Supplementary Notes

1 GBR optimization

In this section we derive an efficient alternating optimization algorithm for the GBR objective
(Methods). We first describe how to compute argmax, Ji;gg (6, ¢), then describe how this algorithm
can be used in combination with an EM-like algorithm for learning 6.

GBR can be employed either as a regularizer for training the parameters or for inference directly.
In the training case, an EM-like algorithm described is used to compute and output 6, which can
then be used for inference either with or without GBR. In the inference case, ¢ is computed and
output as the posterior marginals. In our genomics experiments we trained our models without
GBR and used GBR for inference only.

Optimizing q

The GBR regularizer Rpg(f,q) is convex in g; therefore, we could compute ¢ using any convex
optimization algorithm. However, general-purpose convex optimization algorithm do not scale to
problems with millions or billions of variables such as those present in genomics. Therefore, we instead
propose a novel alternating maximization strategy for performing this optimization more efficiently.

To enable efficient inference, we reformulate J§pg (6, q) by introducing a new variable r™ (X ).
Like ¢, ¥™ is a distribution over Xp, but we require that r™ be factorizable as a product of
marginals—that is 7™ (vg) = [], 7 (z). We define the graph regularizer over r™ and add an
additional term Ar1D(q(Xg)||r™ (Xp)), which encourages ¢ and 7 to be similar. As we will show
below, restricting r* in this way means that the reformulated objective is a lower bound on the
original rather than being equivalent. We will maximize this lower bound as an approximation to
maximizing the original. The reformulated regularizer is

PReer-r1 (4 7") £ = A1 D(a(Xp)[Ir™ (X)) + fra(r™) (1)
™2 x> w(u,v) DM (X)) (X)), (2)
(uv)EFGBR

and J&pr.p1 (0, ¢, 7™) and Rigpr_py (0, ¢, 7™) are defined according to Equations (2) and (4) respec-
tively using the corresponding regularizers. That is,

maximizeequrM JéBR—R1(97 q, TM) =S L£(0) + R/GBR-Rl(ev q, TM)a (3)
Reprri (0, ¢ 7") £ —D(q(Xn)llpe(Xu|Zo)) + PRGpr.r1 (0, 7). (4)

First, we show that rM ~ ¢ for large values of \rj, so optimizing the reformulated regularizer is
equivalent to optimizing a lower bound on the original.

Lemma 1. For distributions p € P and q € Q where P N Q # Q and a continuous function J(p,q),
let J(p,q; \) = J(p,q) — AD(pllq), and p}, q} € argmax,cp ,e0J(p,q;A). Then the following hold:

lim D(pyllgx) =0, ()
A—00
)\lim Il — lle =0 for any ¢, where || - ||¢ is the £-norm, and (6)
—00

I J(p,q; \) < :
Jim max | J(p,g;A) < max J(p,p) (7)
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Proof. Consider any € > 0 and any p’ € P,q" € Qsuch that D(p'[|¢’) > e. Let p € argmax,cpng J(p, )

and consider any X' > (1/€)(J(p',¢") — J(D,p))-

T, qsX) = J(0',q) = ND(W'|d) 8)
<J@,qd) - Ne (9)
<JW,d) — AL d) — T(B]p)) (10)
= J(p,p) (11)

Therefore, D(p*||¢*) < e when A > X. This proves Proposition (5).

We have that
1 1

D(pllg) > S llp = all} = 5l — all7 (12)
(13)

for any ¢-norm. The first inequality is Pinsker’s inequality and the second follows from the rela-
tionship of /-norms. Proposition (6) follows from this combined with Proposition (5).
Due to Proposition (6) and the continuity of J(p, q),

li J(p,q; ) — J =0. 14
g T i) = g, T o) "

Proposition (7) follows from this and the fact that P N Q C P. O

Therefore, for sufficiently large Ag1, optimizing Equation (2) is equivalent to optimizing a lower
bound on Equation (5) of the main text. This form allows us to compute ¢ efficiently, which is
shown as follows.

Theorem 2. Define ¢*(Xp) = argmax, Jpr g1 (0, ¢, rM). Then,

¢ (ry) = po(am, 1o)UY T, ¢y it () At/ (HHAR)
S Do(@y, To) Y/ WFARD T, M (2 ) Ara /(AR |
H

(15)

Proof. For ease of notation, we group all terms that do not depend on ¢ into one function Ka(r).
Since we must respect the sum-to-one property of ¢, we form the Lagrangian by adding the term

Ao(1 =22, a(zn))

La(q, h2) = —=D(a(Xn)[po(Xr|X0)) = Ami D(a(X) [P (Xir)) = Ao(1 = Y qlanr)) + Ka(r)

Ty
(16)
_ po(zm|zo)r™ (xpm) ™
= ZQ(fUH)log e —A2(1 —ZQ(l‘H)) + Ka(r) (17)
T TH
po(p,To)r™ (zy) R _
= ;q(mH) log o(ag) P —logpe(Zo) — A2(1 — %{:q(x}[)) + Ks(r)
(18)
oL LM A 14+
0= alem) = —logpg(rp,To)r" (xg) ™™ +logq(xy) ™" + 14+ Ar1 — A2 (19)
1 AR1
— q(zn) x polam, To) T M (z) Tom (20)
O
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Critically, because 7™ is factorizable such that each factor involves just one variable X3, ¢*(Xg)
obeys the same factorization properties as the unregularized model py(Xp,Zo). For example, if
the original model was an HMM, ¢ still factors as a chain. Therefore, the normalization constant
can be computed using any algorithm for exact or approximate probabilistic inference on factorized
models, such as belief propagation, with similar computational cost as the unregularized model.

