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Table S1: sequencing statistics for the short- and long-read data. Read length for the short-read
data is 150 bp, numbers in the table are for trimmed reads.

Short reads Synthetic long reads
Sample | # reads NS0 Amount | # reads NS0 Amount
4m 263,119,764 135 33.5 gbp 70,342 8,229 490 mbp
5m 497,853,726 125 49.6 gbp 86,934 7,962 534 mbp
6 m 191,665,440 133 23.8 gbp 67,592 8,222 450 mbp
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Figure S1: distribution of synthetic long-read lengths for the three samples.

Table S2: statistics for short- and long-read assemblies. Short-read assemblies refer only to
scaffolds and contigs longer than 1,500 (400) bp. For the long-read data, overall N50 refers to
both assembled and unassembled data.

Short reads Long reads
Sample | % mapped | Assembly | Assembly | % assembled | Overall | Amount
reads NS0 size (mbp) reads N50
4 m 27 4,262 931 11 8,324 470 mbp
(35) (1,752) (1,694)
Sm 33 5,128 1,456 14 8,071 505 mbp
(47) (2,590) (2,207)
6 m 18 3,747 366 6 8,264 440 mbp
(25) (1,474) (957)
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Figure S2: (a) Number of reads assembled by the assembler Lola compared to the
number of reads assembled by Minimus 2. (b) Number of assembled contigs that are
common to both assemblies and number of reads that were assembled by each of the
assemblers alone. Common contigs for each assembler are those that have identical or
containing contigs in the other assembler’s assembly.
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Figure S3: Short-read assemblies before and after scaffolding by Minimus 2 using the
synthetic long-reads. synthetic long-reads that did not contribute to the scaffolding or
extending of short-read sequences are not included. (a, b) Distribution of coverage values
(a) and lengths (b) for assembled scaffolds and contigs affected by long-read data. (c, d,
e) change in number of scaffolds (c), total number of bps (d) and N50 (e) for short-read
assemblies as a result of scaffolding with long reads.
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Figure S4: comparison of long- and short-read RBG-1 assemblies. (a) 210 synthetic
long-reads and contigs (440 reads) could be aligned to the assembled RBG-1 genome [1]
covering 75% of its length. (b) The 5 m sample contributed the majority of long- and
short-reads, no reads were found in the 4 m sample. (c) 89% of the aligned long-read
sequences were consistent with the assembled short-read genome, 1 % revealed local
mis-assemblies in the genome. (d) RBG-1 associated reads account for less than 1 % of

both the long- and short-reads in all cases.
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Figure SS: Community composition for the 4 m sample, based on species-level
clustering (99% identity) of »pS3 genes recovered from the long- and short-assemblies.
Colors in rank abundance curve (bottom) indicate origin of genes (short-/long-read
sequences), coverages are normalized by number of bps in the 5 m sample. Stacked bar
graph (top) shows abundance of phyla and Proteobacteria classes in the community,
stacked boxes indicate abundance of individual species (number of species indicated).
Phylum/class affiliations for »pS3 genes recovered from long-read sequences with zero
coverage by the short-read data are provided in the pie chart (phylum colors are identical
to stacked bar graph).
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Figure S6: Community composition for the 6 m sample, based on species-level
clustering (99% identity) of rpS3 genes recovered from the long- and short-read
assemblies. Colors in rank abundance curve (bottom) indicate origin of genes (short-/
long-read sequences), coverages are normalized by number of bps in the 5 m sample.
Stacked bar graph (top) shows abundance of phyla and Proteobacteria classes in the
community, stacked boxes indicate abundance of individual species (number of species
indicated). Phylum/class affiliations for »pS3 genes recovered from long-read sequences
with zero coverage by the short-read data are provided in the pie chart (phylum colors are
identical to stacked bar graph).
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Figure S7: (a) Concatenated ribosomal protein tree containing sequences from cluster 1
that carry ribosomal protein genes places these sequences within the Deltaproteobacteria
(refer to concatenated rp tree.pdf for complete tree). (b) Taxonomic affiliations of the
four long-read clusters with 100 reads or more based on best blast hits of protein coding
genes.
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Figure S8: (a) taxonomic profiles for 11 clusters with 100 reads or more from the 4 m
sample (based on best blast hits of protein coding genes). Profiles of all clusters but
cluster 8 have CP OP8 (Aminicenantes) as the dominant phylum. (b) Concatenated
ribosomal protein tree that contain sequences from cluster 6 carrying ribosomal protein
genes supports CP  OP8 assignment for these organisms (refer to
concatenated rp_tree.pdf for complete tree).
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Figure S9: Emergent Self Organizing Map (ESOM) using 3-mer frequencies for
synthetic long-reads in the 4 m (left) and 5 m (right) samples. Each datapoint represents a
read, colored datapoints show sequences from one of the overlap-based clusters (Fig. S7
for the 5 m sample and Fig. S8 for the 4 m). Blue datapoints in the 4 m sample (spread
outside the main cluster of colored datapoints) belong to cluster 8 whose taxonomic
profile is different from the rest of the clusters.



Assembly of synthetic long-reads with Lola

In order to assemble the data we wrote a program that implements an overlap strategy for
assembly. The assembly process consists of 2 steps: (i) identification of overlaps between
synthetic long-reads and (i) assembly of reads based on these overlaps. Here we describe
the two steps.

Step 1. identifying overlaps. Given a % identity threshold p and an overlap size threshold
g we consider the following five possible overlap types between a pair of sequences A
and B that align at p or more percent identity over at least g bps (Fig. S10):

1. Identity — both A and B overlap throughout their whole lengths.
Contained — either A or B but not both are covered throughout their whole length.
3. End-end — overlapping regions includes exactly one of A’s ends (5 or 3”) and
exactly one of B’s ends such that A’s covered end falls inside B and vice versa.
4. End-mid — any other overlap that involves exactly one of A or B’s ends.

5. Shared — any other overlap.
End-end End-mid Contained Identity Shared
— — — — E—
| ] | | I

Figure S10: types of overlap (gray regions) between sequences (black lines).

The goal of the first step is to identify all overlaps in the data and decide the type of each
one. Step (i) is performed as follows:

1. Remove all reads shorter than ¢ bps.

Run a self-blast of the read database using parameters —F F —r 1 —q -5 —e 1e-20. These
parameters should result with alignments that have high percent identity and are
potentially short.

3. Keep all alignments that are at least 0.6%g bps long (we used ¢=500) with percent
identity of at least (p-1) % (we used p=99). These alignments serve as seeds and will
be further checked.

4. For each seed compute the coordinates for the maximal overlap possible between the
two reads. Coordinates are computed considering the seed alignment. Based on
calculated coordinates decide which overlap types are possible for the pair of reads.
Go over the next steps until the conditions for one of the overlap types are met.

5. For potentially identical read pairs align the two sequences using the Needleman-
Wunsch global alignment algorithm [7]. Set overlap type to “identity” if sequences
align at (p-1)% or more.



