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Supplementary Methods
Cupid Site prediction
Cupid evaluates and assigns confidence to candidate miRNA binding sites that were predicted by other methods. Here, we used predictions by TargetScan (Lewis et al. 2005), miRanda (John et al. 2004) and PITA (Kertesz et al. 2007) because of source code availability and because their miRNA binding sites prediction methods are complementary; TargetScan is informed by the structure of miRISC, miRanda locally aligns miRNA and target sequences and estimates their binding energy, and PITA uses predicted RNA structure.
Cupid uses previously identified sites to guide a support vector machine (SVM) (Chang and Lin 2011) based learning process to predict new miRNA binding sites. A total of 588 previously identified miRNA-RefSeq target interactions, corresponding to 1481 putative or verified sites were collected from TarBase (Papadopoulos et al. 2009) (TarBase_V5), TRANSFAC (Matys et al. 2006) (Release 2009.3, October 2009) and miRecords (Xiao et al. 2009)  (March 2010).
Sites were predicted and scored by TargetScan (Lewis et al. 2005), miRanda (John et al. 2004) and PITA (Kertesz et al. 2007) using default parameters in RefSeq-defined 3’ UTRs on December 3rd, 2010, which include 20,491 transcripts for 18,093 genes. We predicted binding sites for 1,218 miRNAs in miRBase (Griffiths-Jones et al. 2006) (Release 16). Overlapping predicted sites from multiple prediction methods (overlaps of one base or more) were attributed to all contributing prediction methods. In total, 36,986,648 sites, corresponding to 11,542,856 interactions, were predicted in RefSeq 3’ UTRs, with no evidence from curated literature. Prediction scores were normalized to produce scores in [0, 1]. Each site was associated with multiple predictive features. Features include:
· Quantile-normalized site scores, as given by TargetScan, miRanda and PITA.
· [0,1]-normalized distance from the start and end of the 3’ UTR.
· PhastCons cross-species conservation score based on the binding-site seed (i.e., the 3’UTR regions aligned to position 2 – 8 of the cognate miRNA) using alignment of 46 vertebrate genomes (Siepel et al. 2005).
Candidate site features were used for site scoring with a support vector machine (Chang and Lin 2011) trained on equivalent features for previously validated sites and sites in 3’ UTRs of previously validated miRNA target genes. For efficiency, sites were first clustered using K-means into 1481 clusters, matching the number of sites representing validated interactions. Euclidean-distance clustering was performed on feature vectors associated with sites. For classification with support vector machines, each cluster was represented by at least one randomly selected site, and large clusters were proportionally represented: x representatives were selected for a cluster that is x times the size of the smallest cluster.
A support vector machine classifier was then trained on selected representatives within a 10-fold cross validation framework, producing a test probability and an exclusion/inclusion decision for each binding-site candidate. The process was repeated 1000 times with cluster representatives chosen de novo at each run, producing an inclusion probability and an inclusion decision for each candidate biding site in each run. Binding site selection was based on a majority vote amongst the 1000 inclusion decisions (bagging), and binding-site scores were set to be the average probability across runs; see Fig. S1. In total, almost 1.6 million sites were selected as high-probability miRNA binding sites by this procedure (Fig. 1D). The learning process is described in greater detail in the later section “The learning process”.
Cupid interaction prediction
All candidate binding sites were used to determine the probability of interactions between miRNAs and 3’ UTRs, independently of selection in Step I. For each candidate interaction, where multiple candidate binding sites for the same miRNA were identified on a specific 3’UTR, additional predictive features, including the number of binding sites, their density, their distance from the 3’UTR start, and their scores computed from the previous step, were integrated using summary functions, including trivial integration when only one binding-site candidate was identified for a specific interaction. In addition to sequence-based features, candidate interactions were evaluated for context-specific statistical dependency and inverse correlation between the miRNA expression and the expression of the candidate-target gene, using normalized mutual information (NMI) estimated by adaptive partitioning (Darbellay  and Vajda 1999). Interactions were then predicted by a support vector machine trained on a set of 588 previously validated interactions, using the same features. In total, the algorithm inferred 529K interactions with a majority vote (Fig. 1E). Only 0.4% of the selected interactions in Step II failed to include at least one binding site selected in Step I. For these, high multiplicity of low likelihood sites compensated for the absence of high-likelihood individual sites.
