
Supplementary Notes

1 GBR optimization

In this section we derive an e�cient alternating optimization algorithm for the GBR objective
(Methods). We first describe how to compute argmaxq J

0
GBR(✓, q), then describe how this algorithm

can be used in combination with an EM-like algorithm for learning ✓.
GBR can be employed either as a regularizer for training the parameters or for inference directly.

In the training case, an EM-like algorithm described is used to compute and output ✓, which can
then be used for inference either with or without GBR. In the inference case, q is computed and
output as the posterior marginals. In our genomics experiments we trained our models without
GBR and used GBR for inference only.

Optimizing q

The GBR regularizer R0
GBR(✓, q) is convex in q; therefore, we could compute q using any convex

optimization algorithm. However, general-purpose convex optimization algorithm do not scale to
problems with millions or billions of variables such as those present in genomics. Therefore, we instead
propose a novel alternating maximization strategy for performing this optimization more e�ciently.

To enable e�cient inference, we reformulate J 0
GBR(✓, q) by introducing a new variable rM (XH).

Like q, rM is a distribution over XH , but we require that rM be factorizable as a product of
marginals—that is rM (xH) =

Q
h r

M
h (xh). We define the graph regularizer over rM and add an

additional term �R1D(q(XH)krM (XH)), which encourages q and rM to be similar. As we will show
below, restricting rM in this way means that the reformulated objective is a lower bound on the
original rather than being equivalent. We will maximize this lower bound as an approximation to
maximizing the original. The reformulated regularizer is

PR0
GBR-R1(q, r

M ) , ��R1D(q(XH)krM (XH)) + fR1(r
M ) (1)

fR1(r
M ) , ��G

X

(u,v)2FGBR

w(u, v)D(rM (Xu)krM (Xv)), (2)

and J 0
GBR-R1(✓, q, r

M ) and R0
GBR-R1(✓, q, r

M ) are defined according to Equations (2) and (4) respec-
tively using the corresponding regularizers. That is,

maximize✓,q,rM J 0
GBR-R1(✓, q, r

M ) , L(✓) +R0
GBR-R1(✓, q, r

M ), (3)

R0
GBR-R1(✓, q, r

M ) , �D(q(XH)kp✓(XH |x̄O)) + PR0
GBR-R1(q, r

M ). (4)

First, we show that rM ⇡ q for large values of �R1, so optimizing the reformulated regularizer is
equivalent to optimizing a lower bound on the original.

Lemma 1. For distributions p 2 P and q 2 Q where P \Q 6= ; and a continuous function J(p, q),
let J̃(p, q;�) = J(p, q)� �D(pkq), and p⇤�, q

⇤
� 2 argmaxp2P,q2Q J̃(p, q;�). Then the following hold:

lim
�!1

D(p⇤�kq⇤�) = 0, (5)

lim
�!1

kp⇤� � q⇤�k` = 0 for any `, where k · k` is the `-norm, and (6)

lim
�!1

max
p2P,q2Q

J̃(p, q;�)  max
p2P

J(p, p). (7)
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Proof. Consider any ✏ > 0 and any p0 2 P, q0 2 Q such thatD(p0kq0) > ✏. Let p̂ 2 argmaxp2P\Q J(p, p)
and consider any �0 � (1/✏)(J(p0, q0)� J(p̂, p̂)).

J̃(p0, q0;�0) = J(p0, q0)� �0D(p0kq0) (8)

< J(p0, q0)� �0✏ (9)

 J(p0, q0)� �✏���(1/✏)(J(p0kq0)� J(p̂kp̂)) (10)

= J(p̂, p̂) (11)

Therefore, D(p⇤kq⇤)  ✏ when � � �0. This proves Proposition (5).
We have that

D(pkq) � 1

2
kp� qk21 �

1

2
kp� qk2` (12)

(13)

for any `-norm. The first inequality is Pinsker’s inequality and the second follows from the rela-
tionship of `-norms. Proposition (6) follows from this combined with Proposition (5).

Due to Proposition (6) and the continuity of J(p, q),

lim
�!1

max
p2P,q2Q

J̃(p, q;�)� max
p2P\Q

J(p, p) = 0. (14)

Proposition (7) follows from this and the fact that P \Q ✓ P .

Therefore, for su�ciently large �R1, optimizing Equation (2) is equivalent to optimizing a lower
bound on Equation (5) of the main text. This form allows us to compute q e�ciently, which is
shown as follows.

Theorem 2. Define q⇤(XH) , argmaxq J
0
GBR-R1(✓, q, r

M ). Then,

q⇤(xH) =
p✓(xH , x̄O)1/(1+�R1)

Q
h2H rMh (xh)�R1/(1+�R1)

P
x0
H
p✓(x0H , x̄O)1/(1+�R1)

Q
h2H rMh (x0h)

�R1/(1+�R1)
. (15)

Proof. For ease of notation, we group all terms that do not depend on q into one function K2(r).
Since we must respect the sum-to-one property of q, we form the Lagrangian by adding the term
�2(1�

P
xH

q(xH))

L2(q,�2) = �D(q(XH)kp✓(XH |XO))� �R1D(q(XH)krM (XH))� �2(1�
X

xH

q(xH)) +K2(r)

(16)

=
X

xH

q(xH) log
p✓(xH |x̄O)rM (xH)�R1

q(xH)1+�R1
� �2(1�

X

xH

q(xH)) +K2(r) (17)