6. For potential contained overlaps use a variant of the Needleman-Wunsch algorithm
that finds the best alignment between a whole sequence A vs. part (or whole) of
sequence B. The algorithm uses the following scoring scheme:

for (i=0; i<=length(A); i++)
F(i,0) = d*i;
for (j=0; j<=length(B); j++)
F(0,3) = 0;
for (i=1; i<=length(A); i++)
for(j=1; j<=length(B); j++) {
Match = F(i-1,j-1) + S(Ai, Bj)

Delete = F(i-1, j) + d
Insert = F(i, j-1) + d
F(i,j) = max(Match, Insert, Delete)

}

Search for best alignment starts at the position with the highest score in row
F(length(A), *). If alignment at (p-1)% or more was determined overlap type was set
to “contained”.

7. For potential edge-edge overlaps we used another variant of the Needleman-Wunsch
dynamic programming algorithm that finds the best alignment between two sequence
ends. The following scoring scheme is applied in order to find the best alignment
between the suffix of A and the prefix of B that is at least ¢ bps long:

for (i=0; i<=length(A); i++)
F(i,0) = d*i;
for (j=0; j<=length(B)-1; j++)
F(0,3) = 0;
for (i=1; i<=length(A); i++)
for(j=1; j<=length(B); j++) {
Match = F(i-1,j-1) + S(Ai, Bj)

Delete = F(i-1, j) + d
Insert = F(i, j-1) + d
F(i,j) = max(Match, Insert, Delete)

}

Search for best alignment starts at the position with the highest score in column
F(*, length(B)). The overlap type is set to edge-edge if the aligned region is at least ¢
bps long at % identity of at least (p-1).

8. Otherwise the two reads are aligned using the Smith-Waterman local alignment
algorithm [8]. Overlap type is set to “shared” if overlapping region is at least g bps
long at (p-1)% identity.

This part of the tool was implemented in C++. Code is available in Supplementary file
overlap-1.02.tar.gz and is maintained under https://github.com/CK7/overlap.
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Step I1: assembly. The following process was repeated until no more reads were left that
could be used as contig starters.

1.

2.

7.

8.

Remove all reads that are contained in another read. Also remove one of every pair of
identical reads.

Identify an unused read r**' with one or more end-end overlaps at p % identity and no
end-mid overlaps on one side s €{5, 3} and no end-end connections on the other
end. r*:s™ is the extension end, set r**' as the current assembled contig. Stop
assembly if no extension end found.
Pick an unused read r"*" and its end s"" that has an end-end overlap with r
that adding r"°" to the current assembled contig elongates it the most.

For every other read that overlaps with r**:s™ check whether it also has an end-end
overlap with r"":s"" at (p-1)% identity over its other end. If not — stop assembling
the current contig and go to (2).

For every other read that overlaps with r check whether it also has an end-end
overlap with r:s®" at (p-1)% identity over 1ts other end. If not — stop assembling the
current contig and go to (2). Do the same if r"V:s"" has an end-mid overlap.

ext __ _new

Add ™" to the current assembled contig and mark it as used. Set r** = "V and s
8-s"" (the opposite end of ™).

If r**":s**" has no end-end connections with unassembled reads, or if it has an end-mid
connection — stop assembling current contig and go to (2).

Otherwise go back to (3) and continue assembling the current contig.

new ext ext

such

new, new

ext _

This part of the program was implemented in perl and is available in Supplementary file
Lola-1.02.tar.gz (program is maintained under https://github.com/CK7/Lola).

Scaffolding of short-read assemblies using synthetic long-reads

Scaffolding of the short-read assembly was performed similarly to the assembly of the
synthetic long-reads. Only synthetic long-reads that overlapped with scaffolds from the
same depth sample’s corresponding short-read assembly were used for this analysis.
Once the set of synthetic long-reads that overlaps with the corresponding short-read
assemblies were identified, we used the assembly program described above in order to
assemble the data.

11



Reconstruction of syntenic regions

Read clustering. Unassembled synthetic long-reads and assembled contigs from each
sample were clustered based on end-end, identity or contained overlaps only, using a 90
% threshold. This threshold roughly represents the expected % identity between similar
regions of close species.

Gene prediction. Genes for all reads longer than 5 kbp were predicted using prodigal [10]
with parameters —m and —c. Next, all sequences shorter than 5 kbp as well as regions on
>5 kbp sequences with no predicted genes were blasted (blastx) against predicted
proteins. All regions that aligned at 75 % identity over at least 90 % of the hit length, or
with end-end overlap, were marked as new genes. This process was repeated iteratively
until no new genes were found. Note that exact start/end coordinates of predicted genes
were not important for the purpose of the synteny analysis, only the presence of the genes
was utilized.

Clustering of proteins to protein families. All predicted proteins were clustered into
families using uclust [11] with a 75 % identity threshold. Singleton families were
excluded from further analysis.

Reconstructing gene order in syntenic regions. The following steps were taken for all

reads in each cluster (separately):

1. Construct neighborhood graph based on gene location on long-read sequences. Nodes
in the graph represent gene families and edges connect two nodes whose genes were
found to be neighbors on at least one sequence. Keep weights (number of times each
gene/neighborhood relation) were observed.

2. Remove from the graph all edges with weight = 1.

Resolve junctions in the graph.

4. Identify bubbles, namely components in the graph with exactly one “in” and one
“out” node connecting them to the rest of the graph and two or more paths connecting
the in and out nodes within the component.

5. Identify linear components, i.e. components in the graph with one in and one out node
that have exactly one path connecting them.

6. Connect bubbles and linear components that share the same in/out nodes such that no
other components share the node with them.

(8]

Junctions are formed when the same gene family appears in multiple locations on the
genome (e.g., due to duplication events). Junctions were resolved based on context of the
members of junction protein families: if certain members only appear together with
certain genes while other members of the family appear in context with different genes
then the family could be split into two sub-families with members being clustered based
on their neighbors.

Bubbles were identified based on Depth First Search (DFS) with maximal number of
steps = 10. This is performed using each end of each node as root with all nodes visited
on each path being kept. Once all paths were visited we try the root with every node
visited, from closest to furthest, as the pair of in/out nodes to the component: if all paths
that start at the root node go through the other node, then these two nodes bound a bubble
component.