Because of our stringent criteria, all candidate functional interactions (in Step III) had interaction scores greater than 0.8, and so, while not by design, none of the interactions that were supported by ceRNA were missed in Step II.
Computing normalized mutual information (NMI). All classifying parameters were normalized to [0, 1] to simplify candidate clustering. The normalize mutual information between expression profiles of miRNA M and gene G was computed as

where  is the mutual information between the expression profiles of the miRNA and its target gene and  is the entropy of the expression profile of the miRNA (Press et al. 2007). Mutual information was calculated using TCGA breast cancer expression profiles, performed by Illumina sequencing (miRNA-Seq and RNA-Seq), for 728 samples, on July 2012; see Table S13 for tumor barcodes used. We used Spearman correlation to identify whether expression profiles are positively or negatively correlated. In total, 1,921 miRNAs and 20,475 genes were profiled.
Interaction parameters. We used the following site-based predictive features for candidate and validated interactions during Cupid Step II.
· Maximum site score
· Median site score
· Medium range site score (max+min)/2
· Sum of site scores
· Product of sites scores, taken as [1-(1-S1)*(1-S2)*...*(1-Sn)]
· Average of sites scores
· Geometric mean of site scores
· Harmonic mean of site scores
· Root mean square of site scores
· Average sum of squares of site scores
· Weighted mean of site scores, where weights are proportional to the minimum distance from start and end of the 3’ UTR
· Sum of site-score squares
· Sum of natural logs of site scores
· Sum of natural exponents of site scores
· Average of site-score squares
· Average of the natural logs of site scores
· Average of the natural exponents of site scores
· The number of sites
· The genomic distance from the most upstream to the most downstream site
· The genomic distance between the closest sites
· The genomic distance between the furthest adjacent sites
· The average distance between adjacent sites
The learning process
When predicting both sites and interactions, we used LIBSVM (Chang and Lin 2011) to score candidates. Given that the number of candidate interactions dwarfs the number of previously identified interactions, down sampling was required to effectively distinguish between candidates with similar properties to those previously identified. When predicting sites and interactions, we randomly sampled 1% of candidates (370K sites and 115K interactions) and proceeded to cluster them according to their predictive properties. When building SVM classifiers, clusters were represented by site and interaction representatives that were chosen by chance. Ten-fold cross validation was ran using these representatives and previously identified sites or interactions to select a (cost, γ) combination for a final classifier that was used to score all candidates (including sites and interactions excluded by the sampling process). To fine tune parameter selection, accuracy maximization, evaluated using a Radial Basis Function kernel, was performed using a grid search process. Probability estimates are a confidence measure for the classification using the final classifier (Wu et al. 2003), trained on all cluster representatives and using the optimal (cost, γ) combination.
Evidence for ceRNA mediation
Evidence for competition for miRNA regulation was collected by constructing a genome-level network of miRNA-mediated interactions (Sumazin et al. 2011), where each directed interaction between two competing miRNA targets,  regulates  or , that is mediated by miRNAs  provides evidence for regulation of  and  by miRNAs in . Below we describe the construction of this network. The construction focuses on evaluating candidate gene (target, regulator) pairs, first identifying candidate interactions between genes  and  that share a substantial miRNA regulatory program, then identifying a potential set of miRNA mediators  for  and finally evaluating expression-based evidence that the candidate regulator  affects the regulatory potential of  on target  and vice versa. Correct identification of  requires consideration for the binding probabilities between each miRNA and the two genes, and accurate significance estimation requires resolving dependencies between miRNA expression profiles. We describe our methodology, which adopt concepts developed for Hermes (Sumazin et al. 2011). 
Candidate interaction selection. We used a weighted Fisher’s exact test (Alexa et al. 2006) to evaluate candidate gene pairs that potentially compete for miRNA regulation. The test is based on Cupid interaction scores for each Cupid-evaluated miRNA (1218 miRNAs in total) and each of the two candidate targets. Cupid interaction scores  and for miRNA  and targets  and  are derived from SVM inclusion decisions and range from 0 to 1. The total score over all 1,218 miRNAs is given by the following 2×2 contingency table.
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Apply Fisher’s exact test on the table above to obtain a p-value estimate for the likelihood of the interaction between  and . P values were calculated for all gene pairs, and corrected by FDR using qvality (Kall et al. 2008). Candidates with estimated q-value below 1E-02 were included.