=
X

xH

q(xH) log
p✓(xH , x̄O)rM (xH)�R1

q(xH)1+�R1
� log p✓(x̄O)� �2(1�

X

xH

q(xH)) +K2(r)

(18)

0 =
@L

@q(xH)
= � log p✓(xH , x̄O)r

M (xH)�R1 + log q(xH)1+�R1 + 1 + �R1 � �2 (19)

=) q(xH) / p✓(xH , x̄O)
1

1+�R1 rM (xH)
�R1

1+�R1 (20)
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Critically, because rM is factorizable such that each factor involves just one variable Xh, q⇤(XH)
obeys the same factorization properties as the unregularized model p✓(XH , x̄O). For example, if
the original model was an HMM, q still factors as a chain. Therefore, the normalization constant
can be computed using any algorithm for exact or approximate probabilistic inference on factorized
models, such as belief propagation, with similar computational cost as the unregularized model.

Optimizing rM

Despite the last reformulation, the objective still does not admit closed-form updates for rM .
Therefore, we again reformulate PR0

GBR-R1(✓, q, r
M ) by adding a new variable sM , where sM is

also a distribution over XH restricted to be factorizable as a product of marginals. As before,
we add a term �R2D(sM (XH)krM (XH)), which encourages sM ⇡ rM . We define the graph
regularizer KL divergence terms to have sM on the left and rM on the right—that is, in the form
D(sMu (Xu)krMv (Xv))—which will enable e�cient optimization for both variables.

PR0
GBR-R2(q, r

M , sM ) , ��R1D(q(XH)krM (XH)) + max
sM

fR2(r
M , sM ) (21)

fR2(r
M , sM ) , ��R2D(sM (XH)krM (XH))� �G

X

(u,v)2FGBR

w(u, v)D(sMu (Xu)krMv (Xv)),

and J 0
GBR-R2(✓, q, r

M , sM ) and R0
GBR-R2(✓, q, r

M , sM ) are defined according to Equations (2) and (4)
respectively using the corresponding regularizers. That is,

maximize✓,q,rM ,sM J 0
GBR-R2(✓, q, r

M , sM ) , L(✓) +R0
GBR-R2(✓, q, r

M , sM ), (22)

R0
GBR-R1(✓, q, r

M , sM ) , �D(q(XH)kp✓(XH |x̄O)) + PRGBR-R2(q, r
M , sM ).

(23)

By Lemma 1, optimizing RGBR-R2(q) is equivalent to optimizing RGBR-R1(q) for large values of �R2.
This regularizer can be optimized in rM and sM using closed-form updates, shown as follows.

Theorem 3. For notational simplicity, define a new regularization graph with self-edges of weight
�R2/�G, E0

GBR , EGBR [ {(h, h) | h 2 H}, and w0(u, v) , w(u, v) + �(u = v)�R2/�G. Let
rM

⇤
(XH) 2 argmaxrM J 0

GBR-R2(✓, q, r
M , sM ) and sM

⇤
(XH) 2 argmaxsM J 0

GBR-R2(✓, q, r
M , sM ). Then,

rMv (xv) =
�R1qMv (xv) + �G

P
(u,v)2E0

GBR
w0(u, v)sMu (xv)

�R1 + �G
P

(u,v)2E0
GBR

w0(u, v)
, (24)

sMu
⇤
(xu) =

exp

P
(u,v)2E0

GBR
w0(u,v) log rMv (xu)

P
(u,v)2E0

GBR
w0(u,v)

P
x0
u
exp

P
(u,v)2E0

GBR
w0(u,v) log rMv (x0

u)P
(u,v)2E0

GBR
w0(u,v)

. (25)

Proof. In its current form, PRGBR-R2(q) involves a sum over all values of q(XH). However, the
following lemma shows how the factorizability of rM facilitates expressing the objective in a form
that involves only sum over values of each variable Xh.

Lemma 4. For distribution p(XV ) and factorizable distribution qM (XV ) =
Q

v2V qMv (Xv), define

pMv (Xv) ,
P

XV \v
p(XV ).

D(pkqM ) =
X

v2V
D(p(Xv)kq(Xv))�H(p) +

X

v2V
H(q(Xv)). (26)
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Proof.

D(pkqM ) = �H(p)�
X

xV

p(xV ) log

 
Y

v2V
qMv (Xv)

!
(27)

= �H(p)�
X

xV

p(xV )
X

v2V
log qMv (Xv) (28)

= �H(p)�
X

v2V

X

xv

X

xV 6=v

p(xV ) log q
M
v (Xv) (29)

= �H(p)�
X

v2V

X

xv

�
log qMv (Xv)

� X

xV 6=v

p(xV ) (30)

= �H(p)�
X

v2V

X

xv

�
log qMv (Xv)

�
pMv (xv) (31)

=
X

v2V
D(p(Xv)kq(Xv))�H(p) +

X

v2V
H(q(Xv)) (32)

Define qMh to be the marginal distribution of q over Xh, qMh (Xh) , P
XH\h

q(XH). Using

Lemma 4,

PRGBR-R2(q) = max
rM

 
��R1

X

h2H
D(qMh (Xh)krMh (Xh)) +H(q)�

X

h2H
H(qMh (Xh)) + fR2(r

M )

!
.