Optimizing

Despite the last reformulation, the objective still does not admit closed-form updates for M.
Therefore, we again reformulate PRgpp r1(0, ¢, 7*) by adding a new variable s, where s™ is
also a distribution over Xy restricted to be factorizable as a product of marginals. As before,
we add a term AreD(s™(Xpy)||r™(Xp)), which encourages s™ ~ M. We define the graph
regularizer KL divergence terms to have s on the left and 7™ on the right—that is, in the form

D(sM(X,)|rM(X,))—which will enable efficient optimization for both variables.

u

PRGerr2(¢,m", M) £ A1 D(g(Xu) 7™ (Xu)) + max fra(r™, M) (21)
fra(r™,sM) & Mg D(s™ (X)) [rM (Xm) = Ae D w(u,v)D(s) (X)[r) (X)),
(u,v)EFGBR

and Jipg ro(0, ¢, 7™, sM) and Rgpg po(0, g, 7™, sM) are defined according to Equations (2) and (4)

respectively using the corresponding regularizers. That is,

maximizeg , v v Japrora (0, a, 7, sM) £ L(0) + Rigprora (0, a,7™, M), (22)
Resrori (0.7, M) £ —D(q(Xn)|lpe(Xu|Zo)) + PReer-R2(g, ™, ™).
(23)

By Lemma 1, optimizing Rgpr-r2(¢) is equivalent to optimizing Rgpr-r1(g) for large values of Agas.
This regularizer can be optimized in 7 and s™ using closed-form updates, shown as follows.

Theorem 3. For notational simplicity, define a new regularization graph with self-edges of weight
Ar2/A¢s Egpr = Ecer U {(h,h) | h € H}, and w'(u,v) £ w(u,v) + §(u = v)A\g2/Ag. Let
M*(Xp) € argmax, v Japr.po (05 ¢, 7™, sM) and sM™ (X ) € argmaxn Japg go(0, ¢, 7™, sM). Then,

B Aridy! () + Ac 2 (uw)e Bl w'(u, v)sy (20)

o (x , 24
v (o AR1 + A Z(UW)GEE;BR w'(u, v) (24)
Z(u,v)EE/GBR w’(“"v) log 7‘{/\4 (Z‘u)
M* exp Z(u,u)EE/GBR w/(uvv)
S (2,) = (25)

Z(u,v)eE’GBR w’(uﬂ)) log 7‘1];\4('7‘,&) '

(uw)eBlLpg W (W0)

Zr& €xp

Proof. In its current form, PRgpr.r2(q) involves a sum over all values of ¢(Xp). However, the
following lemma shows how the factorizability of ™ facilitates expressing the objective in a form
that involves only sum over values of each variable Xj.

Lemma 4. For distribution p(Xv) and factorizable distribution ¢™ (Xv) = [I,ey a2 (Xy), define

V(X,) 2 Y, p(X0).
D(pllg™) = Dp(X.)a(Xu)) — H(p) + Y H(q(Xy)). (26)

veV veV
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Proof.

D(plig"") Zp zv)log (H ) (X, ) (27)

veV

= Zp Ty Z log qv Xy) (28)

veV

= ZZ Z (zy logqy (Xy) (29)

veEV Ty zyFv

= —H(p) - ;Z (log ¢ (X)) 27; play) (30)
= Z‘;; log g, ( : o’ () (31)
= XQD " IIqU — H(p) + z‘;H(q(XU)) (32)

ve ve )

Define ¢ to be the marginal distribution of ¢ over X, ¢M (X)) £ ZXH\h q(Xg). Using
Lemma 4,

PRGBR-R2(9) = max ( A1 Y Dgy (Xn)llra' (Xn)) + H(g) = D H(gp (Xn) + fro(r )) :
heH heH
(33)

We now proceed to derive the update steps. We first derive the update for 7. The Lagrangian
for the optimization of rM is

Ly 1(ry", A3 1) (34)

= A1 D(a) (X)) [P} (X)) + A Y w!(w,0) D(sy! (X)) (X)) (35)
(u,v)EELRR

+ Az (1 =D ry (X)) + Ksa(q, 8™, r,) (36)

0= @)+ S w0 (@) | e+ A (37)

Ol () e B T CO R
(u,v)EELRR

— M(z,) o« Ar1¢M (z) + Mg Z w' (u,v)sM (x,) (38)
(u,w)EE R

Z ()\qufjw(xv) e Z w' (u, v)sfy(azv)) (39)