The conditional mutual information (CMI) for candidate miRNA mediators. We evaluate the statistical significance  (p-value) of the test , where the variables indicate the expression of the corresponding RNA species and  is a candidate regulator of . The CMI is estimated using an adaptive partitioning algorithm (Darbellay  and Vajda 1999) by first iteratively partitioning the 3-dimentional expression space evenly into 8 partitions per iteration until partitions are balanced (p>0.05 by chi-squared test), and then summing up CMI across partitions. P values for each triplet, , are computed using a null-hypothesis where the candidate regulator’s expression () is shuffled 1,000 times, thus preserving the pairwise mutual information between miRNA and target. Candidate miRNA mediators with score  were selected and included in Cupid Step III; given the stringency of this cutoff, we used the more permissive cutoff score of  for identifying candidate ceRNA interactions (Table S5).
Interaction significance.  Each candidate interaction , where  is proposed to be regulated by  through competition for candidate miRNA mediators  were then evaluated for expression-profile evidence by combining evidence for all miRNAs in . Define weighted p-value product , then the distribution of  can be approximated by , where  is a chi-square variate with  degrees of freedom, characterized below, without requiring independence of CMI values across miRNAs (Satterthwaite 1946 ; Hou 2005). 




The covariance matrix was numerically estimated using Brown’s method (Brown 1975), see below.

where  denotes the correlation between the null distributions associated with  and . P-values obtained from the chi-squared distribution where corrected by FDR using qvality (Kall et al. 2008), and candidates with estimated q-value below 1E-05 were selected. Note that because of the stringency of ceRNA evidence requirements, some miRNA targets, as predicted in Cupid Step III, may not be associated with a ceRNA interaction if the associated candidate interaction had q-value above 1E-05; of the 299K Cupid Step III interactions, only 247K were predicted to mediate ceRNA interactions. The procedure produces predicted directional interactions and the set of miRNAs that are predicted to mediate these interactions. Predicted interactions, in at least one direction, are taken as evidence for regulation of the target and regulator genes by their predicted mediators. 
Testing sites and interactions
We tested the ability of binding site prediction methods to identify 6,905 41-base crosslink-centered regions (CCRs) (Hafner et al. 2010) in 3’ UTRs of 3,489 genes, considering both sensitivity and precision of site discovery for the top-100 highest expressed miRNAs in HEK293; see Table S2; CCRs were taken from Hafner et. al. (Hafner et al. 2010) without modification. Predicted sites that overlapped CCRs by at least one base were considered true positive predictions. When multiple miRNAs were queried and predicted binding sites for two miRNAs overlapped the same CCR, both were taken as true positive predictions. 
Cumulative distributions for score-percentile F measure were generated by first partitioning all predicted sites into 100 equal-size bins, ordered by decreasing confidence, and then calculating the F measure in 100 iterations, where the F measure is evaluated for the top k bins at iteration k. Cumulative distributions for the top 100 expressed miRNAs was generated by calculating the F measure in 100 iterations, where the F measure is evaluated for the k highest expressed miRNAs at iteration k. The F measure is a harmonic mean of the precision (P) and recall (R), calculated as 

Where precision is the fraction of sites that overlap CCRs relative to the total number of predicted sites, and recall is the number CCRs overlapping predicted sites relative to the total number of CCRs. To avoid miRNA-specific scoring biases, we included all predicted sites for each miRNA. We note that, given that for all tested methods, the number of predictions is larger than the number of validated or tested interactions, the F-measure is practically independent of prediction counts and can be used to compare methods with varying output sizes. Moreover, unlike most methods, the F measure does not require estimating true negative rates; these are impossible to accurately estimate here. By combining precision and recall into a single metric (Radivojac et al. 2013), the F measure allows us to conservatively compare results. Given that Cupid predicts dramatically fewer interactions than other methods, a higher F measure for Cupid means that Cupid has dramatically higher specificity.
When testing interactions using gene expression data, the F measure for each interaction prediction method was calculated by comparing to genes that were down regulated after transfection of precursors of predicted miRNA regulators. Here, for a transfection experiment with a miRNA precursor, we say that genes with –log2 expression fold change greater than 0.5 were down regulated. Then, precision was calculated as the fraction of predicted targets of miRNAs derived from the precursor that were down regulated. Similarly, recall was computed as the fraction of down regulated targets that was predicted to be regulated by at least one precursor-derived miRNA.