(33)

We now proceed to derive the update steps. We first derive the update for rM . The Lagrangian
for the optimization of rMv is

L3–1(r
M
v ,�3–1) (34)

= �R1D(qMv (Xv)krMv (Xv)) + �G

X

(u,v)2E0
GBR

w0(u, v)D(sMu (Xu)krMv (Xu)) (35)

+ �3–1(1�
X

xv

rMv (Xv)) +K3–1(q, s
M , rMH\v) (36)

0 =
@L

@rMv (xv)
= �

0

@�R1q
M
v (xv) + �G

X

(u,v)2E0
GBR

w0(u, v)sMu (xv)

1

A 1

rMv (xv)
+ �3–1 (37)

=) rMv (xv) / �R1q
M
v (xv) + �G

X

(u,v)2E0
GBR

w0(u, v)sMu (xv) (38)

X

xv

0

@�R1q
M
v (xv) + �G

X

(u,v)2E0
GBR

w0(u, v)sMu (xv)

1

A (39)

= �R1

������*
1X

xv

qMv (xv) + �G

X

(u,v)2E0
GBR

w0(u, v)

������*
1X

xv

sMu (xv) (40)

=) rMv (xv) =
�R1qMv (xv) + �G

P
(u,v)2E0

GBR
w0(u, v)sMu (xv)

�R1 + �G
P

(u,v)2E0
GBR

w0(u, v)
(41)
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We next derive the update for sM . The Lagrangian for the optimization of sMu is

L3–2(s
M
u ,�3–2) (42)

= �G

X

(u,v)2E0
GBR

w0(u, v)D(sMu (Xu)krMv (Xu)) + �3–2(1�
X

xu

sMu (Xu)) +K3–2(q, r
M , sMH\u) (43)

= �G

X

xu

sMu (xu)
X

(u,v)2E0
GBR

w0(u, v) log
sMu (xu)

rMv (xu)
+ �3–2(1�

X

xu

sMu (Xu)) +K3–2(q, r
M , sMH\u)

(44)

0 =
@L

@sMu (xu)
= �G

X

(u,v)2E0
GBR

w0(u, v) log
1

rMv (xu)
+

0

@�G

X

(u,v)2E0
GBR

w0(u, v)

1

A (1 + log sMu (xu))� �3–2

(45)

=) sMu (xu) / exp

P
(u,v)2E0

GBR
w0(u, v) log rMv (xu)

P
(u,v)2E0

GBR
w0(u, v)

(46)

Updating ✓

The preceding section described an algorithm for computing argmaxq RGBR-R2. This algorithm can
be combined with an EM-like algorithm in order to learn a ✓ that (locally) optimizes JGBR-R2, as
we describe in this section. We use an alternating EM-like algorithm to compute ✓.

E-step: Compute
⇣
q(t+1), rM

(t+1)
, sM

(t+1)
⌘
2 argmaxq,rM ,sM J 0

GBR-R2(✓
(t), q, rM , sM )

M-step: Compute ✓(t+1) 2 argmax✓ J
0
GBR(✓, q

(t+1))

The preceding section showed how to perform the E-step. To compute the M-step,

argmax
✓

J 0
GBR(✓, q

(t+1)) = argmax
✓

Eq(t+1)(XH) [log p✓(XH , x̄O))] (47)

The M-step takes the same form as the EM algorithm presented in (Neal and Hinton, 1999).
The update for ✓ depends on the particular factorization and parameterization properties of the
model. Because the posterior distribution q(XH) obeys the same factorization properties as the
unregularized model p✓(XH , XO), the same closed-form updates for ✓ can be used.

Therefore, JGBR-R2 can be optimized using a three-way alternating maximization algorithm,
which proceeds by alternating updates to r and s to convergence, alternating this whole update of
r/s with updates to q until convergence, then finally alternating updates to q and ✓ until convergence.
A schematic of the algorithm and objective appear in Supplementary Figure 8, and the algorithm is
shown in full in Algorithm 1.

Theorem 5. The modified EM algorithm monotonically increases the GBR objective:

JGBR-R2(✓
(t))  JGBR-R2(✓

(t+1)). (48)

Proof. Function q⇤(·) of Algorithm 1 implements coordinate descent on q, rM and sM . D(pkq) and
D(pkp) are jointly strictly convex in p and q and bounded below by 0. Thus, J 0

GBR-R2 is bounded
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Algorithm 1 E�cient and scalable algorithm to optimize J 0
GBR-R2

1: function rM
⇤
(q)

2: for h 2 H do
3: qMh (xh) 

P
xH 6=h

q(xH) (belief propagation)
4: end for
5: Initialize rM

(0)

, sM
(0)

arbitrarily.
6: t

1

 1
7: while not converged do
8: for v 2 H do

9: rM
(t

1

)

v (xv) 
�
R1

qMv (xv)+�G
P

(u,v)2E0
GBR

w0
(u,v)sM

(t
1

�1)

u (xv)

�
R1

+�G
P

(u,v)2E0
GBR

w0
(u,v)

10: end for
11: for u 2 H do

12: sMu
(t

1

)

(xu) 
exp

P
(u,v)2E0

GBR

w0
(u,v) log rM

(t
1

�1)

v (xu)

P
(u,v)2E0

GBR

w0
(u,v)

P
x0
u
exp

P
(u,v)2E0

GBR

w0
(u,v) log rM

(t
1

�1)

v (x0
u)