12



Code for the program that implements the above algorithm for gene synteny
reconstruction is available in Supplementary file synteny-1.02.tar.gz and is maintained
under https://github.com/CK7/synteny.
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Table S3 Statistics for protein clusters representing marker genes for the Deltaproteobacterium

recovered from the 5 m sample. Colors indicate median % identity (dark green: >95, light green:

Marker gene

ribosomal protein L18

>90, yellow: >85, orange: >80, red: missing).
# of complete/all proteins

Median % identity (Low, High)

91.5 (86.9, 100.0)

ribosomal protein S12

92.2 (89.6, 100.0)

ribosomal protein S20 86.5 (83.5, 100.0)

ribosomal protein S4

7/9

93.2 (91.7, 100.0)

ribosomal protein S7

11/11

91.7 (87.8, 100.0)

ribosomal protein L5

22/25

93.3 (91.2, 100.0)

ribosomal protein L6P-L9E 12/19 91.1 (89.9, 100.0)

ribosomal protein L.23 15/15 90.5 (87.2, 100.0)

alanyl tRNA synthetase 6/17 91.2 (89.1, 99.5)

ribosomal protein L3 16/16 93.9 (91.5, 100.0)

ribosomal protein L.30 10/10 88.5 (87.1, 100.0)

Histidyl-tRNA synthetase

87.9 (84.7, 100.0)

ribosomal protein S13

92.9 (90.6, 100.0

ribosomal protein L15 9/10 89.0 (87.0, 100.0

aspartyl tRNA synthetase

9/9

92.4 (90.8, 99.8)

ribosomal protein S18

92.8 (91.1, 100.0

ribosomal protein L4 15/16 91.8 (89.9, 100.0)
ribosomal protein S8 17/20 88.6 (83.3, 100.0)
ribosomal protein S16 3/3 94.7 (93.6, 98.9)

ribosomal protein L2 11/16 94.1 (92.3, 100.0)

14



Table S4: Statistics for protein clusters representing marker genes for the CP OP8 phylotype
recovered from the 4 m sample. Color scheme is similar to Table S3.
Marker gene Complete/Total Median % identity (Low, High)

ribosomal protein L13 No hits found

ribosomal protein S7 7/10 94.9 (93.6, 100.0)
ribosomal protein L1 94.3 (93.9, 100.0)

ribosomal protein L.23 93.7 (91.8, 100.0)
ribosomal protein L10 87.6 (85.9, 99.4)

ribosomal protein L.30 12/12 93.0 (88.0, 100.0)

arginyl tRNA synthetase No hits found

ribosomal protein S9 No hits found

Phenylalanyl-tRNA synthetase alpha 93.9 (88.6, 100.0)
ribosomal protein L15 92.6 (84.5, 100.0)

ribosomal protein L17 14/15 92.1 (83.3, 100.0)
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Strain variation for the Deltaproteobacteria clade

Multiple sequence alignment of the 46 »pS3 genes from the Deltaproteobacteria clade
reveals several groups of identical and near identical genes (Fig. S11). Clustering of these
sequences using a 100 % threshold (DNA level) resulted with 28 clusters, 10 of which
consist of multiple members. Mapping of short reads reads to the 7pS3 genes recovered
from the long reads resulted with many reads that could not be mapped perfectly to any
of the genes, suggesting that even more closely related versions of this gene may be
present in the sample. Based on these results we estimate that Deltaproteobacteria clade
in the 5 m sample consists of several dozen different strains. While the total coverage of
the »pS3 genes from these strains by the Illumina short read data approaches 1,000x, we
did not find any rpS3 genes in the [llumina assembly for the 5 m sample that align to any
of the 46 rpS3 genes considered here at more than 85% identity. Therefore, we attribute
the lack of short read assembly for these genomes to high sequence heterogeneity that
cannot be handled by short read assemblers (Fig. S12 and Fig. S13). For comparison,
mapping of Illumina reads to the »pS3 gene of RBG-1 shows very few SNPs, none of
them appears in more than a few reads (Fig. S14). This suggests that RBG-1 is
represented by a single abundant strain, which enables assembly.

Figure S11: multiple sequence alignment of the 46 genes from the rpS3 cluster of the
Deltaproteobacteria clade (5 m sample). Genes used for mapping of Illumina short reads
in Fig. S12 and S13 are encircled in purple and orange, respectively.

16



Figure S12: read mapping to one of the rpS3 genes from the Deltaproteobacterié. clade
(encircled in purple in Fig. S11) reveals high degree of strain variation, indicated by
multiple SNPs (colored dots).
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Figure $13: read mapping to a different rpS3 genes from the Deltaproteobacte'ria"clad-e
(encircled in orange in Fig. S11) shows high number of SNPs as well (colored dots).
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Figure S14: reads from the 5 m sample that are mapped to the RBG-1 mpS3 gene are
consistent with the assembled genome, suggesting the presence of a single abundant
strain in the sample.

Recovery of 16S rRNA genes and tree construction

16S rRNA genes were recovered from the short- and long-read assemblies using
rnammer [12] with parameters —multi —S bac,arc. All genes longer than 800 bps were
clustered using uclust with 99% identity threshold with only one representative from each
cluster being used. The three best hits for each representative from the SILVA database
([13], release 115) were used for phylogenetic tree construction. In addition, we included
a set of 762 reference 16S sequences from sequenced genomes spanning different phyla.
Sequences were aligned using SSU-ALIGN [14] and manually inspected using Geneious.
Maximum likelihood trees were reconstructed using RAXML [15] with parameters -f a -
m GTRCAT -N 100.
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Using the rpS3 gene for community structure inference

To evaluate community structure we considered both the genes encoding the 16S SSU
rRNA and the ribosomal protein S3 (rpS3). The 16S SSU rRNA gene is a commonly
accepted phylogenetic marker gene [16], however assembly of this gene from
metagenomic data often fails due to its high conservation. We were able to identify 355,
495 and 289 16S rRNA genes from the 4, 5 and 6 m respectively with the majority of
genes being recovered from the long-read data. Clustering the genes using a 99% identity
cutoff (capturing roughly the same genus) revealed that roughly one quarter of the genes
recovered from the long-read sequences, in all samples, were clustered with at least one
other long-read 16S rRNA gene, compared to none of the genes recovered from short
reads (Fig. S15). The largest cluster in the 5 m sample, which represented the most
abundant genus in both the 5 and 6 m samples, did not have any representatives in the
short-read assemblies but contained 14 (5 m) and 9 (6 m) genes from the long-read
datasets. In fact, the majority of clusters with at least 3 members in all samples (23/32)
and the vast majority of clusters with at least 4 members (8/10) were represented by long-
read sequences only. Low clustering levels of the short-read sequences are not due to
coverage as many genes recovered from synthetic long-read had robust coverage from
mapped short reads. This highlights the fact that the 16S SSU rRNA gene is not a reliable
choice for inferring community structure when used directly from assembled
metagenomic short read data.

We also considered using the gene cassette of the 16 ribosomal proteins previously
proposed [17] and used by Castelle et al. [1] for the 5 m sample in this study. This set of
genes provides a reliable phylogenetic placement that is required for taxonomic
assignment of novel genomes. On the other hand, at least eight of the genes need to be
present on the same sequence in order for their sequence to be considered, which may be
too restrictive for genomes whose assembly is fragmented. As a result, the number of
organisms that can be detected using concatenated ribosomal proteins may be artificially
low (see below).