Predicting combinatorial interactions between miRNAs
Focusing on each target and its candidate miRNA regulators in isolation, we attempted to predict the target’s mRNA expression profile in TCGA breast cancer tumor samples using ARESLab’s multivariate adaptive regression with splines (MARS) (Friedman and Roosen 1995; Smith et al. 2006), trained on the expression profiles of its candidate miRNA regulators, as predicted by Cupid Step II. The complexity of predictor functions was set during backwards passes that minimized GCV (Craven and Wahba 1979), following piecewise-linear forward construction of up to 21 basis functions with a maximum degree of 3. Briefly, predictor functions are linear combinations of basis functions, and basis functions model multiplicative, or combinatorial, relationships between miRNA species.  We term sets of miRNAs that form non-linear basis functions miRNA modules. MARS was used to construct classifiers of up to 21 basis functions of the form , where  is the expression profile of a predicted miRNA regulator and  is a constant termed knot. Classifiers had a maximum degree of 3, and self-interactions were excluded. Backwards construction was used to reduce the classifier to  basis functions by minimizing the generalized cross validation (GCV) error, , which penalizes for model complexity (Craven and Wahba 1979). Namely we minimize the following

where  is the number of samples in the dataset,  is the expression estimate of the target gene in tumor sample , calculated as transcripts per million (TPM) (Li et al. 2010), and  is its miRNA-expression based prediction (miRNA expression is in reads per million);   is the effective number of parameters as estimated by randomized trace method. In total, based on their inclusion in predictive modules, 72K miRNA pairs had evidence for combinatorial regulation; see Table S7.
Evidence for indirect miRNA regulation
Evidence for indirect regulation. Evidence for indirect regulation can help identify miRNA targets whose regulation is harder to detect using RNA expression profiles alone. Considering each miRNA  and a predicted direct target  from Cupid Step II, we looked for correlation between the breast cancer expression profile of miRNA  and the expression profiles of predicted (direct or indirect) targets of ; we term  effector, and its predicted downstream targets are its regulon. The total RNA abundance of the regulon may be affected following miRNA-mediated inhibition of the effector, even if the effector’s RNA expression is only weakly altered. In total, we found evidence for indirect regulation for over 10K predicted interactions. Tested miRNA-target interactions include interactions between miRNAs and target transcription factors with ARACNe-predicted regulons (Margolin et al. 2006), or with genes perturbed by shRNA in Library of Integrated Network-based Cellular Signatures (LINCS) (Peck et al. 2006). ARACNe predicted nearly 198,000 interactions with 2,447 transcription factors. The LINCS database includes Luminex-based gene expression fold-change estimates for 1171 genes in response to shRNA-mediated silencing of 1,721 and 1,750 genes at 96 and 144 hours after silencing, respectively, in the luminal breast cancer cell line MCF7. LINCS data is given in Table S8 (96H) and Table S9 (144H). Considering each perturbed effector in LINCS, we attempted to construct a regulon for this effector by selecting profiled genes that responded strongly to its perturbation, relative to both other profiled genes and to responses of these regulon candidates to other perturbations. To evaluate the significance of the multivariate correlation between the expression profiles of a miRNA and its potential indirect targets, we calculated the enrichment of their normalized mutual information values relative to normalized information values of the expression profiles of the miRNA and all profiled mRNAs. Significantly elevated normalized mutual information values support indirect regulation by the miRNA and provide evidence that it regulates the effector in breast cancer tumors; see Table S10 for resulting predictions.
ARACNe (Margolin et al. 2006) was used to measure mutual information using adaptive partitioning, with interaction p-value cutoff 1E-07, DPI coefficient 0, and using consensus predictions from 100 bootstraps. Regulons for genes perturbed by three or more targeting shRNAs in LINCS were collected by identifying genes with high and low fold change in response to shRNA transfection relative to both (1) other profiled genes in response to the same perturbation and (2) the gene’s responses to other perturbations. Significance was measured considering log2 of the distribution of fold changes, and these were required to be at least 2.5 standard deviations (STD) from mean on either tail of the distribution. However, because the mean fold change  was not centered at 0, we set the fold change cutoff to . This produced a more conservative selection that guarded against perturbations and genes with skewed fold change responses.