Tov (u ’U)GEGBR

1
—Am/z/qya/ ISV w'(u,w/z/s%v/) (40)
(u,v)EELRR

Ar16y" (20) + Aa Yy w'(u, v) sy ()
_— rlj)w(ajv) = (u)€Epp - (41)
AR1 + ¢ Z ()€ By, W (u,v)
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We next derive the update for s™. The Lagrangian for the optimization of sM is

L o(sM X3 9) (42)
e Z w'(u,v) D (s (Xu)|Ira (Xu)) + Ag2(1 — Z sal (X)) + K3 2(q,r™, s]}f\u) (43)
(u,w)EELRR e

=\ ZSM(JJ ) Z w'(u,v) log Su (T
G . U u b Ty(.’]ju

(u,v)EE’GBR

; + Az2(1— Z su (Xu)) + Kz -a(q, ™, S%\“)

(44)

oL 1 y
0= m = Ao Z w'(u, v) logm + | Xa Z W (u,0) | (14 log sM (24)) = Ao

(u,w)EE R (u,v)EEGER
(45)
S twwer... W (u,v)logrM(z,)
— sM(z,) x exp (v,0)€ Pepn p (46)
Z(u,v)eEéBR w (U, U)
O

Updating 6

The preceding section described an algorithm for computing argmax, Rpr-re- This algorithm can
be combined with an EM-like algorithm in order to learn a 6 that (locally) optimizes Jopgr.-Rr2, as
we describe in this section. We use an alternating EM-like algorithm to compute 6.

E-step: Compute (q(t+1) : FM (D) : SM(t+1)>

€ argmax, M gm JéBR_R2(9(t), g, ™, M)
M-step: Compute §0+1) € argmax, Jipg (0, ¢"+Y)
The preceding section showed how to perform the E-step. To compute the M-step,

argmax Tgpr(0,¢"HY) = argmax Fyn x,y) [log po(Xi, 70))] (47)

The M-step takes the same form as the EM algorithm presented in (Neal and Hinton, 1999).
The update for § depends on the particular factorization and parameterization properties of the
model. Because the posterior distribution ¢(X) obeys the same factorization properties as the
unregularized model pg(X g, Xo), the same closed-form updates for 6 can be used.

Therefore, Jgpr.r2 can be optimized using a three-way alternating maximization algorithm,
which proceeds by alternating updates to r and s to convergence, alternating this whole update of
r/s with updates to ¢ until convergence, then finally alternating updates to ¢ and 6 until convergence.
A schematic of the algorithm and objective appear in Supplementary Figure 8, and the algorithm is
shown in full in Algorithm 1.

Theorem 5. The modified EM algorithm monotonically increases the GBR objective:

Japrr2(0Y) < Japr-r2(04HY). (48)

Proof. Function ¢*(-) of Algorithm 1 implements coordinate descent on ¢, r* and s™. D(pl||q) and
D(pl|p) are jointly strictly convex in p and ¢ and bounded below by 0. Thus, J{,zg gy is bounded
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Algorithm 1 Efficient and scalable algorithm to optimize Jigg go

1: function ™" (q)
2 for h € H do
3 M (z) + ZxH#h q(zm) (belief propagation)
4: end for
5: Initialize ’I“M(O), sM(O) arbitrarily.
6 t1 <1
7 while not converged do
8 for v € H do y / -
9 erf(tl)(l'v) <~ Mridy (Z0)+Ac Z("’“)eEé}BR, wiuv)s ™ (@)
v AR1+AG Z(u’U)EElGBR w’ (u,v)
10: end for
11: for v € H do / .
o - Z(u‘v)eEz/C:;BR w <u,v>log;~( ,,)1 (zu)
w,v)EE! wilw,v
12: MY () + - v)e;l e wcfiffv)logfr”fﬁ“_l)%)
ZI& exp . S(ii)GE'GBR o (ao)
13: end for
14: t1 <t +1
15: end while
16: return M "
17: end function
18:
19: function ¢*(9)
20: to <1
21: Tnitialize M arbitrarily.
22: while not converged do -
7o)/ AFAR1) M(t2—1 AR1/(1+2AR1)
25 q(tQ) (-’EH) < > [je (Zei;zo;)io)l/(lﬁ-%lxl:[)hﬁtlerzi :M ;:2 _(Jf)h()wlh))‘Rl /(1+AR1) (behef propagation)
@'y ’ v
24 rM(tz) - TM*<q(t2))
25: to < to+1

26: end while

27: end function

28:

29: Initialize (°) arbitarily.

30: t3+1

31: while not converged do

32 gl g (0ts—)

33: 0*3) + argmax, E ) (xpy) logpo(Xm,70))] (EM update)
34: end while

35: Output 0(%s)

below and jointly strictly convex in ¢, r™ and s™. Convergence to the global optimum of JGBR-R2

in g, ™ and s™ follows from its strict convexity (Warga, 1963).