P
(u,v)2E0

GBR

w0
(u,v)

13: end for
14: t

1

 t
1

+ 1
15: end while
16: return rM

(t
1

)

17: end function
18:

19: function q⇤(✓)
20: t

2

 1

21: Initialize rM
(0)

arbitrarily.
22: while not converged do

23: q(t2)(xH) p✓(xH ,x̄O)

1/(1+�
R1

)

Q
h2H rM

(t
2

�1)

h (xh)
�
R1

/(1+�
R1

)

P
x0
H

p✓(x0
H ,x̄O)

1/(1+�
R1

)

Q
h2H rM

(t
2

�1)

h (x0
h)

�
R1

/(1+�
R1

)

(belief propagation)

24: rM
(t

2

)  rM
⇤
(q(t2))

25: t
2

 t
2

+ 1
26: end while
27: end function
28:

29: Initialize ✓(0) arbitarily.
30: t

3

 1
31: while not converged do
32: q(t3)  q⇤(✓(t3�1))
33: ✓(t3)  argmax✓ Eq(t3)

(XH)

[log p✓(XH , x̄O))] (EM update)
34: end while
35: Output ✓(t3)

below and jointly strictly convex in q, rM and sM . Convergence to the global optimum of J 0
GBR-R2

in q, rM and sM follows from its strict convexity (Warga, 1963).

JGBR-R2(✓
(t)) = J 0

GBR-R2(✓
(t), q(t+1), rM

(t+1)
, sM

(t+1)
)

 J 0
GBR-R2(✓

(t+1), q(t+1), rM
(t+1)

, sM
(t+1)

)

 JGBR-R2(✓
(t+1))

The first equality follows from the global optimality of q(t+1), rM
(t+1)

and sM
(t+1)

. The second
inequality follows from the fact that ✓(t+1) is chosen to maximize J 0

GBR-R2. The third inequality
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follows from the fact that J 0
GBR-R2(✓, q, r

M , sM ) is a lower bound on JGBR-R2(✓).

Computation

Probabilistic inference for computing q and ✓ was performed on the DBN model using the graphical
models toolkit (GMTK) (Bilmes, 2010). GMTK computations were distributed over a cluster using
Grid Engine. Alternating minimization for updating rM and sM were performed using the Measure
Propagation package (Subramanya and Bilmes, 2011).

2 Graph-based regularization outperforms an alternative approach based on
approximate inference

To evaluate the e�cacy of GBR, we compared GBR to two related methods: 1) approximate
inference on a graphical model with the same dependence structure, and 2) GBR using squared-error
penalties, as described in He et al. (2013). We compared to the approximate inference method loopy
belief propagation (LBP) because it is one of the most widely used approximate inference methods.
While we would have preferred to perform this comparison using real data sets, it appeared that even
our fastest implementations of these methods would take months to converge. Therefore, we instead
performed this comparison using synthetic data. We generated a chain of length n = 200, with
(XH , XO) = (Z1:200, Y1:200), where Z1:200 2 {0, 1}n and Y1:200 2 Rn. We defined an HMM over this
chain with transition probabilities Pr(Zi = Zi+1) = 0.9 and emission probabilities Yi ⇠ N(Zi,�),
where we vary � to control the di�culty of the problem—higher � results in more challenging
inference. We generated a graph W 2 Rn⇥n over the vertices of the chain by setting wij = 1 with
probability 0.4 if Zi = Zj , wij = 1 with probability 0.1 if Zi 6= Zj , and wij = 0 otherwise. This
model is meant to simulate the task of labeling a chain (such as a genomic sequence) where we have
noisy information about which pairs of positions have the same label.

We compared five methods of inference: 1) inference on each position independently, with no
chain model; 2) inference on the chain alone, without using W ; 3) LBP on the chain plus extra
factors of Pr(Xi = Xj) = sigmoid(�wij), where � controls the strength of these factors; 4) a variant
of GBR using the regularization graph W and a squared-error penalties as described in He et al.
(2013); and 5) GBR using the regularization graph W . We chose hyperparameters for each model
(�G, �R1 and �R2 for GBR and � for LBP) using a training set of 200 simulations.

GBR significantly outperforms all other models for all experiments, providing nearly as much
improvement in accuracy as the chain model does over the independent model (Supplementary
Figure 9). The pattern of accuracy is instructive in understanding the properties of each model.
LBP performs very well when there is little noise, but becomes easily stuck in local optima on
harder problems. The variant of GBR with squared error provides a modest improvement over the
chain model, but has poor performance relative to KL penalties, consistent with previous work on
semi-supervised methods.

3 Segway model

We used graph-based regularization to augment the Segway semi-automated genome annotation
method (Ho↵man et al., 2012). Segway uses a dynamic Bayesian network model to perform genome
annotation. The model is presented in detail in (Ho↵man et al., 2012), but we describe it briefly
here.

• We define a latent label variable Yi 2 {1..K} for each position i 2 {1..N} in the genome,
where K is the user-specified number of labels and N is the number of positions.
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• We define observed signal data variables Xi,j representing the value of signal data set j 2
{1..M} at genomic position i, where M is the number of signal data sets. We downsample the
genome into bins of size R and average the signal data in each bin (after applying the inverse
hyperbolic sine transform), so N ⇡ 3⇥ 109/R. Because the sequencing depth of existing Hi-C
data sets is too low to achieve single base pair resolution, we used R = 10000 for experiments
using GBR to integrate Hi-C data. We used R = 1 for experiments using GBR to transfer
information between cell types.