To measure the correlation between miRNA expression profiles and the expression profiles of its predicted indirect targets, we first computed NMI between the miRNA expression profile in TCGA breast cancer tumors and the expression profiles of all transcribed genes. We compared the vector of NMI values associated with predicted indirect targets (the regulon) to the NMI values for all other genes. The comparison used a running sum statistic based on Fisher’s exact test, where we compared, for decreasing NMI cutoffs within the regulon, the number of included and excluded regulon genes and non-target genes. To correct for multiple testing, we used Bonferroni correction for the p-value obtained from the nth iteration of the test, considering this p-value as a selection from n trials.
For ARACNe-predicted regulons, we used a p<1E-10 significance cutoff, thus correcting for testing miRNA targeting of 2447 regulons, and a total of 2,980,446 tests – up to 2,447 transcription factors targeted by up to 1,218 miRNAs – to obtain an FDR of 1E-03 This correction was not possible for LINCS-derived regulons, which were much 4~5 smaller on average than ARACNe-derived regulons. Thus to select a p-value cutoff we used an optimization procedure based on Bayes’ theorem.
Considering , the set of miRNA-target interactions that have been previously shown, and , the set of interactions that we have predicted under a specific significance cutoff, then according to Bayes theorem, we can set  . We seek to maximize precision – the probability that a predicted in interaction is verified, . By Bayes theorem, we seek to maximize . Following this process, we selected a p-value cutoff of 0.01 for both profiling time points, as shown in accompanying figures.
Predictive ability of inferred combinatorial interactions. To test whether our method for predicting combinatorial interactions between miRNA species is able to identify true miRNA-target interactions, we compared its performance on (1) previously described interactions, (2) interactions predicted by Cupid, and (3) randomly selected interactions. Randomly selected interactions were chosen to match the target degree distribution of Cupid predictions, and selection was made from predictions by TargetScan, miRanda, and PITA, where the presence of a predicted site for miRNA m in the 3’ UTR of gene G is interpreted as a prediction that m regulates G. Fig. S3A shows a comparison between success rates that expression profiles of target genes could be predicted at p<1E-03 using targeting miRNA expression profiles, as a function of the number of regulating miRNAs. For a fixed cutoff k, we give the frequency of significant prediction for genes regulated by at most k miRNAs. Our results suggest that, relative to random site selection, multivariate regression based on combinatorial interactions between validated and Cupid-predicted miRNA regulators is significantly more likely to be predictive of target expression. In total, 99% of our predictive classifiers included modules of two or three miRNA species.
To further test predictions with evidence for combinatorial regulation, we selected three genes with significantly predictive miRNA modules and tested whether that the miRNAs whose expression profiles composed these modules are able to alter 3’ UTR luciferase activity of predicted targets. We note that full verification of combinatorial interactions is beyond the scope of this manuscript. CCND1 was predicted to be targeted by a miRNA module composed of miR-16-5p, 106b-5p and miR-452-3p. Its regulation by miR-16-5p and miR-106b-5p was described in numerous studies (Bonci et al. 2008; Kim et al. 2012), but miR-452-3p was not previously known to target CCND1 (Fig. S3B). HIF1A is a known target of miR-17-5p (Taguchi et al. 2008), and we predicted that miR-217 and miR-589-3p combinatorially regulate it (Fig. S3C). In both cases, our assays support potential regulation as predicted.
We predicted that ESR1 is combinatorially regulated by miR-18a-5p (Leivonen et al. 2009) and miR-381. To test regulation by the two miRNAs, we transfected miRNA mimics at 1nM, 10nM and 100nM concentrations; the manufacturer-recommended concentration for testing the effects of miRNA mimics is 100nM. To compare miRNA mimic and miRNA-pair regulation, we transfected mimic pairs at 0.5nm, 5nM, and 50nM per mimic. Our results, reported in Fig. S3D, show that miR-18a-5p transfection effectively down regulated ESR1 3’ UTR luciferase activity at 10nM and 100nM, while miR-381 transfection had little effect at 10nM but was significant (p<0.01) at 100nM. Luciferase activity following co-transfection support the assertion that regulation by the two miRNAs is super additive as transfection of miR-18a-5p and miR-381 at 5nM each was as effective at transfection of miR-18a-5p at 10nM, and transfection of two miRNAs at 50nM each was significantly more effective than transfection of miR-18a-5p at 100nM (Fig. S3D). 