= + t+1 t+1
JGBR-R2(9(t)) Jé}BR—RQ(e(t)aq(t 1)77”M( ),SM( ))
+ + t+1 t+1
< JéBR-Rz(e(t 1),q(t U,rM( ) SM( ))

< Japrr2(0D)

The first equality follows from the global optimality of ¢(t*t1), M D) and sMEY | The second
inequality follows from the fact that #(*t1) is chosen to maximize Jtprora- The third inequality
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follows from the fact that Jigg o (6, ¢, M, sM) is a lower bound on Jgpr.r2(#). O

Computation

Probabilistic inference for computing ¢ and 6 was performed on the DBN model using the graphical
models toolkit (GMTK) (Bilmes, 2010). GMTK computations were distributed over a cluster using
Grid Engine. Alternating minimization for updating r™ and s™ were performed using the Measure
Propagation package (Subramanya and Bilmes, 2011).

2 Graph-based regularization outperforms an alternative approach based on
approximate inference

To evaluate the efficacy of GBR, we compared GBR to two related methods: 1) approximate
inference on a graphical model with the same dependence structure, and 2) GBR using squared-error
penalties, as described in He et al. (2013). We compared to the approximate inference method loopy
belief propagation (LBP) because it is one of the most widely used approximate inference methods.
While we would have preferred to perform this comparison using real data sets, it appeared that even
our fastest implementations of these methods would take months to converge. Therefore, we instead
performed this comparison using synthetic data. We generated a chain of length n = 200, with
(XH,X()) = (legog, Y]_:200)7 where Z1.990 € {0, 1}” and Yi.990 € R". We defined an HMM over this
chain with transition probabilities Pr(Z; = Z;11) = 0.9 and emission probabilities Y; ~ N(Z;, 0),
where we vary o to control the difficulty of the problem—higher ¢ results in more challenging
inference. We generated a graph W € R™*"™ over the vertices of the chain by setting w;; = 1 with
probability 0.4 if Z; = Z;, w;; = 1 with probability 0.1 if Z; # Z;, and w;; = 0 otherwise. This
model is meant to simulate the task of labeling a chain (such as a genomic sequence) where we have
noisy information about which pairs of positions have the same label.

We compared five methods of inference: 1) inference on each position independently, with no
chain model; 2) inference on the chain alone, without using W; 3) LBP on the chain plus extra
factors of Pr(X; = X;) = sigmoid(Aw;;), where X controls the strength of these factors; 4) a variant
of GBR using the regularization graph W and a squared-error penalties as described in He et al.
(2013); and 5) GBR using the regularization graph W. We chose hyperparameters for each model
(Mg, Ar1 and Ars for GBR and A for LBP) using a training set of 200 simulations.

GBR significantly outperforms all other models for all experiments, providing nearly as much
improvement in accuracy as the chain model does over the independent model (Supplementary
Figure 9). The pattern of accuracy is instructive in understanding the properties of each model.
LBP performs very well when there is little noise, but becomes easily stuck in local optima on
harder problems. The variant of GBR with squared error provides a modest improvement over the
chain model, but has poor performance relative to KL penalties, consistent with previous work on
semi-supervised methods.

3 Segway model

We used graph-based regularization to augment the Segway semi-automated genome annotation
method (Hoffman et al., 2012). Segway uses a dynamic Bayesian network model to perform genome
annotation. The model is presented in detail in (Hoffman et al., 2012), but we describe it briefly
here.

e We define a latent label variable Y; € {1..K} for each position i € {1..N} in the genome,
where K is the user-specified number of labels and N is the number of positions.
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e We define observed signal data variables X; ; representing the value of signal data set j €
{1..M} at genomic position i, where M is the number of signal data sets. We downsample the
genome into bins of size R and average the signal data in each bin (after applying the inverse
hyperbolic sine transform), so N =~ 3 x 10°/R. Because the sequencing depth of existing Hi-C
data sets is too low to achieve single base pair resolution, we used R = 10000 for experiments
using GBR to integrate Hi-C data. We used R = 1 for experiments using GBR to transfer
information between cell types.

e The observed data variable X; ; depends only on the label at position 4, Y;. We model the
variable X; ; as a Gaussian distribution with data set- and label-specific mean parameter p; ;
and data set-specific variance parameter o;. In the case that some data values are missing due
to mappability, we weight the observation of X; ; by the proportion of mappable positions
)o(i’j in bin 4 in data set j.

e The label variable Y; depends only on the label at the previous position Y;_;. We model the
label transition from label a to label b using a transition parameter @ p.

e We model segment length, determined by self-transitions Q4 4, separately from label transitions,
determined by Qg for a # b. The self-transition is weighted by a hyperparameter A¢ransition,
which weighs the importance of segment length relative to signal data.

e The parameters p1.x 1.0, 01:m and Q1.x,1:x are learned through EM.

The overall log-likelihood of the Segway model is defined as:

N M
log Pr(X,Y | 1,0,Q) = > > Xijlog N(Xij | py, ,0)

=1 =1
N—1

+ Atransition Z 1(Y; == Yi11)log Qy, v, (49)
i1

N-1
+ Z 1 Y ?é Y;—s—l (/\tran51t10n log(l - QY,,Yl) + log QY“Y,_H)
=1

where py ; is the mean associated with signal data set j and label ¢; o is the variance associated
with signal data set j (shared between all labels); X; ; is the proportion of mappable positions in bin
i for data set j; Q4 is the transition probability parameter from label a to label b; and Atransition 1S
a weight on the transitions relative to the emissions of the model.

