36 0.3466 
arginyl tRNA synthetase 92 31.8 30 0.33 0.6108 
aspartyl tRNA synthetase 105 36.3 39 0.37 0.2559 
gyrA 135 46.7 51 0.38 0.1924 
leucyl-tRNA synthetase 103 35.6 35 0.34 0.5071 
recA 118 40.8 45 0.38 0.1825 
ribosomal protein L1 91 31.4 28 0.31 0.7425 
ribosomal protein L10 127 43.9 44 0.35 0.4548 
ribosomal protein L11 127 43.9 50 0.39 0.1114 
ribosomal protein L13 83 28.7 24 0.29 0.8347 
ribosomal protein L14 149 51.5 46 0.31 0.8073 
ribosomal protein L15 105 36.3 33 0.31 0.7168 
ribosomal protein L16-L10E 139 48 44 0.32 0.7373 
ribosomal protein L17 57 19.7 21 0.37 0.3066 
ribosomal protein L18 113 39 36 0.32 0.6936 
ribosomal protein L19 84 29 37 0.44 0.0281 
ribosomal protein L2 142 49.1 40 0.28 0.9378 
ribosomal protein L20 115 39.7 34 0.30 0.8504 
ribosomal protein L21 95 32.8 37 0.39 0.1589 
ribosomal protein L22 111 38.4 28 0.25 0.9780 
ribosomal protein L23 160 55.3 42 0.26 0.9851 
ribosomal protein L24 139 48 44 0.32 0.7373 
ribosomal protein L27 87 30.1 37 0.43 0.0494 
ribosomal protein L29 108 37.3 22 0.20 0.9991 
ribosomal protein L3 142 49.1 39 0.27 0.9572 
ribosomal protein L30 67 23.1 16 0.24 0.9598 
ribosomal protein L4 138 47.7 36 0.26 0.9797 
ribosomal protein L5 134 46.3 41 0.31 0.8109 
ribosomal protein L6P-L9E 136 47 40 0.29 0.8822 
ribosomal protein S10 163 56.3 46 0.28 0.9501 
ribosomal protein S11 89 30.7 25 0.28 0.8820 
ribosomal protein S12 143 49.4 39 0.27 0.9622 
ribosomal protein S13 110 38 31 0.28 0.9072 
ribosomal protein S15 94 32.5 31 0.33 0.5836 
ribosomal protein S16 83 28.7 30 0.36 0.3370 
ribosomal protein S17 146 50.5 42 0.29 0.9199 
ribosomal protein S18 68 23.5 21 0.31 0.6938 
ribosomal protein S19 131 45.3 35 0.27 0.9664 
ribosomal protein S2 111 38.4 39 0.35 0.4099 
ribosomal protein S20 88 30.4 30 0.34 0.4907 
ribosomal protein S3 133 46 41 0.31 0.7940 
ribosomal protein S4 94 32.5 25 0.27 0.9383 
ribosomal protein S5 133 46 39 0.29 0.8835 
ribosomal protein S6 61 21.1 25 0.41 0.1193 
ribosomal protein S7 154 53.2 41 0.27 0.9787 
ribosomal protein S8 142 49.1 43 0.30 0.8398 
ribosomal protein S9 94 32.5 28 0.30 0.8078 
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Table S9: Statistics of 51 marker gene families in the 6 m sample. Expected, observed columns: 
expected (based on 59.5 % of bps) and observed number of proteins on ≤2x coverage reads. 
  Total Expected Observed Observed freq p-value 
Total 5125 3049.375 2486 0.49 1.0000 
Histidyl-tRNA synthetase 111 66.2 61 0.55 0.8106 
Phenylalanyl-tRNA synthetase alpha 100 59.7 57 0.57 0.6600 
Preprotein translocase subunit SecY 103 61.4 52 0.50 0.9602 
Valyl-tRNA synthetase 108 64.4 63 0.58 0.5616 
alanyl tRNA synthetase 91 54.3 49 0.54 0.8394 
arginyl tRNA synthetase 75 44.7 44 0.59 0.5147 
aspartyl tRNA synthetase 101 60.2 58 0.57 0.6289 
gyrA 123 73.4 73 0.59 0.4793 
leucyl-tRNA synthetase 98 58.5 49 0.50 0.9642 
recA 125 74.6 65 0.52 0.9463 
ribosomal protein L1 87 51.9 38 0.44 0.9979 
ribosomal protein L10 109 65 49 0.45 0.9985 
ribosomal protein L11 116 69.2 54 0.47 0.9967 
ribosomal protein L13 100 59.7 58 0.58 0.5831 
ribosomal protein L14 108 64.4 43 0.40 1.0000 
ribosomal protein L15 98 58.5 48 0.49 0.9775 
ribosomal protein L16-L10E 103 61.4 41 0.40 1.0000 
ribosomal protein L17 50 29.8 31 0.62 0.3097 
ribosomal protein L18 96 57.3 42 0.44 0.9987 
ribosomal protein L19 108 64.4 52 0.48 0.9889 
ribosomal protein L2 116 69.2 46 0.40 1.0000 
ribosomal protein L20 101 60.2 61 0.60 0.3903 
ribosomal protein L21 71 42.3 38 0.54 0.8177 
ribosomal protein L22 111 66.2 40 0.36 1.0000 
ribosomal protein L23 125 74.6 49 0.39 1.0000 
ribosomal protein L24 98 58.5 39 0.40 0.9999 
ribosomal protein L27 71 42.3 40 0.56 0.6656 
ribosomal protein L29 93 55.5 37 0.40 0.9999 
ribosomal protein L3 108 64.4 47 0.44 0.9994 
ribosomal protein L30 82 48.9 36 0.44 0.9969 
ribosomal protein L4 115 68.6 47 0.41 1.0000 
ribosomal protein L5 101 60.2 42 0.42 0.9998 
ribosomal protein L6P-L9E 110 65.6 49 0.45 0.9989 
ribosomal protein S10 108 64.4 44 0.41 0.9999 
ribosomal protein S11 96 57.3 52 0.54 0.8317 
ribosomal protein S12 94 56.1 51 0.54 0.8242 
ribosomal protein S13 99 59.1 51 0.52 0.9344 
ribosomal protein S15 80 47.7 48 0.60 0.4216 
ribosomal protein S16 79 47.1 38 0.48 0.9735 
ribosomal protein S17 115 68.6 45 0.39 1.0000 
ribosomal protein S18 76 45.3 45 0.59 0.4769 
ribosomal protein S19 114 68 44 0.39 1.0000 
ribosomal protein S2 102 60.8 58 0.57 0.6724 
ribosomal protein S20 92 54.9 47 0.51 0.9371 
ribosomal protein S3 108 64.4 39 0.36 1.0000 
ribosomal protein S4 109 65 64 0.59 0.5300 
ribosomal protein S5 114 68 53 0.46 0.9966 
ribosomal protein S6 96 57.3 49 0.51 0.9426 
ribosomal protein S7 118 70.4 55 0.47 0.9969 
ribosomal protein S8 108 64.4 45 0.42 0.9999 
ribosomal protein S9 105 62.6 60 0.57 0.6546 
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Figure S18: fraction of single copy genes (gray) and base-pairs on synthetic long-reads ≥ 
5 kbp with ≤2x coverage. Fraction of single copy genes can be used as a proxy for the 
fraction of cells represented in the two sets.   
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Table S10: protein MCL clusters significantly more abundant on synthetic long-reads with ≤2x coverage, 4 
m sample. Bonferroni correction was applied to adjust the 0.05 p-value threshold (adjusted p-value is 1.7e-
5). 
Family Annotation 