Predictive ability of inferred indirect interactions. We compared the success rate of our method, inferring indirect miRNA regulation based on regulons from ARACNe and LINCS, in identifying true miRNA-target interactions within previously validated interactions, interactions predicted by Cupid, and candidate interactions derived from predictions by TargetScan, miRanda and PITA. For each candidate miRNA-effector interaction, we evaluated the significance of the multivariate correlation between the expression profiles of the miRNA and genes in the effector’s regulon. Figures S4A and S4B depict the frequency of significant correlations between miRNAs and regulons, as a function of significance cutoffs. Results, given in figures S4A‑B, suggest that indirect regulation is significantly more likely for true miRNA-target interactions. In total, expression profiles of miRNAs and regulons, corresponding to miRNA-effector interactions predicted by Cupid, were significantly more likely to be correlated than those predicted using TargetScan, miRanda and PITA sites; p<4E-30 and p<4E-06, for ARACNe and LINCS regulons, respectively. Previously validated miRNA-effector interactions were the most likely to have significant miRNA-regulon correlations, but only 151 and 202 miRNA-effector interactions were tested for ARACNe and LINCS regulons, respectively. ESR1 regulons were constructed using both ARACNe and LINCS predictions, resulting in evidence for indirect regulation for 44 candidate ESR1 regulators; 5 of these candidate miRNA regulators were shown to regulate ESR1 3’ UTR luciferase activity in Fig. 6. Tumor barcodes used for evaluating correlation between miRNA and ESR1 protein expression are given in Table S13.
Subtype-specific activity and pathway enrichment
To predict subtype-specific activity of miRNAs and ceRNAs, we required that both regulator and targets have significant subtype-specific expression by comparing expression profiles in tumors that are classified as one subtype to expression profiles in all other classified tumors. A miRNA is said to have subtype-specific activity if it is significantly high or low in one tumor type relative to others (p<1E-3) and its targets are enriched for genes that are low or high in that tumor type (p<1E-4), respectively, according to running sum statistics. Similarly, a ceRNA regulator is said to have subtype-specific activity if its expression profile is significantly high or low in one tumor type and its targets are expressed high or low in that tumor type, respectively. To evaluate enrichment, each gene was assigned expression fold change, comparing its expression in this tumor to other classified tumors. We then compared fold changes associated with predicted targets of a regulator (regulon) to those of all other genes. The comparison used a running sum statistic based on Fisher’s exact test, where we compared, for both decreasing and increasing fold changes independently, the number of included and excluded regulon genes and non-target genes. To correct for multiple testing, we used Bonferroni correction for the p-value obtained from the nth iteration of the test, considering this p-value as a selection from n trials. In total, 95 of 1189 miRNAs were found to have subtype-specific activity (Table S11).
To evaluate pathway enrichment of a regulator in a given pathway, we evaluated the significance of the overlap between the associated regulon and the gene set associated with this pathway while considering the likelihood that overlap genes are regulated by a given miRNA, using a Poisson binomial test. Considering the likelihood of regulation is especially important for miRNA pathway enrichment because some genes are predicted to be regulated by many miRNAs; if likelihood of regulation is not taken into account, pathways that are enriched for these genes will be found enriched for many miRNAs. The Poisson binomial test for pathway enrichment is computed over the genes in the pathway () that are predicted to be regulated by at least one miRNA. For all genes in , the probability vector (P) gives the frequency of regulation by tested miRNAs; i.e. for each target gene , pi is the proportion of tested miRNAs that regulate ti. Let  denote the size of  and  denote the size of the overlap between the pathway gene set and the regulon, then

where  is the set of all index subsets of size  in  ( choose ). The mean of the Poisson binomial distribution is  and the variance is. By Le Cam's theorem,  can be approximated using the Poisson distribution, which in turn can be approximated by a normal distribution. We approximated two-tail p values using two-tail normal distributions based on the Poisson binomial mean and variance, .