4 Review of existing SAGA methods for using data from multiple cell types

Existing methods for semi-automated genome annotation work well on data from a single cell
type, but annotating multiple cell types remains an active area of research. There are three simple
strategies for performing annotation of multiple cell types. First, the simplest strategy is to apply
the same model to both genomes (sometimes called “concatenated” annotation) (Sheffield et al.,
2013), but this requires that all cell types have the same set of available data, which is not generally
true. Moreover, in practice, experimental artifacts lead to poor performance for models which
model multiple data from multiple experiments with the same parameters, exhibiting effects such
as assigning separate sets of labels to each cell type in the model. Second, one could perform
annotation separately on each cell type and find a mapping between the labels (for example, by
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using the Hungarian algorithm (Kuhn, 1955)). However, since different cell types generally have
different types of activity and different sets of signal data sets, such a mapping is generally very
poor. Third, one could use all data from all cell types in one model (sometimes called “stacked”
annotation), but this strategy must either give the same label to each position for every cell type or
use a separate label for each pattern of labels across cell types, which requires an exponentially-large
number of labels.

Two additional methods have been proposed to annotate multiple cell types. The first, called
hiHMM (“hierarchically-linked infinite HMM”) maintains a separate model for each cell type and
uses a regularization penalty to encourage the models to have similar parameters (Ho et al., 2014).
This addresses the problem of requiring the same set of data across cell types, but does not share any
position-specific information between cell types. The second method for performing multi-cell-line
annotation, called TreeHMM, is given a tree over cell types and models the transition between
labels between neighboring positions and also between neighboring developmental states (Biesinger
et al., 2013). This model can integrate position-specific information between cell types, but requires
that each cell type has the same available data and is sensitive to any cross-experiment artifacts.
Moreover, the complexity of this model forced the authors to resort to approximate methods for
inference, which likely decreases the quality of the resulting annotations.

These two problems—requiring a common set of data and failure to integrate evidence—are
especially important because, although there are virtually limitless cell types and cell states that
one would like to understand, very limited numbers of experiments have been performed in most of
these cell types due to the cost of genomic experiments. For example, ENCODE has performed 335
experiments in its most-studied cell type, but has performed just 2-10 experiments in more than
100 cell types.

Transferring information with GBR removes the requirement for a common set of data across
cell types and does integrate position-specific evidence across cell types. Therefore, GBR provides a
method leveraging all available data in order to produce high-quality annotations of each cell type.

5 Related optimization methods

Clearly, the most straightforward way to express pairwise interactions in a graphical model is to
encode them in the underlying graph and to use approximate methods (reviewed in (Wainwright
and Jordan, 2008)) to enable inference. This form of interaction is quite general, in that when one
adds a factor ¢(y;,y;) between two random variables Y; and Y}, these random variables may have
any type of interaction, expressed by ¢(y;,y;). GBR, on the other hand, asks only for similarity
between the marginals, meaning that p(y;|-) and p(y;|-) should be similar. Alternatively, a factor
could encode such similarity, for example if ¢(y;,y;) = A1(y; = y;). Such factors added to an HMM
or CRF would result in a high treewidth model that can be dealt with using approximate inference.
Doing so, however, loses any guarantee of optimality (which we preserve with GBR).

The posterior regularization framework of Ganchev et al. (Ganchev et al., 2010) takes an approach
similar to ours, augmenting a simple model in a way that maintains tractable inference. This
method adds a regularization term to an EM objective in order to require the posterior probabilities
to satisfy logical constraints in expectation. Ganchev et al. show how to optimize this combined
objective efficiently when the regularization term is linear in the posterior distribution of the model.
Unfortunately, pairwise similarity relationships cannot be expressed with such a linear regularization
term.

The most similar work to ours are the following three methods for graph regularization. First,
Altun el al. (Altun et al., 2005) describe a graph regularization applied to a max-margin model applied
to pitch-accent prediction and optical character recognition. However, this method involves a matrix
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inversion step, and thus cannot scale to large models. Second, Subramanya et al. (Subramanya et al.,
2010) combine a temporal CRF with a regularizer that expresses pairwise squared-error penalties
derived from unlabeled data. They apply this method to the part-of-speech tagging task (Subramanya
et al., 2010) and later to related problems in natural language (Das and Petrov, 2011; Das and Smith,
2011). That work, however, resorts to a purely heuristic update step, and lacks any optimality
guarantees. Third, He et al. (He et al., 2013) present an approach based on an exponentiated gradient
descent algorithm. Like our approach, He’s approach exhibits monotone convergence. Although
He’s work has many similarities with our approach, our methods were developed independently,
and He’s work differs from ours in three important ways. First, He et al. (He et al., 2013) use
an exponentiated gradient descent strategy, while we use alternating minimization. Second, He’s
method uses a squared-error penalty, which is inappropriate for probability distributions, unlike our
use of the Kullback-Leibler divergence (Bishop, 1995, p. 226). Third, the exponentiated gradient
descent method is applied to handwriting recognition and part-of-speech tagging, while we apply
GBR to genome annotation.
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Supplementary Figures/Tables