 
Total 

 
Expected 

 
Observed 

 
Observed 

freq 
p-value 

 
1248 Prepilin-type N-terminal 

cleavage/methylation domain-
containing protein 40 15 39 0.98 0 

39 Oxidoreductase 245 93 147 0.60 8.6E-12 
1982 Hypothetical 26 10 25 0.96 1.1E-11 
1463 Hypothetical 34 13 30 0.88 1.3E-10 

98 LacI family transcriptional regulator 175 66 105 0.60 1.1E-09 
88 Uroporphyrinogen-III decarboxylase 163 62 98 0.60 3.0E-09 

18 

Aminotransferase 
DegT/DnrJ/EryC1/StrS 
aminotransferase 404 153 209 0.52 6.3E-09 

745 

Tetratricopeptide repeat protein (a 
structural motif, does not say much 
about the function) 62 24 43 0.69 1.3E-07 

2509 
ABC transporter substrate binding 
protein 23 9 20 0.87 1.5E-07 

1101 Glycoside hydrolase family 4 46 17 33 0.72 7.6E-07 
43 ABC transporter 240 91 126 0.53 1.6E-06 
37 Glycosyl transferase family 1 256 97 133 0.52 1.9E-06 

2622 Transposase 20 8 17 0.85 2.0E-06 
1427 Sulfatase 36 14 26 0.72 6.7E-06 
654 Glycosyl transferase group 1 68 26 43 0.63 6.9E-06 
90 Oxidoreductase 170 65 91 0.54 1.3E-05 

 
Table S11: protein MCL clusters significantly more abundant on synthetic long-reads with ≤ 2x coverage, 
5 m sample. Bonferroni correction was applied to adjust the 0.05 p-value (adjusted p-value is 1.8e-5). 
Family Annotation 