3’ UTR Cloning, In Vitro MIMIC Transfection Conditions and Luciferase Assays
To measure the targeting activity of microRNA MIMICs, the 3’UTRs of specific target genes were cloned downstream of the luciferase-reporter in the pMIR-REPORT vector (Life Technologies #AM5795M) by PCR from human genomic DNA using restriction enzymes. Primer sequences used to clone the 3’UTR targets include
NCOA3-F(MluI): aaacgcgtTGGGTCCTGATCAGAAATAC,
NCOA3-R(HindIII): aaaagcttCAAAGCAGTCACAGCTCAC,
HIF1A -F(MluI): aaacgcgtCTCAGAGCTTTGGATCAAGT,
HIF1A -R(HindIII): aaaagcttCTGGTCCACAGAAGATGTTT,
ESR1-F(MluI): aaacgcgtGGGCTTCTCTTGGTATGTCT,
ESR1-R(HindIII): aaaagcttTGAACATCAAATAGGTTGAGAA,
CCND1-F(MluI): aaacgcgtCTCCGGAGCATTTTGATAC,
CCND1-R(PmeI): aagtttaaacCTTTTTGTCTTCTGCTGGAA,
PDGFRA-F(MluI): aaacgcgtAGACCATTGAAGACATCGAC,
PDGFRA -R(PmeI): aagtttaaacGGGCATTCGTAATACATTTT.


Supplementary Figures
Figure S1. Learning site and interaction features. Cupid selects sites and produces probabilistic site scores for each candidate site and interaction after comparing predictive features of candidates to those of verified interactions. The process begins with sampling 1% of candidates and clustering them according to the number of verified interactions. An SVM is then trained on cluster representatives together with validated interactions within a 10-fold cross validation framework to produce probabilistic scores for each candidate interaction. The process is repeated 1000 times and candidates are scored through consensus decisions across bootstrap runs.

Figure S2: False discovery rates estimated using perturbation tests and protein expression profiling. FDR is estimated as the ratio between the number of antibodies that showed significant (p<0.05) up regulation after transfection of predicted miRNA regulators and the total number of antibodies that showed significant change. Numerical break down is given for each method, including the number of antibodies that showed significant (p<0.05) down regulation (○; red top row) and significant up regulation (○; green bottom row).
 
Figure S3: Interaction predictions with evidence for combinatorial regulation. Multivariate regression was used to predict combinatorial regulation within modules of miRNA regulators, providing additional evidence for functional miRNA targeting. (A) The frequency of target genes predicted to be combinatorially (p<0.001) regulated by multiple miRNA species, as a function of the number of candidate miRNA regulators, where candidate regulators have been previously validated, predicted by Cupid, or drawn by chance from predictions by TargetScan, miRanda and PITA. 3’ UTR luciferase activity assays and miRNA mimic transfections were used to test the regulatory potential of predicted combinatorial miRNAs; validating combinatorial regulation is outside of the scope of this paper. (B) miR-452-3p was predicted to regulate CCND1 in together with miR-16-5p and miR-106b-5p, (C) miR-217 and miR-589-3p were predicted to combinatorially regulate CCND1, miR-17-5p is shown as positive control, and (D) miR-381 was predicted to regulate ESR1 in together with miR-18a-5p; we tested mimic transfections at 1, 10 and 100nM to identify functional transfection regimes. Punctuated mimics correspond to previously validated interactions. Data are represented as mean ± SEM; * p<0.05, ** p<0.01, *** p<0.001.

Figure S4. Interaction predictions with evidence for indirect regulation. (A) expression-based evidence for regulation of transcription factors (effectors) through miRNA-expression correlation with the expression of predicted transcription-factor targets in breast cancer tumors, and (B) genes that respond to silencing of predicted miRNA targets (effectors) in MCF7. We plot the frequency of tested candidate interactions with evidence for indirect regulation by miRNAs as a function of their p-value significance cutoff. Site candidates were drawn by chance from predictions by TargetScan, miRanda and PITA. (C) ESR1 profiles in breast cancer tumors are anti-correlated with the expression of previously validated (Known) and predicted miRNA regulators. We provide data for 44 miRNAs that were predicted to target ESR1 and whose expression was significantly correlated with the expression of ESR1 regulons. The figure follows the design of Fig. 6B and includes miRNA that were not biochemically validated to target ESR1. Tumors were ranked based on the intensity of the expression of each miRNA, showing ESR1 relative expression in tumors where candidate regulator expression ranked at the top and at the bottom 10%; each tumor ranking is independent of the other. We mark the presence of evidence for ESR1 competition for each predicted miRNA regulator (Step III), evidence for combinatorial regulation of ESR1 (Combinat), evidence for indirect regulation of targets genes downstream from ESR1 (Indirect), and ESR1 fold change in tumor samples with low versus high expression for each miRNA.