Data type URL
CAGE http://www.gencodegenes.org/releases/7.html
ENCODE (ChIP-seq, DNase, Replication timing)  http://hgdownload.cse.ucsc.edu/goldenPath/hgl9/encodeDCC/
ChIP-seq (Roadmap) http://www.roadmapepigenomics.org/data
Hi-C http://yuelab.org/hi-c/download.html
Topological domains http://www.cs.cmu.edu/~ckingsf/software/armatus/

Supplementary Table 1: Data sources
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IMR90 domain annotation Eight-cell type domain annotation GM12878 reduced annotation

DNase
H2aKbac
H2aK9ac
H2a.Z
H2bK120ac
H2bK12ac
H2bK15ac
H2bK20ac
H2bKbac
H3K14ac DNase
H3K18ac H2a.Z
H3K23ac H3K27ac H3K27me3 Himel
H3K27ac H3K36me3 H3K3me3
H3K27me3 H3K4mel H3K9ac
Input data sets H3K36me3 H3K4me2 H3K27
ac
H3K4ac H3K4me3 H3K27me3
H3K4mel H3K79me2
H3K36me3
H3K4me2 H3K9ac H4K20mel
H3K4me3 H3K9me3
H3K56ac H4K20mel
H3K79mel
H3K79me2 H3K9ac
H3K9mel
H3K9me3
H4K20mel
H4Kb5ac
H4K8ac
H4K9lac
Repli-seq
Number of labels 8 8 25
Transition weight (Atransition) 48 12 1
Number of random EM initializations 10 10 10
GBR graph scale (Ag) 1 1 1
GBR optimization hyperparameter (AR1) 1 1 10

Supplementary Table 2: Parameters of all genome annotations
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GOID Bonferroni-corrected p-value Name

GO:0008150 5.44809636039661e-49 biological process

GO:0070647 5.36690477736568e-14 protein modification by small protein conjugation or removal
GO0:0016567 2.53980288482968e-13 protein ubiquitination

G0:0032446 3.48958938873894e-13 protein modification by small protein conjugation
GO:0071840 1.2816846277191e-07 cellular component organization or biogenesis
GO:0048522 3.15663523300463e-07 positive regulation of cellular process
G0:0016043 1.55013794212494e-06 cellular component organization

GO:0050953 2.07559208909527e-06 sensory perception of light stimulus
GO:0007601 2.79978686922173e-06 visual perception

GO:0006996 2.18396515274592e-05 organelle organization

G0O:0016071 7.40708736771575e-05 mRNA metabolic process

GO0:0048519 0.000123587368672724 negative regulation of biological process
G0:0023056 0.000191430490530164 positive regulation of signaling

GO0:0048518 0.000239550248137195 positive regulation of biological process
G0:0032270 0.000250487526217915 positive regulation of cellular protein metabolic process
GO0:0018146 0.000336577942863192 keratan sulfate biosynthetic process
GO:0007005 0.000402299808664309 mitochondrion organization

G0:0010647 0.000414643467676553 positive regulation of cell communication
G0:0032268 0.000530771233104358 regulation of cellular protein metabolic process
G0:0043928 0.000623789428174407 exonucleolytic nuclear-transcribed mRNA catabolic process involved in deadenylation-dependent decay
G0:0000288 0.000670978259119087 nuclear-transcribed mRNA catabolic process, deadenylation-dependent decay
GO0:1903320 0.00117566239446111 regulation of protein modification by small protein conjugation or removal
GO:0009967 0.00131477493050438 positive regulation of signal transduction
GO0:1902533 0.00136644459633516 positive regulation of intracellular signal transduction
GO0:0048523 0.00148158842395948 negative regulation of cellular process
G0O:0051340 0.00150521495507962 regulation of ligase activity

G0O:0000291 0.00193533449146964 nuclear-transcribed mRNA catabolic process, exonucleolytic
G0:0031401 0.00194625332376889 positive regulation of protein modification process
G0O:1903047 0.00215993757988771 mitotic cell cycle process

G0O:0042531 0.00237481842965934 positive regulation of tyrosine phosphorylation of STAT protein
GO:0007267 0.0039286364798486 cell-cell signaling

G0O:0006401 0.00399526165008678 RNA catabolic process

G0:0031396 0.00443702013802013 regulation of protein ubiquitination
G0O:0000278 0.00470584872871359 mitotic cell cycle

GO0:0051351 0.00495154943903681 positive regulation of ligase activity
G0:0051438 0.00524041402868326 regulation of ubiquitin-protein transferase activity
G0:0042339 0.0053487952592411 keratan sulfate metabolic process

GO0:0051247 0.0056999635780996 positive regulation of protein metabolic process
GO0:0016265 0.00629144608895318 death

GO:0046427 0.00671456368410498 positive regulation of JAK-STAT cascade
G0:0008219 0.0067422659494943 cell death

G0O:0000956 0.00698342075165014 nuclear-transcribed mRNA catabolic process
GO0:0031399 0.00786100228743956 regulation of protein modification process
G0:0044770 0.00795426575038111 cell cycle phase transition