• The observed data variable Xi,j depends only on the label at position i, Yi. We model the
variable Xi,j as a Gaussian distribution with data set- and label-specific mean parameter µi,j

and data set-specific variance parameter �j . In the case that some data values are missing due
to mappability, we weight the observation of Xi,j by the proportion of mappable positions
X̊i,j in bin i in data set j.

• The label variable Yi depends only on the label at the previous position Yi�1. We model the
label transition from label a to label b using a transition parameter Qa,b.

• Wemodel segment length, determined by self-transitionsQa,a, separately from label transitions,
determined by Qa,b for a 6= b. The self-transition is weighted by a hyperparameter �transition,
which weighs the importance of segment length relative to signal data.

• The parameters µ1:K,1:M , �1:M and Q1:K,1:K are learned through EM.

The overall log-likelihood of the Segway model is defined as:

log Pr(X,Y | µ,�, Q) =
NX

i=1

MX

j=1

X̊i,j logN(Xi,j | µYi,j ,�j)

+ �transition

N�1X

i=1

1(Yi == Yi+1) logQYi,Yi

+
N�1X

i=1

1(Yi 6= Yi+1)(�transition log(1�QYi,Yi) + logQYi,Yi+1)

(49)

where µ`,j is the mean associated with signal data set j and label `; �j is the variance associated

with signal data set j (shared between all labels); X̊i,j is the proportion of mappable positions in bin
i for data set j; Qa,b is the transition probability parameter from label a to label b; and �transition is
a weight on the transitions relative to the emissions of the model.

4 Review of existing SAGA methods for using data from multiple cell types

Existing methods for semi-automated genome annotation work well on data from a single cell
type, but annotating multiple cell types remains an active area of research. There are three simple
strategies for performing annotation of multiple cell types. First, the simplest strategy is to apply
the same model to both genomes (sometimes called “concatenated” annotation) (She�eld et al.,
2013), but this requires that all cell types have the same set of available data, which is not generally
true. Moreover, in practice, experimental artifacts lead to poor performance for models which
model multiple data from multiple experiments with the same parameters, exhibiting e↵ects such
as assigning separate sets of labels to each cell type in the model. Second, one could perform
annotation separately on each cell type and find a mapping between the labels (for example, by

33



using the Hungarian algorithm (Kuhn, 1955)). However, since di↵erent cell types generally have
di↵erent types of activity and di↵erent sets of signal data sets, such a mapping is generally very
poor. Third, one could use all data from all cell types in one model (sometimes called “stacked”
annotation), but this strategy must either give the same label to each position for every cell type or
use a separate label for each pattern of labels across cell types, which requires an exponentially-large
number of labels.

Two additional methods have been proposed to annotate multiple cell types. The first, called
hiHMM (“hierarchically-linked infinite HMM”) maintains a separate model for each cell type and
uses a regularization penalty to encourage the models to have similar parameters (Ho et al., 2014).
This addresses the problem of requiring the same set of data across cell types, but does not share any
position-specific information between cell types. The second method for performing multi-cell-line
annotation, called TreeHMM, is given a tree over cell types and models the transition between
labels between neighboring positions and also between neighboring developmental states (Biesinger
et al., 2013). This model can integrate position-specific information between cell types, but requires
that each cell type has the same available data and is sensitive to any cross-experiment artifacts.
Moreover, the complexity of this model forced the authors to resort to approximate methods for
inference, which likely decreases the quality of the resulting annotations.

These two problems—requiring a common set of data and failure to integrate evidence—are
especially important because, although there are virtually limitless cell types and cell states that
one would like to understand, very limited numbers of experiments have been performed in most of
these cell types due to the cost of genomic experiments. For example, ENCODE has performed 335
experiments in its most-studied cell type, but has performed just 2-10 experiments in more than
100 cell types.

Transferring information with GBR removes the requirement for a common set of data across
cell types and does integrate position-specific evidence across cell types. Therefore, GBR provides a
method leveraging all available data in order to produce high-quality annotations of each cell type.

5 Related optimization methods

Clearly, the most straightforward way to express pairwise interactions in a graphical model is to
encode them in the underlying graph and to use approximate methods (reviewed in (Wainwright
and Jordan, 2008)) to enable inference. This form of interaction is quite general, in that when one
adds a factor �(yi, yj) between two random variables Yi and Yj , these random variables may have
any type of interaction, expressed by �(yi, yj). GBR, on the other hand, asks only for similarity
between the marginals, meaning that p(yi|·) and p(yj |·) should be similar. Alternatively, a factor
could encode such similarity, for example if �(yi, yj) = �1(yi = yj). Such factors added to an HMM
or CRF would result in a high treewidth model that can be dealt with using approximate inference.
Doing so, however, loses any guarantee of optimality (which we preserve with GBR).

The posterior regularization framework of Ganchev et al. (Ganchev et al., 2010) takes an approach
similar to ours, augmenting a simple model in a way that maintains tractable inference. This
method adds a regularization term to an EM objective in order to require the posterior probabilities
to satisfy logical constraints in expectation. Ganchev et al. show how to optimize this combined
objective e�ciently when the regularization term is linear in the posterior distribution of the model.
Unfortunately, pairwise similarity relationships cannot be expressed with such a linear regularization
term.