 
Total 

 
Expected 

 
Observed 

 
Observed 

freq 
p-value 

 
2105 TonB-dependent receptor 24 9 21 0.88 8.9E-09 
625 Hypothetical 67 24 44 0.66 5.7E-08 
672 Mandelate racemase 64 23 41 0.64 4.2E-07 

2555 Von Willebrand factor type A 20 7 17 0.85 4.3E-07 
375 Oxidoredctase 88 31 52 0.59 8.3E-07 

1861 Hypothetical 29 10 22 0.76 1.1E-06 
1563 N-acetyltransferase GCN5 30 11 22 0.73 3.1E-06 
1175 Hypothetical/membrane protein 40 14 27 0.68 5.4E-06 

776 
Coenzyme F390 synthetase/ Capsular 
polysaccharide biosynthesis protein 59 20 36 0.61 9.9E-06 

399 Oxidoredctase 87 30 49 0.56 1.1E-05 
1249 Uncharacterized 39 14 26 0.67 1.1E-05 
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Table S12: protein MCL clusters significantly more abundant on synthetic long-reads with ≤ 2x coverage, 
6 m sample. Bonferroni correction was applied to adjust the 0.05 p-value (adjusted p-value is 2.1e-5). 
Family Annotation 

 
Total 

 
Expected 

 
Observed 

 
Observed 

freq 
p-value 

 
866 Permease 49 29 49 1.00 0 

2157 ABC-type Fe3+ transport system 21 13 21 1.00 0 
2252 Uncharacterized 20 12 20 1.00 0 
1724 Outer membrane receptor 26 15 26 1.00 0 

1796 
RNA polymerase, sigma subunit, ECF 
family 25 15 25 1.00 0 

101 Oxidoreductase 128 76 114 0.89 2.5E-14 
911 Sulfatase 47 28 45 0.96 8.3E-10 
130 Oxidoreductase 117 70 98 0.84 4.0E-09 
383 Mandelate racemase 81 48 71 0.88 5.4E-09 

1268 Sulfatase 36 21 35 0.97 7.6E-09 
204 MmgE/PrpD family protein 98 58 83 0.85 1.6E-08 

1386 
Prepilin-type N-terminal 
Cleavage/methylation domain 34 20 33 0.97 2.2E-08 

1121 Lyase 40 24.1 37 0.93 6.0E-07 
1026 Oxidoreductase 42 25.3 38 0.90 2.2E-06 
601 Phage integrase 61 36.8 52 0.85 5.3E-06 
54 Glycosyl transferase family 1  178 107.3 134 0.75 8.9E-06 

1159 PadR family transcriptional regulator 39 23.5 35 0.90 8.0E-06 

21 
Transporter related binding/receprot 
protein 293 175 210 0.72 5.5E-06 

2 Reductase 1096 653 722 0.66 6.1E-06 
1943 Pyrrolo-quinoline quinone  23 13.9 22 0.96 8.9E-06 
1668 Transporter 27 16 25 0.93 1.6E-05 
137 Asparagine synthetase 115 69 89 0.77 1.6E-05 

 
Table S13: protein families with more than 1,000 members, 4 m sample. 
Family Annotation 

 
Total 

 
Expected 

 
Observed 

 
Observed 

freq 
p-value 

 
1 ABC transporter ATP-binding protein 1811 697.2 503 0.27 1 
2 Dehydrogenase 1327 510.9 481 0.36 0.95 
3 ABC transporter ATP-binding protein 1073 413.1 380 0.35 0.98 
 
Table S14: protein families with more than 1,000 members, 5 m sample.  
Family Annotation 

 
Total 

 
Expected 

 
Observed 

 
Observed 

freq 
p-value 

 
1 ABC transporter ATP-binding protein 1580 548 427 0.27 1.0000 
2 Dehydrogenase 1186 411 456 0.38 0.0026 
3 ABC transporter ATP-binding protein 1098 381 321 0.29 0.9999 
 
Table S15: protein families with more than 1,000 members, 6 m sample. 
Family Annotation 

 
Total 

 
Expected 

 
Observed 

 
Observed 

freq 
p-value 

 
1 ABC transporter ATP-binding protein 1167 695 601 0.51 1.0000 
2 Dehydrogenase 1096 653 722 0.66 6.1E-06 
3 ABC transporter ATP-binding protein 1049 625 581 0.55 0.9962 
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Table S16: Enriched KEGG-terms in synthetic long-reads with ≤ 2x coverage, 4 m sample. Bonferroni 
correction was applied to adjust the 0.05 p-value threshold (adjusted p-value is 3.8e-5). 
KEGG-

term 
Annotation 

 
Total 

 
Expected 

 
Observed 

 
Observed 

freq 
p-value 

 
K07406 alpha-galactosidase [EC:3.2.1.22]  49 18.5 36 0.73 9.6E-08 

K01599 
uroporphyrinogen decarboxylase 
[EC:4.1.1.37]  345 130.7 177 0.51 1.6E-07 