GO:0051246 0.00937868333257509 regulation of protein metabolic process

Supplementary Table 3: GO terms enriched for genes in BRD domains
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GOID

Bonferroni-corrected p-value

Name

G0O:0001944
GO:0001568
GO:0072358
GO:0072359
G0O:0048598
G0:0032501
GO:0044707
GO:0007275
GO0:0032502
GO:0009653
GO:0048646
G0:0048856
G0:0048514
G0:0044767
GO:0008150
G0O:0009888
GO:0048731
G0O:0030198
G0O:0043062
G0O:0040011
GO:0048523
GO:0048513
G0O:0009887
GO:0060429
GO:0009605
GO:0048519
GO:0048869
GO:0009790
GO0:0030154
G0:0048522
G0:0048870
GO:0051674
G0O:0048518
GO:1902533
GO:0071840
G0O:0030334
GO:0007389
GO:0051270
G0O:2000145
G0:0040012
G0O:0016043
G0:0001501
GO0:0008219
GO0:0001525
GO:0009966
GO:0016265
G0O:0009967
G0:0016477
GO:0048568
G0O:0001503
GO:0006915
GO:0048729
G0:0012501
G0O:0010647
G0O:0003007
G0:0010628
G0:0023056
GO:0051239
GO0:0031325
G0O:0002009
GO:0048863
GO:0042325
GO0:1902531
G0:0044236
G0:0009893
G0:0022603
GO:0035295
G0O:0006928
G0O:0010604
G0O:0010646
GO:0050793
GO:0048562
GO:0032879
GO:0080134
GO:0048705
GO:0048864
G0:0023051
GO:0006334
GO:0045893
GO:0007167
G0:0003002
GO:0051254
G0:1902680
G0O:0023014
GO:0008283
G0O:0048583
G0O:0006333
GO:0007507
GO:0042127
G0O:2000026
G0O:0010941
G0O:0043408
GO:0044259

2.9592753850599e-11
1.34928597594565e-09
1.87785996344277e-09
1.94865728031881e-09
2.33761516882996e-09
4.29504418805107e-09
6.45108090271442e-09
9.54873387980616e-09
9.87403900226897e-09
1.13900576119261e-08
1.27560082632202e-08
3.44027824649974e-08
3.64379056813118e-08
4.96188838214423e-08
1.09920334986419e-07
1.15062070196739e-07
1.34005756992352e-07
2.54744657740361e-07
2.70008497648116e-07
4.09681657551741e-07
6.00924738320409e-07
1.27555684817328e-06
1.67228271838845e-06
1.75248481849761e-06
2.12388368291444e-06
2.70812717394184e-06
3.99639769208689e-06
4.8142081410924e-06
8.17799427787657e-06
8.79037004023573e-06
9.70748540194382e-06
9.70748540194382e-06
9.8762526690946e-06
1.75047286259699e-05
2.37299292646679e-05
2.38844411436045e-05
3.41057645381657e-05
4.15793772024666e-05
7.20700858370221e-05
7.2398136159996e-05
7.57778182419685e-05
9.16531463777006e-05
0.000103725100284498
0.0001112117619674
0.000112414145595174
0.000115956206339428
0.000119265054523972
0.000141195508435494
0.000148183903115669
0.000148474000627697
0.000174710834263385
0.000185804853094102
0.000193299675551627
0.000264669391358318
0.000308615021011459
0.000312006014076936
0.000458831197316147
0.000694243253157008
0.000823302329284296
0.000843967242091738
0.000980998073137653
0.00125849445147922
0.00144207328720399
0.00151180971326667
0.00161958399151636
0.00169126335423007
0.00223230684414793
0.00230989986294592
0.00236857824547227
0.00252308440283661
0.0026847817189637
0.00285877724714378
0.00295955595643228
0.00335551717091664
0.00370439844279299
0.00389984096973906
0.0040158774598731
0.00406223628626311
0.00414091776655817
0.00519580828357705
0.00540223999981726
0.00549153180374605
0.00598393700399004
0.00676138544251521
0.0070310418956878
0.0072096008049822
0.00732272231577271
0.00736076227709712
0.00771299785801664
0.008432344878453
0.00916678907171083
0.00935020093242137
0.00998773914798186

Supplementary Table 4: GO terms enriched for genes in SPC domains.