The most similar work to ours are the following three methods for graph regularization. First,
Altun el al. (Altun et al., 2005) describe a graph regularization applied to a max-margin model applied
to pitch-accent prediction and optical character recognition. However, this method involves a matrix
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inversion step, and thus cannot scale to large models. Second, Subramanya et al. (Subramanya et al.,
2010) combine a temporal CRF with a regularizer that expresses pairwise squared-error penalties
derived from unlabeled data. They apply this method to the part-of-speech tagging task (Subramanya
et al., 2010) and later to related problems in natural language (Das and Petrov, 2011; Das and Smith,
2011). That work, however, resorts to a purely heuristic update step, and lacks any optimality
guarantees. Third, He et al. (He et al., 2013) present an approach based on an exponentiated gradient
descent algorithm. Like our approach, He’s approach exhibits monotone convergence. Although
He’s work has many similarities with our approach, our methods were developed independently,
and He’s work di↵ers from ours in three important ways. First, He et al. (He et al., 2013) use
an exponentiated gradient descent strategy, while we use alternating minimization. Second, He’s
method uses a squared-error penalty, which is inappropriate for probability distributions, unlike our
use of the Kullback-Leibler divergence (Bishop, 1995, p. 226). Third, the exponentiated gradient
descent method is applied to handwriting recognition and part-of-speech tagging, while we apply
GBR to genome annotation.
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Supplementary Figures/Tables

Data type URL
CAGE http://www.gencodegenes.org/releases/7.html

ENCODE (ChIP-seq, DNase, Replication timing) http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/
ChIP-seq (Roadmap) http://www.roadmapepigenomics.org/data

Hi-C http://yuelab.org/hi-c/download.html
Topological domains http://www.cs.cmu.edu/⇠ckingsf/software/armatus/

Supplementary Table 1: Data sources
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IMR90 domain annotation Eight-cell type domain annotation GM12878 reduced annotation

Input data sets

DNase
H2aK5ac
H2aK9ac
H2a.Z

H2bK120ac
H2bK12ac
H2bK15ac
H2bK20ac
H2bK5ac
H3K14ac
H3K18ac
H3K23ac
H3K27ac

H3K27me3
H3K36me3
H3K4ac

H3K4me1
H3K4me2
H3K4me3
H3K56ac

H3K79me1
H3K79me2 H3K9ac

H3K9me1
H3K9me3
H4K20me1
H4K5ac
H4K8ac
H4K91ac
Repli-seq

DNase
H2a.Z

H3K27ac H3K27me3
H3K36me3
H3K4me1
H3K4me2
H3K4me3
H3K79me2
H3K9ac
H3K9me3
H4K20me1

H3K4me1
H3K4me2
H3K3me3
H3K9ac
H3K27ac

H3K27me3
H3K36me3
H4K20me1

Number of labels 8 8 25
Transition weight (�

transition

) 48 12 1
Number of random EM initializations 10 10 10

GBR graph scale (�G) 1 1 1
GBR optimization hyperparameter (�R1

) 1 1 10

Supplementary Table 2: Parameters of all genome annotations
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GOID Bonferroni-corrected p-value Name
GO:0008150 5.44809636039661e-49 biological process
GO:0070647 5.36690477736568e-14 protein modification by small protein conjugation or removal
GO:0016567 2.53980288482968e-13 protein ubiquitination
GO:0032446 3.48958938873894e-13 protein modification by small protein conjugation
GO:0071840 1.2816846277191e-07 cellular component organization or biogenesis
GO:0048522 3.15663523300463e-07 positive regulation of cellular process
GO:0016043 1.55013794212494e-06 cellular component organization
GO:0050953 2.07559208909527e-06 sensory perception of light stimulus
GO:0007601 2.79978686922173e-06 visual perception
GO:0006996 2.18396515274592e-05 organelle organization
GO:0016071 7.40708736771575e-05 mRNA metabolic process
GO:0048519 0.000123587368672724 negative regulation of biological process
GO:0023056 0.000191430490530164 positive regulation of signaling
GO:0048518 0.000239550248137195 positive regulation of biological process
GO:0032270 0.000250487526217915 positive regulation of cellular protein metabolic process
GO:0018146 0.000336577942863192 keratan sulfate biosynthetic process
GO:0007005 0.000402299808664309 mitochondrion organization
GO:0010647 0.000414643467676553 positive regulation of cell communication
GO:0032268 0.000530771233104358 regulation of cellular protein metabolic process
GO:0043928 0.000623789428174407 exonucleolytic nuclear-transcribed mRNA catabolic process involved in deadenylation-dependent decay
GO:0000288 0.000670978259119087 nuclear-transcribed mRNA catabolic process, deadenylation-dependent decay
GO:1903320 0.00117566239446111 regulation of protein modification by small protein conjugation or removal
GO:0009967 0.00131477493050438 positive regulation of signal transduction
GO:1902533 0.00136644459633516 positive regulation of intracellular signal transduction
GO:0048523 0.00148158842395948 negative regulation of cellular process
GO:0051340 0.00150521495507962 regulation of ligase activity
GO:0000291 0.00193533449146964 nuclear-transcribed mRNA catabolic process, exonucleolytic
GO:0031401 0.00194625332376889 positive regulation of protein modification process
GO:1903047 0.00215993757988771 mitotic cell cycle process
GO:0042531 0.00237481842965934 positive regulation of tyrosine phosphorylation of STAT protein
GO:0007267 0.0039286364798486 cell-cell signaling
GO:0006401 0.00399526165008678 RNA catabolic process
GO:0031396 0.00443702013802013 regulation of protein ubiquitination
GO:0000278 0.00470584872871359 mitotic cell cycle
GO:0051351 0.00495154943903681 positive regulation of ligase activity
GO:0051438 0.00524041402868326 regulation of ubiquitin-protein transferase activity
GO:0042339 0.0053487952592411 keratan sulfate metabolic process
GO:0051247 0.0056999635780996 positive regulation of protein metabolic process
GO:0016265 0.00629144608895318 death
GO:0046427 0.00671456368410498 positive regulation of JAK-STAT cascade
GO:0008219 0.0067422659494943 cell death
GO:0000956 0.00698342075165014 nuclear-transcribed mRNA catabolic process
GO:0031399 0.00786100228743956 regulation of protein modification process
GO:0044770 0.00795426575038111 cell cycle phase transition
GO:0051246 0.00937868333257509 regulation of protein metabolic process