Here we evaluated community structure for the three samples using the ribosomal protein
S3 (RpS3), which is the product of a universal single-copy gene. This protein is less
reliable for high-resolution phylogeny than both the gene encoding the 16S SSU rRNA
and concatenated ribosomal proteins as it is shorter than either of those options, and thus
has fewer alignment positions to direct placement. Nevertheless this gene is divergent
enough to be recovered through metagenomic assembly (unlike the 16S gene) and can be
recovered from fragmented genomes as well (unlike the ribosomal proteins). The number
of rpS3 genes recovered from the short-read assembly was significantly higher than the
16S rRNA genes for all samples (Fig. S15). For comparison, the number of 7pS3 genes
recovered from synthetic long-reads was smaller than the number of 16S genes recovered
from the same data, both because the 16S gene is twice as long as the rpS3 gene and also
because the 16S gene sometimes appears in more than one copy per genome (Fig. S15).
This result suggests that many more species can be detected using the rpS3 gene
compared to the 16S SSU rRNA gene for short-read assemblies. The number of rpS3
genes that were recovered from the short-read assembly of the 5 m sample is roughly
twice the number of ribosomal protein sets reported by Castelle et al. However no mpS3
genes were assembled from the short-read data for most of the abundant species in all
samples, probably due to a high degree of strain variation.
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Figure S15: Pie charts: fraction of 16S SSU rRNA (top row) and rpS3 (bottom row)
genes in clusters with no other gene of the same technology (dark) or with at least one
other gene from the same technology (light) for the 4, 5 and 6 m samples. Column bars:
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Computing % identity thresholds for rpS3 for species- and genus-level clustering

In order to generate the rank abundance curves in Fig. 2, S5, and S6, we clustered rpS3
genes into species and genera groups using thresholds that were calculated according to
the following model. Our goal was to compute thresholds that will allow us to determine
whether a pair of 7pS3 genes represents two genomes from the same species, same genus
or something else, based on the % identity of their global alignment (DNA sequence). In
order to do this we developed the following model that enabled us to compute, for each
% 1identity, the fraction of Rps3 protein pairs that are expected to belong to the same
species and genus. Once these were calculated we chose thresholds for which the
majority of pairs aligned at this % identity or higher indeed belonged to the same
species/genus.

Theory: Two rpS3 genes sl and s2 that are x% similar can be in exactly one of two states
with respect to a taxonomic level tE{species, genus, family, order, class, phylum,
domain, other}:

* State A; — sl and s2 belong to the same taxonomic group at level t but not to any
taxonomic group at level lower than t (e.g. same genus but not the same species).
* State By - s1 and s2 belong to a taxonomic group at a level different than t

Given % identity x for the global alignment of s1 and s2 it is possible to determine the
probability that s1 and s2 are in state A; given the following information:

* p(x|Ay) — the probability that sl and s2 are x% similar for taxonomic level
t’E{species, genus, family, order, class, phylum, domain, other}
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*  p(Ar) — the probability that a random pair s1 and s2 will be in state Ay for taxonomic
level t’.

Both these probabilities may change between different communities and taxonomic
groups. In fact, it is practically impossible to compute either of them, however we
provide here rough estimations for both of them (see below).

In order to compute the probability p(Ax) we will estimate the fraction of pairs in state
A from all pairs of 7pS3 genes that are x% similar. If our sample consists of S cells (and
thus S copies of the ¥pS3 gene) then there are S*(S-1)/2 different pairs, of which

N(A¢)= p(Ar)*S*(S-1)/2
Are in state A¢, and
N*(Ae)= p(x|Ac)*N(Ar) = p(x|A¢)*p(Ar)*S*(S-1)/2

are both in state Ay and the % identity of their global alignment is x. The probability
p(A4x) can then be estimated through

P(AIX) = N*(Ac)/Z N¥(Ar) = [P(X|A)*p(A)*S*(S-1)/2)/[ Zp(x|Ac)*p(Ac)*S*(S-1)/2]
= p(xIA)*P(AY/2Z(P(x|Ar) *P(Ar))

Which is the probability we are looking for.

Computing p(x|4,). In order to compute these probabilities we used a set of 7pS3 genes
from 1,978 genomes downloaded from the NCBI website. Global alignments for the
genes were calculated using usearch (-allpairs_global program), and distributions of %
identity were calculated as follows:

For t in {species, genus, order, class, phylum} do
For taxonomic group o at level t do

Collect all % identities for all pairs of sequences sl, s2 € o
Find the median value and add it to the distribution of t

Find s with sum of % identities vs all other s’'€o is the highest

Remove all s’ € o except s.
End for
End for

The above procedure was designed to avoid biases that are related to the number of
sequenced genomes from each taxonomic group by taking one representative from each
group.

Our computations showed that no % identity for any pair from t° € {order, class,
phylum} was high enough to impact the computation of thresholds for species and genus.
Consequently we discarded these taxonomic levels as well as the domain level from
further analysis.

Calculating p(A,). Obtaining these probabilities is practically impossible for various
reasons: not only the number of cells from each taxonomic group is unknown but even
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the assignment to taxonomic groups is not available yet for most of the organisms in our
communities. Note also that p(Ay) may be different for different environments. Here we
estimated p(A¢) using the 16S sequences extracted from the long-read sequences,
assuming that these were sampled randomly from the sample. We clustered the 16S
sequences based on the following thresholds:

* Species: 99% [18]
*  Genus: 94% [19,20]
*  Family: 90% [19,20]

These values are in no way exact but are expected to roughly divide our 16S rRNA SSU
sequences into phylotypes at these levels. Sequences were aligned using usearch. Next,
the different probabilities were estimated based on 100,000 random samplings of
sequence pairs. Results are summarized in Table S5.

Table S5: frequency of 16S SSU rRNA gene pairs in the 3 depths. Frequency was computed
through simulations.

4 m: # (%) 5 m: # (%) 6 m: # (%)
Species 829 (0.83) 824 (0.82) 940 (0.94)
Genus 692 (0.69) 544 (0.54) 1,205 (1.21)
Family 833 (0.83) 552 (0.55) 1121 (1.12)
Other 97,646 (97.65) 98,080 (98.08) 96,734 (96.73)

Calculating thresholds. Using the above we calculated the expected fraction of pS3 gene
pairs that belong to the same species and genus for the 3 samples (Table S6). Based on
these calculations we conclude that thresholds of 99% for species and 90% for genus
levels provide a reasonable level of confidence (> ~80%) in the relatedness of pairs of
rpS3 genes.
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Table S6: fraction of 7pS3 gene pairs that align at % identity and share the same species (genus)
for each sample. For example: 95.1% of the rpS3 pairs that align at 100 % identity in the 4 m
sample share the same species while 100% of these pairs share the same genus. This means that
4.9% of rps3 genes that align at 100% identity belong to different species under the same genus.
From this table we conclude that the majority (~70% or more) of rps3 genes that align at 99% or
more belong to the same species and therefore use this number as a threshold for species-based
clustering. Similarly, >70% of pairs that align at 88% identity or more belong to the same genus.