Supplementary Tables
[bookmark: _GoBack]Table S1. MiRNA-target predictions. We provide the sequences of the 3’ UTRs used to query TargetScan, miRanda and PITA, as well as Cupid-predicted sites, interactions, and functional interactions. Predicted sites for miRNA-RefSeq 3’ UTR are described using sequence, position, score and percentile rank. Predicted interactions between miRNAs and target genes are given scores and percentile ranks, and functional interactions are named.
Table S2. Crosslink-centered regions (CCRs) from AGO CLIP. We list all considered CCRs from Hafner et. al. and those that overlap 3’ UTRs, as well as the top 100 expressed miRNAs in HEK293.
Table S3. Comparison of prediction methods using gene expression profiles after miRNA precursor transfection. We describe true positive, false positive and false negative predictions for each of the fourteen tested method, on each of the six experiments and overall experiments in union. 
Table S4. Protein expression profiling following miRNA perturbation. RPPA profiles in MDA-MB-231 after transfection of 159 miRNA mimics and four mock transfections. Profiles for Cupid predictions, at each Step, are summarized on a gene level by taking the mean, and S.E.M. fold change across antibodies for predicted regulators. Fold change estimates, and p-values using two-sample Student’s t-test with equal variance, for each gene-miRNA pair, are given for Cupid predictions at each Step; here we report on results from the antibody that best supports miRNA regulation, and p-values were calculated for individual measurements corresponding to a gene-miRNA pair by comparing to mock transfections.
Table S5. Evidence for competition for miRNA regulation. Predicted miRNA mediated interactions between genes competing for miRNA regulation. We also provide significance estimates for the size of the shared miRNA program (Candidate interaction selection), and for expression-based evidence (interaction significance).
Table S6. Verified interactions amongst those tested in Figures 5,6,S3. Previously reported miRNA-target interactions were compiled from miRWalk (Dweep et al. 2011), miRTarBase (Hsu et al. 2011), and miRecords (Xiao et al. 2009). Here, for every interaction tested, we describe the databases with pointers to evidence for the interaction.
Table S7. miRNA modules. We describe genes that are predicted to be regulated by miRNA modules (combinatorial regulation), and the interactions for which we claim to have evidence.
Table S8-S9. LINCS fold-change data in MCF7. Target response to perturbagens 96 hours (S8) and 144 hours (S9) after transfection. For each target gene profiled at a given time point after each perturbation, we provide the number of replicates (Luminex plates), observed fold change relative to control, and the standard error across plates.
Table S10. Interactions with evidence from indirect regulation. We give the list of candidate miRNA targets (effectors) for which we have predicted target sets from ARACNe and LINCS analysis, target regulons for each effector, and the evaluation of candidate miRNA-effector interactions using mutual information between miRNA expression profiles and the expression profiles of its target regulons. These are given for ARACNe-derived regulons, and LINCS-derived regulons at the two time points.
Table S11. Regulators with subtype-specific activity. For each of Luminal A, Luminal B, Her2-enriched and Basal-like subtypes, we identified miRNAs and ceRNAs (regulators) with subtype specific activity. For each subtype, we list regulators with activity that is specific for this subtype, providing expression difference as fold change and p value (by U test), together with target enrichment analysis, showing average fold change and the significance of enrichment of predicted target expression in this subtype. All comparisons use differential expression comparing expression in tumors of this subtype to tumors classified as one of the other subtypes.
Table S12. Regulators with pathway-specific activity. For each of 17 pathway databases, we identified miRNAs and ceRNAs whose targets where enriched in reported pathways (gene sets) using the Poisson binomial test. The p value of the statistics is approximated by a Z statistics, and parameters are given; p values are adjusted using Bonferroni correction.
Table S13. TCGA breast cancer barcodes. TCGA tumor barcodes, including tumors with paired miRNA-mRNA and miRNA-protein expression profiles.
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