Supplementary Table 3: GO terms enriched for genes in BRD domains
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GOID Bonferroni-corrected p-value Name
GO:0001944 2.9592753850599e-11 vasculature development
GO:0001568 1.34928597594565e-09 blood vessel development
GO:0072358 1.87785996344277e-09 cardiovascular system development
GO:0072359 1.94865728031881e-09 circulatory system development
GO:0048598 2.33761516882996e-09 embryonic morphogenesis
GO:0032501 4.29504418805107e-09 multicellular organismal process
GO:0044707 6.45108090271442e-09 single-multicellular organism process
GO:0007275 9.54873387980616e-09 multicellular organismal development
GO:0032502 9.87403900226897e-09 developmental process
GO:0009653 1.13900576119261e-08 anatomical structure morphogenesis
GO:0048646 1.27560082632202e-08 anatomical structure formation involved in morphogenesis
GO:0048856 3.44027824649974e-08 anatomical structure development
GO:0048514 3.64379056813118e-08 blood vessel morphogenesis
GO:0044767 4.96188838214423e-08 single-organism developmental process
GO:0008150 1.09920334986419e-07 biological process
GO:0009888 1.15062070196739e-07 tissue development
GO:0048731 1.34005756992352e-07 system development
GO:0030198 2.54744657740361e-07 extracellular matrix organization
GO:0043062 2.70008497648116e-07 extracellular structure organization
GO:0040011 4.09681657551741e-07 locomotion
GO:0048523 6.00924738320409e-07 negative regulation of cellular process
GO:0048513 1.27555684817328e-06 organ development
GO:0009887 1.67228271838845e-06 organ morphogenesis
GO:0060429 1.75248481849761e-06 epithelium development
GO:0009605 2.12388368291444e-06 response to external stimulus
GO:0048519 2.70812717394184e-06 negative regulation of biological process
GO:0048869 3.99639769208689e-06 cellular developmental process
GO:0009790 4.8142081410924e-06 embryo development
GO:0030154 8.17799427787657e-06 cell di↵erentiation
GO:0048522 8.79037004023573e-06 positive regulation of cellular process
GO:0048870 9.70748540194382e-06 cell motility
GO:0051674 9.70748540194382e-06 localization of cell
GO:0048518 9.8762526690946e-06 positive regulation of biological process
GO:1902533 1.75047286259699e-05 positive regulation of intracellular signal transduction
GO:0071840 2.37299292646679e-05 cellular component organization or biogenesis
GO:0030334 2.38844411436045e-05 regulation of cell migration
GO:0007389 3.41057645381657e-05 pattern specification process
GO:0051270 4.15793772024666e-05 regulation of cellular component movement
GO:2000145 7.20700858370221e-05 regulation of cell motility
GO:0040012 7.2398136159996e-05 regulation of locomotion
GO:0016043 7.57778182419685e-05 cellular component organization
GO:0001501 9.16531463777006e-05 skeletal system development
GO:0008219 0.000103725100284498 cell death
GO:0001525 0.0001112117619674 angiogenesis
GO:0009966 0.000112414145595174 regulation of signal transduction
GO:0016265 0.000115956206339428 death
GO:0009967 0.000119265054523972 positive regulation of signal transduction
GO:0016477 0.000141195508435494 cell migration
GO:0048568 0.000148183903115669 embryonic organ development
GO:0001503 0.000148474000627697 ossification
GO:0006915 0.000174710834263385 apoptotic process
GO:0048729 0.000185804853094102 tissue morphogenesis
GO:0012501 0.000193299675551627 programmed cell death
GO:0010647 0.000264669391358318 positive regulation of cell communication
GO:0003007 0.000308615021011459 heart morphogenesis
GO:0010628 0.000312006014076936 positive regulation of gene expression
GO:0023056 0.000458831197316147 positive regulation of signaling
GO:0051239 0.000694243253157008 regulation of multicellular organismal process
GO:0031325 0.000823302329284296 positive regulation of cellular metabolic process
GO:0002009 0.000843967242091738 morphogenesis of an epithelium
GO:0048863 0.000980998073137653 stem cell di↵erentiation
GO:0042325 0.00125849445147922 regulation of phosphorylation
GO:1902531 0.00144207328720399 regulation of intracellular signal transduction
GO:0044236 0.00151180971326667 multicellular organismal metabolic process
GO:0009893 0.00161958399151636 positive regulation of metabolic process
GO:0022603 0.00169126335423007 regulation of anatomical structure morphogenesis
GO:0035295 0.00223230684414793 tube development
GO:0006928 0.00230989986294592 cellular component movement
GO:0010604 0.00236857824547227 positive regulation of macromolecule metabolic process
GO:0010646 0.00252308440283661 regulation of cell communication
GO:0050793 0.0026847817189637 regulation of developmental process
GO:0048562 0.00285877724714378 embryonic organ morphogenesis
GO:0032879 0.00295955595643228 regulation of localization
GO:0080134 0.00335551717091664 regulation of response to stress
GO:0048705 0.00370439844279299 skeletal system morphogenesis
GO:0048864 0.00389984096973906 stem cell development
GO:0023051 0.0040158774598731 regulation of signaling
GO:0006334 0.00406223628626311 nucleosome assembly
GO:0045893 0.00414091776655817 positive regulation of transcription, DNA-templated
GO:0007167 0.00519580828357705 enzyme linked receptor protein signaling pathway
GO:0003002 0.00540223999981726 regionalization
GO:0051254 0.00549153180374605 positive regulation of RNA metabolic process
GO:1902680 0.00598393700399004 positive regulation of RNA biosynthetic process
GO:0023014 0.00676138544251521 signal transduction by phosphorylation
GO:0008283 0.0070310418956878 cell proliferation
GO:0048583 0.0072096008049822 regulation of response to stimulus
GO:0006333 0.00732272231577271 chromatin assembly or disassembly
GO:0007507 0.00736076227709712 heart development
GO:0042127 0.00771299785801664 regulation of cell proliferation
GO:2000026 0.008432344878453 regulation of multicellular organismal development
GO:0010941 0.00916678907171083 regulation of cell death
GO:0043408 0.00935020093242137 regulation of MAPK cascade
GO:0044259 0.00998773914798186 multicellular organismal macromolecule metabolic process