4 m S5m 6 m

% identity | Species Genus Species Genus Species Genus
98.0 50.5 100.0 56.3 100.0 39.7 100.0
97.0 61.2 91.3 67.4 93.5 51.8 91.2
96.0 38.4 100.0 44.1 100.0 28.7 100.0
95.0 0.0 100.0 0.0 100.0 0.0 100.0
94.0 22.8 79.7 28.0 83.3 16.9 82.1
93.0 0.0 100.0 0.0 100.0 0.0 100.0
92.0 27.7 100.0 32.6 100.0 19.8 100.0
91.0 11.2 100.0 13.8 100.0 7.6 100.0
90.0 0.0 83.6 0.0 85.7 0.0 86.9
89.0 0.0 70.6 0.0 73.9 0.0 75.7
88.0 0.0 70.6 0.0 73.9 0.0 75.7
87.0 0.0 43.9 0.0 48.1 0.0 50.4
86.0 0.0 61.7 0.0 65.6 0.0 67.7
85.0 0.0 53.8 0.0 57.9 0.0 60.2
84.0 18.6 64.9 23.6 70.1 14.1 68.4
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Estimating a lower bound for the number of species in the samples

Our sequencing efforts were far from being exhaustive, as indicated by the relatively low
rates of both long and short reads going into assemblies. rpS3-based rarefaction curves
for the three samples (Fig. S16) provided showed that our sequencing efforts are indeed
far from being sufficient. In order to get a general sense of how complex our samples are
we tried to put a lower bound on the number of most abundant species which we were
able to sample. In other words, we were trying to answer the following question:
assuming that all species in the sample are sorted by their rank (as in a rank abundance
curve), what would be the rank of the least abundant species we were able to sample?
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Figure S16: rarefaction curves for the three samples based on rpS3 genes found on
synthetic long reads only. For the 6 m sample each species was detected exactly once.
[llumina assembled rpS3 genes were not used because they represent only the fraction of
community that is abundant enough.

To answer this question we ‘“divided” the population into two fractions based on a

coverage threshold and estimated a lower bound on the number of species in each. The

threshold that was chosen is 2x because this is about the coverage in which short reads
start to assemble. We estimated a lower bound on the number of species as follows:

1. Count the number of species with coverage > 2x from both the short-read assemblies
and synthetic long reads, based on pS3 clustering (we will denote this number N™2).
We assume that for the > 2x the combination of short- and long-read datasets provide
a good approximation for community structure because the short-read data is
expected to be assembled for species represented by single strains and the long-read
data is expected to uncover multi-strain species (at least the abundant ones). In any
case the number computed here is not expected to exceed the true number.

The following steps are taken to determine N=*, an upper bound on the number of species
with coverage < 2x.
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2. Summarize the coverage for species with coverage > 2x based on the coverage of
rpS3 genes from both the short-read assemblies and synthetic long-reads.

3. Use the fraction of short reads that mapped to single copy genes from synthetic long-
reads with coverage > 2x as an estimator for the portion of the community occupied
by these organisms. (complementary frequencies to the gray bars in Fig. S18). Both
long and short reads are assumed to be sampled randomly with equal probability
from the entire community regardless of genome abundance and could therefore be
used for this purpose (unlike the assembled short-read sequences that represent only
genomes with sufficient coverage).

4. Compute the relative abundance of the least abundant species with > 2x coverage by
dividing the coverage of the least abundant species with coverage > 2x by the sum of
coverages for all species with coverage > 2x (computed in (2)) and normalizing this
value by the share of these species in the community (from (3)).

5. The relative abundance of any of the species with coverage < 2x will be smaller than
the relative abundance computed in (4). Dividing the relative frequency of species
with < 2x by the relative abundance of the least abundant species from the > 2x group
will therefore give us a lower bound on the number of species in this fraction. We
will denote this number by N=**.

6. The total number of species in the “pool” of species that were sampled is given by
N= N>2x + NSZX.

The calculated lower bounds on the number of species in the 3 samples were around 900
for the 4 and 6 m samples and around 3,000 for the 5 m samples. We estimate that the
true numbers are significantly higher because dozens of species with less that 2x
coverage were detected in each of the samples, suggesting that the lowest relative
abundance in the >2x fraction is in fact a very strict estimator.

Internal controls on contamination

In order to identify potential contamination in our datasets we used two different
approaches. First, we aligned (using BLAST) the long reads against an extended version
of the uniref90 database (refer to Fig. S17 for a summary of the taxonomic profiling for
the three samples). The extended version of uniref90 includes also other genomes
recovered from Rifle. Using this analysis it is possible to identify DNA that is clearly
foreign to the samples. Second, we manually checked the data using the ggKBase
platform and other tools in order to search for suspicious DNA. This approach proved to
be efficient in the past in identifying contaminations. For the current study we identified a
few dozen reads (out of several tens of thousands) that originated from a cloning vector,
as well as a few dozens identical long reads that seemed to be an artifact of the
sequencing process. The vast majority of the data, however, appears to be reliable
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Figure S17: Distribution of domains and phyla of best hits for predicted proteins on
assembled and unassembled synthetic long-reads.
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Table S7: Statistics of 51 marker gene families in the 4 m sample. Expected, observed columns:
expected (based on 37.9 % of bps) and observed number of proteins on < 2x coverage reads.