vasculature development
blood vessel development
cardiovascular system development
circulatory system development
embryonic morphogenesis
multicellular organismal process
single-multicellular organism process
multicellular organismal development
developmental process
anatomical structure morphogenesis
anatomical structure formation involved in morphogenesis
anatomical structure development
blood vessel morphogenesis
single-organism developmental process
biological process
tissue development
system development
extracellular matrix organization
extracellular structure organization
locomotion
negative regulation of cellular process
organ development
organ morphogenesis
epithelium development
response to external stimulus
negative regulation of biological process
cellular developmental process
embryo development
cell differentiation
positive regulation of cellular process
cell motility
localization of cell
positive regulation of biological process
positive regulation of intracellular signal transduction
cellular component organization or biogenesis
regulation of cell migration
pattern specification process
regulation of cellular component movement
regulation of cell motility
regulation of locomotion
cellular component organization
skeletal system development
cell death
angiogenesis
regulation of signal transduction
death
positive regulation of signal transduction
cell migration
embryonic organ development
ossification
apoptotic process
tissue morphogenesis
programmed cell death
positive regulation of cell communication
heart morphogenesis
positive regulation of gene expression
positive regulation of signaling
regulation of multicellular organismal process
positive regulation of cellular metabolic process
morphogenesis of an epithelium
stem cell differentiation
regulation of phosphorylation
regulation of intracellular signal transduction
multicellular organismal metabolic process
positive regulation of metabolic process
regulation of anatomical structure morphogenesis
tube development
cellular component movement
positive regulation of macromolecule metabolic process
regulation of cell communication
regulation of developmental process
embryonic organ morphogenesis
regulation of localization
regulation of response to stress
skeletal system morphogenesis
stem cell development
regulation of signaling
nucleosome assembly
positive regulation of transcription, DNA-templated
enzyme linked receptor protein signaling pathway
regionalization
positive regulation of RNA metabolic process
positive regulation of RNA biosynthetic process
signal transduction by phosphorylation
cell proliferation
regulation of response to stimulus
chromatin assembly or disassembly
heart development
regulation of cell proliferation
regulation of multicellular organismal development
regulation of cell death
regulation of MAPK cascade
multicellular organismal macromolecule metabolic process
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Supplementary Figure 1: (A) Average squared difference between replication timing values at left and
right sides of significant contacts, as a function of genomic distance, relative to a permutation control
(t-test 95% confidence interval grey error regions). (B) Confusion matrix of Segway annotation
labels at left and right sides of significant contacts (without GBR). Color depicts log,(obs/expected)
relative to a permutation control (Methods). Pairs of annotation labels at significantly interacting
positions match more often than expected by chance (binomial test p < 10716).
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Supplementary Figure 2: Fraction of annotation changed by GBR. Y axis depicts the fraction of
positions that receive a different label between an annotation without GBR and an annotation with
GBR using a certain set of hyperparameters. X axis and color depict the Ag and Ag; hyperparameters
respectively.
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Supplementary Figure 3: Correlation of Hi-C contact strength between IMR90 and H1-hESC. X
and Y axes are log p-values of association of a given pair of positions. Color indicates density of
points. Black lines indicate density contours in 0.1% bins. Spearman r = 0.57.
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Supplementary Figure 4: Distribution of domain labels across eight cell types. Y axis indicates
log2(bases covered by label ¢ in celltype A / (bases covered by label £ / 8)).
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Supplementary Figure 5: Visualization of GO term enrichment for genes in IMR90 (A) BRD

domains and (B) SPC domains using REVIGO (Supek et al.,

2011). Each bubble represents a

cluster of related enriched GO terms. X and Y axes are projected semantic axes defined using
multidimensional scaling on the semantic similarity of each pair of terms.

44



-.1.00
[3)
b5
8'0'75 -
9] type
"g') 0.50 - == Expected
E Observed
30.25~
£
=
© 0.007 1 T 1
0.0 0.5 1.0 15
MB
A

type
=== Expected
Observed

Cumulative frequency
o o o -
¢ N o N o
[} o (4] o

1 1 1 1

o
o
o
i -

i 1 T T 1
00 05 10 15 20
MB

B

Supplementary Figure 6: Enrichment of consistent Segway boundaries for consistent replication
domain boundaries. (A) Fraction of consistent replication domain boundaries overlapping consistent
Segway domain boundaries as a function of the overlap distance. (B) Same as (A), but fraction of
Segway domain boundaries. We used replication domain boundaries called by Pope et al. (2014).
We defined replication boundaries occurring in more than 10 out of 18 cell types as consistent.
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Supplementary Figure 7: Genomic distance distribution of significant IMR90 Hi-C contacts (¢ <
0.05).
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Supplementary Figure 8: Schematic of the three formulations of the objective and the alternating
maximization strategy. Edges in this figure indicate KL terms, labeled according to their weight in
the objective. Boxed formulae are update steps. We perform two reformulations, first splitting ¢
into ¢ and 7™ linked by a KL term of weight Agi, then splitting »™ into ™ and s, linked by a
KL term of weight Ars.
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Supplementary Figure 9: Comparison between inference methods on synthetic data. The X axis shows
o, a hyperparameter controlling the difficulty of inference. The Y axis shows the average accuracy over
200 simulations of MAP inference on the model in question (95% Wilcoxon test confidence intervals).
Bars correspond to five different inference methods: 1) inference on each position independently,
with no chain model (Independent); 2) inference on the chain alone, without using W (Chain); 3)
loopy belief propagation on the chain plus extra factors of Pr(X; = X;) = sigmoid(Aw;;), where
A controls the strength of these factors; (Loopy BP) 4) a variant of GBR using the regularization
graph W and a squared-error penalties as described in (He et al., 2013) (SQ-GBR); and 5) GBR
using the regularization graph W (our method, GBR).
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