Supplementary Table 4: GO terms enriched for genes in SPC domains.
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Supplementary Figure 1: (A) Average squared di↵erence between replication timing values at left and
right sides of significant contacts, as a function of genomic distance, relative to a permutation control
(t-test 95% confidence interval grey error regions). (B) Confusion matrix of Segway annotation
labels at left and right sides of significant contacts (without GBR). Color depicts log2(obs/expected)
relative to a permutation control (Methods). Pairs of annotation labels at significantly interacting
positions match more often than expected by chance (binomial test p < 10�16).
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Supplementary Figure 2: Fraction of annotation changed by GBR. Y axis depicts the fraction of
positions that receive a di↵erent label between an annotation without GBR and an annotation with
GBR using a certain set of hyperparameters. X axis and color depict the �G and �R1 hyperparameters
respectively.
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Supplementary Figure 3: Correlation of Hi-C contact strength between IMR90 and H1-hESC. X
and Y axes are log p-values of association of a given pair of positions. Color indicates density of
points. Black lines indicate density contours in 0.1% bins. Spearman r = 0.57.
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Supplementary Figure 4: Distribution of domain labels across eight cell types. Y axis indicates
log2(bases covered by label ` in celltype A / (bases covered by label ` / 8)).
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A

B

Supplementary Figure 5: Visualization of GO term enrichment for genes in IMR90 (A) BRD
domains and (B) SPC domains using REVIGO (Supek et al., 2011). Each bubble represents a
cluster of related enriched GO terms. X and Y axes are projected semantic axes defined using
multidimensional scaling on the semantic similarity of each pair of terms.
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A B

Supplementary Figure 6: Enrichment of consistent Segway boundaries for consistent replication
domain boundaries. (A) Fraction of consistent replication domain boundaries overlapping consistent
Segway domain boundaries as a function of the overlap distance. (B) Same as (A), but fraction of
Segway domain boundaries. We used replication domain boundaries called by Pope et al. (2014).
We defined replication boundaries occurring in more than 10 out of 18 cell types as consistent.
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Supplementary Figure 7: Genomic distance distribution of significant IMR90 Hi-C contacts (q <
0.05).
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Supplementary Figure 8: Schematic of the three formulations of the objective and the alternating
maximization strategy. Edges in this figure indicate KL terms, labeled according to their weight in
the objective. Boxed formulae are update steps. We perform two reformulations, first splitting q
into q and rM linked by a KL term of weight �R1, then splitting rM into rM and sM , linked by a
KL term of weight �R2.
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Supplementary Figure 9: Comparison between inference methods on synthetic data. The X axis shows
�, a hyperparameter controlling the di�culty of inference. The Y axis shows the average accuracy over
200 simulations of MAP inference on the model in question (95% Wilcoxon test confidence intervals).
Bars correspond to five di↵erent inference methods: 1) inference on each position independently,
with no chain model (Independent); 2) inference on the chain alone, without using W (Chain); 3)
loopy belief propagation on the chain plus extra factors of Pr(Xi = Xj) = sigmoid(�wij), where
� controls the strength of these factors; (Loopy BP) 4) a variant of GBR using the regularization
graph W and a squared-error penalties as described in (He et al., 2013) (SQ-GBR); and 5) GBR
using the regularization graph W (our method, GBR).
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