Total | Expected | Observed Observed freq | p-value
Total 5603 1939 1751 0.31 1.0000
Histidyl-tRNA synthetase 136 51.5 47 0.35 0.7615
Phenylalanyl-tRNA synthetase alpha 85 32.2 36 0.42 0.1688
Preprotein translocase subunit SecY 134 50.7 46 0.34 0.7764
Valyl-tRNA synthetase 120 454 47 0.39 0.3496
alanyl tRNA synthetase 106 40.1 43 0.41 0.2514
arginyl tRNA synthetase 70 26.5 36 0.51 0.0077
aspartyl tRNA synthetase 100 37.9 37 0.37 0.5295
gyrA 115 43.5 42 0.37 0.5796
leucyl-tRNA synthetase 106 40.1 37 0.35 0.7017
recA 129 48.8 46 0.36 0.6656
ribosomal protein L1 100 37.9 22 0.22 0.9995
ribosomal protein L.10 89 33.7 24 0.27 0.9799
ribosomal protein L11 119 45.1 30 0.25 0.9977
ribosomal protein L.13 113 42.8 35 0.31 0.9237
ribosomal protein L.14 117 44.3 35 0.30 0.9557
ribosomal protein L15 119 45.1 32 0.27 0.9924
ribosomal protein L16-L10E 106 40.1 31 0.29 0.9605
ribosomal protein L.17 116 43.9 41 0.35 0.6791
ribosomal protein .18 117 44.3 35 0.30 0.9557
ribosomal protein L.19 87 32.9 36 0.41 0.2169
ribosomal protein L2 104 39.4 33 0.32 0.8849
ribosomal protein L.20 104 39.4 39 0.38 0.4900
ribosomal protein L21 97 36.7 28 0.29 0.9600
ribosomal protein 1.22 99 37.5 31 0.31 0.8949
ribosomal protein L.23 113 42.8 32 0.28 0.9789
ribosomal protein 1.24 107 40.5 27 0.25 0.9961
ribosomal protein L.27 99 37.5 26 0.26 0.9901
ribosomal protein L.29 109 41.3 29 0.27 0.9913
ribosomal protein L3 111 42 34 0.31 0.9322
ribosomal protein L.30 91 34.4 23 0.25 0.9924
ribosomal protein L4 107 40.5 31 0.29 0.9661
ribosomal protein LS 105 39.7 31 0.30 0.9541
ribosomal protein L6P-LIE 125 47.3 36 0.29 0.9790
ribosomal protein S10 116 43.9 29 0.25 0.9977
ribosomal protein S11 131 49.6 36 0.27 0.9920
ribosomal protein S12 120 45.4 32 0.27 0.9936
ribosomal protein S13 139 52.6 40 0.29 0.9846
ribosomal protein S15 108 40.9 38 0.35 0.6829
ribosomal protein S16 87 32.9 26 0.30 0.9253
ribosomal protein S17 122 46.2 36 0.30 0.9670
ribosomal protein S18 90 34.1 26 0.29 0.9528
ribosomal protein S19 101 38.2 33 0.33 0.8364
ribosomal protein S2 91 34.4 27 0.30 0.9362
ribosomal protein S20 92 34.8 33 0.36 0.6125
ribosomal protein S3 97 36.7 30 0.31 0.9063
ribosomal protein S4 137 51.9 46 0.34 0.8301
ribosomal protein S5 137 51.9 40 0.29 0.9792
ribosomal protein S6 105 39.7 32 0.30 0.9304
ribosomal protein S7 139 52.6 41 0.29 0.9761
ribosomal protein S8 118 44.7 35 0.30 0.9616
ribosomal protein S9 118 44.7 33 0.28 0.9848
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Table S8: Statistics of 51 marker gene families in the 5 m sample. Expected, observed columns:
expected (based on 34.6 % of bps) and observed number of proteins on < 2x coverage reads.

Total | Expected | Observed Observed freq | p-value
Total 5852 2025 1827 0.31 1.0000
Histidyl-tRNA synthetase 134 46.3 42 0.31 0.7570
Phenylalanyl-tRNA synthetase alpha 118 40.8 40 0.34 0.5213
Preprotein translocase subunit SecY 107 37 29 0.27 0.9389
Valyl-tRNA synthetase 151 52.2 49 0.32 0.6782
alanyl tRNA synthetase 103 35.6 37 0.36 0.3466
arginyl tRNA synthetase 92 31.8 30 0.33 0.6108
aspartyl tRNA synthetase 105 36.3 39 0.37 0.2559
gyrA 135 46.7 51 0.38 0.1924
leucyl-tRNA synthetase 103 35.6 35 0.34 0.5071
recA 118 40.8 45 0.38 0.1825
ribosomal protein L1 91 31.4 28 0.31 0.7425
ribosomal protein L.10 127 43.9 44 0.35 0.4548
ribosomal protein L11 127 43.9 50 0.39 0.1114
ribosomal protein L.13 83 28.7 24 0.29 0.8347
ribosomal protein L.14 149 51.5 46 0.31 0.8073
ribosomal protein L15 105 36.3 33 0.31 0.7168
ribosomal protein L16-L10E 139 48 44 0.32 0.7373
ribosomal protein L.17 57 19.7 21 0.37 0.3066
ribosomal protein L.18 113 39 36 0.32 0.6936
ribosomal protein L.19 84 29 37 0.44 0.0281
ribosomal protein L2 142 49.1 40 0.28 0.9378
ribosomal protein L.20 115 39.7 34 0.30 0.8504
ribosomal protein L21 95 32.8 37 0.39 0.1589
ribosomal protein 1.22 111 38.4 28 0.25 0.9780
ribosomal protein L.23 160 55.3 42 0.26 0.9851
ribosomal protein 1.24 139 48 44 0.32 0.7373
ribosomal protein L.27 87 30.1 37 0.43 0.0494
ribosomal protein L.29 108 37.3 22 0.20 0.9991
ribosomal protein L3 142 49.1 39 0.27 0.9572
ribosomal protein L.30 67 23.1 16 0.24 0.9598
ribosomal protein L4 138 47.7 36 0.26 0.9797
ribosomal protein LS 134 46.3 41 0.31 0.8109
ribosomal protein L6P-LIE 136 47 40 0.29 0.8822
ribosomal protein S10 163 56.3 46 0.28 0.9501
ribosomal protein S11 89 30.7 25 0.28 0.8820
ribosomal protein S12 143 49 .4 39 0.27 0.9622
ribosomal protein S13 110 38 31 0.28 0.9072
ribosomal protein S15 94 32.5 31 0.33 0.5836
ribosomal protein S16 83 28.7 30 0.36 0.3370
ribosomal protein S17 146 50.5 42 0.29 0.9199
ribosomal protein S18 68 23.5 21 0.31 0.6938
ribosomal protein S19 131 45.3 35 0.27 0.9664
ribosomal protein S2 111 38.4 39 0.35 0.4099
ribosomal protein S20 88 30.4 30 0.34 0.4907
ribosomal protein S3 133 46 41 0.31 0.7940
ribosomal protein S4 94 32.5 25 0.27 0.9383
ribosomal protein S5 133 46 39 0.29 0.8835
ribosomal protein S6 61 21.1 25 0.41 0.1193
ribosomal protein S7 154 53.2 41 0.27 0.9787
ribosomal protein S8 142 49.1 43 0.30 0.8398
ribosomal protein S9 94 32.5 28 0.30 0.8078

29




Table S9: Statistics of 51 marker gene families in the 6 m sample. Expected, observed columns:
expected (based on 59.5 % of bps) and observed number of proteins on <2x coverage reads.