K02025 
multiple sugar transport system 
permease protein  251 95.1 133 0.52 4.6E-07 

K02392 
flagellar basal-body rod protein 
FlgG  29 10.9 22 0.75 6.5E-06 

K02026 
multiple sugar transport system 
permease protein  259 98.1 131 0.5 1.3E-05 

 
Table S17: enriched KEGG-terms in synthetic long-reads with ≤ 2x coverage, 5 m sample. Bonferroni 
correction was applied to adjust the 0.05 p-value threshold (adjusted p-value is 3.7e-5). 
KEGG-

term 
Annotation 

 
Total 

 
Expected 

 
Observed 

 
Observed 

freq 
p-value 

 
K07406 alpha-galactosidase [EC:3.2.1.22]  49 18.5 36 0.73 9.6E-08 

K01599 
uroporphyrinogen decarboxylase 
[EC:4.1.1.37]  345 130.7 177 0.51 1.6E-07 

K02025 
multiple sugar transport system 
permease protein  251 95.1 133 0.52 4.6E-07 

K02392 
flagellar basal-body rod protein 
FlgG  29 10.9 22 0.75 6.5E-06 

K02026 
multiple sugar transport system 
permease protein  259 98.1 131 0.5 1.3E-05 

 
Table S18: enriched KEGG-terms in synthetic long-reads with ≤ 2x coverage, 6 m sample. Bonferroni 
correction was applied to adjust the 0.05 p-value threshold (adjusted p-value is 3.8e-5). 
KEGG-

term 
Annotation 

 
Total 

 
Expected 

 
Observed 

 
Observed 

freq 
p-value 

 

K07812 
trimethylamine-N-oxide reductase 
(cytochrome c) 2 [EC:1.7.2.3]  47 27.9 43 0.91 1.4E-07 

K01953 
asparagine synthase (glutamine-
hydrolysing) [EC:6.3.5.4]  166 98.7 126 0.75 2.9E-06 

K07031 
D-glycero-alpha-D-manno-heptose-
7-phosphate kinase [EC:2.7.1.168]  48 28.5 41 0.85 2.3E-05 

K02026 
multiple sugar transport system 
permease protein  264 157 188 0.71 2.9E-05 
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Figure S19: Total number of proteins in glycosyl hydrolase families of different sizes. 
Families with representatives in low (≤ 2x coverage), high (> 2x coverage) and both 
scaffolds are reported. Number of families that are unique to low coverage scaffolds 
(418, 409 and 637 for the 4, 5 and 6 m samples, respectively) was higher than the number 
of families unique to high coverage scaffolds (348, 316, 141) and the number of families 
common to both fractions (198, 140, 153); however most of the families that are unique 
to one of the coverage fractions are singletons.  
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Table S19: list of terms used for identifying glycosyl hydrolases in the ggKBase platform (refer to 
http://ggkbase.berkeley.edu/custom_lists/5572-Glycosyl_hydrolase for the implementation of the list 
in ggKBase).    
cellobiosidase Dextranase acetylmuramidase 
glycosidase Polygalacturonase isomaltosidase 
glycosyl lysozyme isomaltotriosidase 
hydrolase sialidase maltohexaosidase 
endoglucanase fructofuranosidase mannobiosidase 
glycoside hydrolase trehalase lactase 
cellulase hyaluronoglucosaminidase endogalactosaminidase 
chitinase arabinosidase maltotriohydrolase 
2.4.1.18 pullulanase EC:3.2.1 
glycogen debranching enzyme glucosylceramidase polymannuronate hydrolase 
galacturonase galactosylceramidase octulosonidase 
mannosidase acetylgalactosaminidase glucuronosidase 
arabinase acetylglucosaminidase chitosanase 
glucuronidase acetylhexosaminidase maltohydrolase 
xyloglucanase cyclomaltodextrinase difructose-anhydride synthase 
xyloglycosyltransferase maltotetraohydrolase biosidase 
mannanase mycodextranase cellobiohydrolase 
xylanase glycosylceramidase alpha-neoagaro-oligosaccharide 

hydrolase 
xylosidase levanbiohydrolase glucosaminidase 
arabinofuranosidase levanase GlcNAcase 
galactanase quercitrinase mannosylglycerate hydrolase 
galactosidase galacturonidase rhamnogalacturonan hydrolase 
glucoronidase licheninase rhamnogalacturonyl hydrolase 
rhamnosidase isoamylase galacturonohydrolase 
fucosidase iduronidase rhamnohydrolase 
amylase fructosidase xylohydrolase 
glucosidase agarase porphyranase 
glucanase galacturonosidase glucuronyl hydrolase 
Inulinase carrageenase chondroitin disaccharide 

hydrolase 
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