Total | Expected | Observed Observed freq | p-value
Total 5125 3049.375 2486 0.49 1.0000
Histidyl-tRNA synthetase 111 66.2 61 0.55 0.8106
Phenylalanyl-tRNA synthetase alpha 100 59.7 57 0.57 0.6600
Preprotein translocase subunit SecY 103 61.4 52 0.50 0.9602
Valyl-tRNA synthetase 108 64.4 63 0.58 0.5616
alanyl tRNA synthetase 91 54.3 49 0.54 0.8394
arginyl tRNA synthetase 75 44.7 44 0.59 0.5147
aspartyl tRNA synthetase 101 60.2 58 0.57 0.6289
gyrA 123 73.4 73 0.59 0.4793
leucyl-tRNA synthetase 98 58.5 49 0.50 0.9642
recA 125 74.6 65 0.52 0.9463
ribosomal protein L1 87 51.9 38 0.44 0.9979
ribosomal protein L.10 109 65 49 0.45 0.9985
ribosomal protein L11 116 69.2 54 0.47 0.9967
ribosomal protein L.13 100 59.7 58 0.58 0.5831
ribosomal protein L.14 108 64.4 43 0.40 1.0000
ribosomal protein L15 98 58.5 48 0.49 0.9775
ribosomal protein L16-L10E 103 61.4 41 0.40 1.0000
ribosomal protein L.17 50 29.8 31 0.62 0.3097
ribosomal protein .18 96 57.3 42 0.44 0.9987
ribosomal protein L.19 108 64.4 52 0.48 0.9889
ribosomal protein L2 116 69.2 46 0.40 1.0000
ribosomal protein L.20 101 60.2 61 0.60 0.3903
ribosomal protein L21 71 42.3 38 0.54 0.8177
ribosomal protein 1.22 111 66.2 40 0.36 1.0000
ribosomal protein L.23 125 74.6 49 0.39 1.0000
ribosomal protein 1.24 98 58.5 39 0.40 0.9999
ribosomal protein L.27 71 42.3 40 0.56 0.6656
ribosomal protein L.29 93 55.5 37 0.40 0.9999
ribosomal protein L3 108 64.4 47 0.44 0.9994
ribosomal protein L.30 82 48.9 36 0.44 0.9969
ribosomal protein L4 115 68.6 47 0.41 1.0000
ribosomal protein LS 101 60.2 42 0.42 0.9998
ribosomal protein L6P-LIE 110 65.6 49 0.45 0.9989
ribosomal protein S10 108 64.4 44 0.41 0.9999
ribosomal protein S11 96 57.3 52 0.54 0.8317
ribosomal protein S12 94 56.1 51 0.54 0.8242
ribosomal protein S13 99 59.1 51 0.52 0.9344
ribosomal protein S15 80 47.7 48 0.60 0.4216
ribosomal protein S16 79 47.1 38 0.48 0.9735
ribosomal protein S17 115 68.6 45 0.39 1.0000
ribosomal protein S18 76 45.3 45 0.59 0.4769
ribosomal protein S19 114 68 44 0.39 1.0000
ribosomal protein S2 102 60.8 58 0.57 0.6724
ribosomal protein S20 92 54.9 47 0.51 0.9371
ribosomal protein S3 108 64.4 39 0.36 1.0000
ribosomal protein S4 109 65 64 0.59 0.5300
ribosomal protein S5 114 68 53 0.46 0.9966
ribosomal protein S6 96 57.3 49 0.51 0.9426
ribosomal protein S7 118 70.4 55 0.47 0.9969
ribosomal protein S8 108 64.4 45 0.42 0.9999
ribosomal protein S9 105 62.6 60 0.57 0.6546
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Figure S18: fraction of single copy genes (gray) and base-pairs on synthetic long-reads >
5 kbp with <2x coverage. Fraction of single copy genes can be used as a proxy for the
fraction of cells represented in the two sets.
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Table S10: protein MCL clusters significantly more abundant on synthetic long-reads with <2x coverage, 4
m sample. Bonferroni correction was applied to adjust the 0.05 p-value threshold (adjusted p-value is 1.7¢-

5).
Family Annotation Total | Expected | Observed | Observed | p-value
freq
1248 | Prepilin-type N-terminal
cleavage/methylation domain-
containing protein 40 15 39 0.98 0
39 Oxidoreductase 245 93 147 0.60 8.6E-12
1982 | Hypothetical 26 10 25 0.96 1.1E-11
1463 | Hypothetical 34 13 30 0.88 1.3E-10
98 Lacl family transcriptional regulator 175 66 105 0.60 1.1E-09
88 Uroporphyrinogen-III decarboxylase 163 62 98 0.60 3.0E-09
Aminotransferase
DegT/DnrJ/EryC1/StrS
18 aminotransferase 404 153 209 0.52 6.3E-09
Tetratricopeptide repeat protein (a
structural motif, does not say much
745 about the function) 62 24 43 0.69 1.3E-07
ABC transporter substrate binding
2509 | protein 23 9 20 0.87 1.5E-07
1101 | Glycoside hydrolase family 4 46 17 33 0.72 7.6E-07
43 ABC transporter 240 91 126 0.53 1.6E-06
37 Glycosyl transferase family 1 256 97 133 0.52 1.9E-06
2622 | Transposase 20 8 17 0.85 2.0E-06
1427 | Sulfatase 36 14 26 0.72 6.7E-06
654 Glycosyl transferase group 1 68 26 43 0.63 6.9E-06
90 Oxidoreductase 170 65 91 0.54 1.3E-05

Table S11: protein MCL clusters significantly more abundant on synthetic long-reads with < 2x coverage,
5 m sample. Bonferroni correction was applied to adjust the 0.05 p-value (adjusted p-value is 1.8e-5).

Family Annotation Total | Expected | Observed | Observed | p-value
freq
2105 | TonB-dependent receptor 24 9 21 0.88 8.9E-09
625 Hypothetical 67 24 44 0.66 5.7E-08
672 Mandelate racemase 64 23 41 0.64 4.2E-07
2555 | Von Willebrand factor type A 20 7 17 0.85 4.3E-07
375 Oxidoredctase 88 31 52 0.59 8.3E-07
1861 | Hypothetical 29 10 22 0.76 1.1E-06
1563 | N-acetyltransferase GCN5 30 11 22 0.73 3.1E-06
1175 | Hypothetical/membrane protein 40 14 27 0.68 5.4E-06
Coenzyme F390 synthetase/ Capsular
776 polysaccharide biosynthesis protein 59 20 36 0.61 9.9E-06
399 Oxidoredctase 87 30 49 0.56 1.1E-05
1249 | Uncharacterized 39 14 26 0.67 1.1E-05
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Table S12: protein MCL clusters significantly more abundant on synthetic long-reads with < 2x coverage,
6 m sample. Bonferroni correction was applied to adjust the 0.05 p-value (adjusted p-value is 2.1e-5).

Family Annotation Total | Expected | Observed | Observed | p-value
freq
866 Permease 49 29 49 1.00 0
2157 | ABC-type Fe3+ transport system 21 13 21 1.00 0
2252 | Uncharacterized 20 12 20 1.00 0
1724 | Outer membrane receptor 26 15 26 1.00 0
RNA polymerase, sigma subunit, ECF
1796 | family 25 15 25 1.00 0
101 Oxidoreductase 128 76 114 0.89 2.5E-14
911 Sulfatase 47 28 45 0.96 8.3E-10
130 Oxidoreductase 117 70 98 0.84 4.0E-09
383 Mandelate racemase 81 48 71 0.88 5.4E-09
1268 | Sulfatase 36 21 35 0.97 7.6E-09
204 MmgE/PrpD family protein 98 58 83 0.85 1.6E-08
Prepilin-type N-terminal
1386 | Cleavage/methylation domain 34 20 33 0.97 2.2E-08
1121 | Lyase 40 24.1 37 0.93 6.0E-07
1026 | Oxidoreductase 42 25.3 38 0.90 2.2E-06
601 Phage integrase 61 36.8 52 0.85 5.3E-06
54 Glycosyl transferase family 1 178 107.3 134 0.75 8.9E-06
1159 | PadR family transcriptional regulator 39 23.5 35 0.90 8.0E-06
Transporter related binding/receprot
21 protein 293 175 210 0.72 5.5E-06
2 Reductase 1096 653 722 0.66 6.1E-06
1943 | Pyrrolo-quinoline quinone 23 13.9 22 0.96 8.9E-06
1668 | Transporter 27 16 25 0.93 1.6E-05
137 | Asparagine synthetase 115 69 89 0.77 1.6E-05
Table S13: protein families with more than 1,000 members, 4 m sample.
Family Annotation Total | Expected | Observed | Observed | p-value
freq
1 ABC transporter ATP-binding protein | 1811 697.2 | 503 0.27 1
2 Dehydrogenase 1327 510.9 | 481 0.36 0.95
3 ABC transporter ATP-binding protein | 1073 413.1 | 380 0.35 0.98
Table S14: protein families with more than 1,000 members, 5 m sample.
Family Annotation Total | Expected | Observed | Observed | p-value
freq
1 ABC transporter ATP-binding protein | 1580 | 548 427 0.27 1.0000
2 Dehydrogenase 1186 | 411 456 0.38 0.0026
3 ABC transporter ATP-binding protein | 1098 | 381 321 0.29 0.9999
Table S15: protein families with more than 1,000 members, 6 m sample.
Family Annotation Total | Expected | Observed | Observed | p-value
freq
1 ABC transporter ATP-binding protein | 1167 | 695 601 0.51 1.0000
2 Dehydrogenase 1096 | 653 722 0.66 6.1E-06
3 ABC transporter ATP-binding protein | 1049 | 625 581 0.55 0.9962
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Table S16: Enriched KEGG-terms in synthetic long-reads with < 2x coverage, 4 m sample. Bonferroni
correction was applied to adjust the 0.05 p-value threshold (adjusted p-value is 3.8e-5).

KEGG- Annotation Total | Expected | Observed | Observed | p-value
term freq

K07406 | alpha-galactosidase [EC:3.2.1.22] 49 18.5 | 36 0.73 9.6E-08
uroporphyrinogen decarboxylase

K01599 | [EC:4.1.1.37] 345 130.7 | 177 0.51 1.6E-07
multiple sugar transport system

K02025 | permease protein 251 95.1 | 133 0.52 4.6E-07
flagellar basal-body rod protein

K02392 | FlgG 29 10.9 | 22 0.75 6.5E-06
multiple sugar transport system

K02026 | permease protein 259 98.1 | 131 0.5 1.3E-05

Table S17: enriched KEGG-terms in synthetic long-reads with < 2x coverage, 5 m sample. Bonferroni
correction was applied to adjust the 0.05 p-value threshold (adjusted p-value is 3.7¢-5).

KEGG- Annotation Total | Expected | Observed | Observed | p-value
term freq

K07406 | alpha-galactosidase [EC:3.2.1.22] 49 18.5 | 36 0.73 9.6E-08
uroporphyrinogen decarboxylase

K01599 | [EC:4.1.1.37] 345 130.7 | 177 0.51 1.6E-07
multiple sugar transport system

K02025 | permease protein 251 95.1 | 133 0.52 4.6E-07
flagellar basal-body rod protein

K02392 | FlgG 29 10.9 | 22 0.75 6.5E-06
multiple sugar transport system

K02026 | permease protein 259 98.1 | 131 0.5 1.3E-05

Table S18: enriched KEGG-terms in synthetic long-reads with < 2x coverage, 6 m sample. Bonferroni
correction was applied to adjust the 0.05 p-value threshold (adjusted p-value is 3.8e-5).

KEGG- Annotation Total | Expected | Observed | Observed | p-value
term freq

trimethylamine-N-oxide reductase

K07812 | (cytochrome c) 2 [EC:1.7.2.3] 47 279 143 0.91 1.4E-07
asparagine synthase (glutamine-

KO01953 | hydrolysing) [EC:6.3.5.4] 166 98.7 | 126 0.75 2.9E-06
D-glycero-alpha-D-manno-heptose-

K07031 | 7-phosphate kinase [EC:2.7.1.168] 48 28.5 | 41 0.85 2.3E-05
multiple sugar transport system

K02026 | permease protein 264 157 | 188 0.71 2.9E-05
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Figure S19: Total number of proteins in glycosyl hydrolase families of different sizes.
Families with representatives in low (< 2x coverage), high (> 2x coverage) and both
scaffolds are reported. Number of families that are unique to low coverage scaffolds
(418, 409 and 637 for the 4, 5 and 6 m samples, respectively) was higher than the number
of families unique to high coverage scaffolds (348, 316, 141) and the number of families
common to both fractions (198, 140, 153); however most of the families that are unique
to one of the coverage fractions are singletons.
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Table S19: list of terms used for identifying glycosyl hydrolases in the ggKBase platform (refer to
http://ggkbase.berkeley.edu/custom_lists/5572-Glycosyl hydrolase for the implementation of the list

in ggKBase).

cellobiosidase Dextranase acetylmuramidase

glycosidase Polygalacturonase isomaltosidase

glycosyl lysozyme isomaltotriosidase

hydrolase sialidase maltohexaosidase

endoglucanase fructofuranosidase mannobiosidase

glycoside hydrolase trehalase lactase

cellulase hyaluronoglucosaminidase endogalactosaminidase

chitinase arabinosidase maltotriohydrolase

2.4.1.18 pullulanase EC:3.2.1

glycogen debranching enzyme glucosylceramidase polymannuronate hydrolase

galacturonase galactosylceramidase octulosonidase

mannosidase acetylgalactosaminidase glucuronosidase

arabinase acetylglucosaminidase chitosanase

glucuronidase acetylhexosaminidase maltohydrolase

xyloglucanase cyclomaltodextrinase difructose-anhydride synthase

xyloglycosyltransferase maltotetraohydrolase biosidase

mannanase mycodextranase cellobiohydrolase

xylanase glycosylceramidase alpha-neoagaro-oligosaccharide
hydrolase

xylosidase levanbiohydrolase glucosaminidase

arabinofuranosidase levanase GlcNAcase

galactanase quercitrinase mannosylglycerate hydrolase

galactosidase galacturonidase rhamnogalacturonan hydrolase

glucoronidase licheninase rhamnogalacturonyl hydrolase

rhamnosidase isoamylase galacturonohydrolase

fucosidase iduronidase rhamnohydrolase

amylase fructosidase xylohydrolase

glucosidase agarase porphyranase

glucanase galacturonosidase glucuronyl hydrolase

Inulinase carrageenase chondroitin disaccharide
hydrolase
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