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Supplementary Materials and Methods
Determining the appropriate statistical framework for our data set through simulations
In our statistical framework, one of the key inputs for determining whether a gene exhibits allele-specific mRNA decay rate is the variance in the estimates of the proportion, pBY, of reads derived from the BY transcript across time points (see Methods). It has been suggested in the past that the variances in RNA-seq data sets might be better analyzed if it is assumed they are overdispersed (Anders and Huber 2010; Marioni et al. 2008).  In our statistical framework, rather than a binomial model, we could allow for excess-binomial variation by taking a quasi-likelihood approach (McCullagh and Nelder 1989) with
E[N1(t)] = [N1(t) + N2(t)] p(t)
var(N1(t)) = k[N1(t) + N2(t)] p(t)(1 – p(t))
where k is a parameter that is estimated and allows for overdispersion.
Though we did not expect to find a high degree of overdispersion in our data set because we were estimating variance in a proportion of one allele over a time course rather than the variance in raw read counts between technical replicates (and, indeed, the median estimate of overdispersion for all genes in our data set is 0.927, while the mean is 1.247), we decided to further explore the effect of assuming overdispersion on our data analysis framework. Therefore, we simulated data sets in which the read counts from the genes derived from either a standard binomial distribution or, to allow for overdispersion, a beta-binomial distribution. More specifically, under the beta-binomial distribution, we performed three sets of simulations: one in which the beta-binomial parameters a and b corresponded to an overdispersion parameter, k, of 1.25; one in which a and b corresponded to a k of 10; and one in which a and b corresponded to a k of 25. The beta-binomial parameters a and b can be determined from the desired amount of overdispersion k, as well as pBY and the coverage at the simulated gene, N, by the following equations:
a = 
b = 

Under all distributions, the mean pBY = 0.5 for all time points for genes simulated under the null hypothesis. For genes simulated under the alternative hypothesis, the mean pBY = 0.5 at the 0 minute time point, and the mean pBY at subsequent time points was calculated to correspond to the median effect size observed for genes identified to exhibit allele-specific decay in our real data set. Finally, in our simulated data sets, the coverage for each gene was sampled from a Poisson distribution with λ = 331.5, where 331.5 is the median coverage per gene in our real data set. Using the statistical framework we developed, we analyzed each simulated data set either with or without assuming the data were overdispersed, by calculating the variance either under a standard binomial distribution or under a quasibinomial distribution, respectively. For comparison with our Bayesian method, we also assessed statistical significance using a likelihood ratio test and corrected for multiple testing with the QVALUE software (Storey 2002; Storey and Tibshirani 2003; Storey et al. 2004).

Identifying allele-specific differences in mRNA decay rate via a frequentist test
In addition to using a Bayesian hierarchical model (see Methods) to identify genes with significant allele-specific differences in mRNA decay rate, we also tested whether the parameter estimate , which we obtained from our linear logistic model (see Methods), differed from zero (i.e. the gene exhibited allele-specific mRNA decay rate) using a likelihood ratio test. We corrected for multiple testing with the QVALUE software (Storey 2002; Storey and Tibshirani 2003; Storey et al. 2004). Using this approach, the null can be rejected with small departures from non-constancy due to high read counts. Therefore, we imposed a threshold of 0.004 on the magnitude of the change in the odds of observing an mRNA allele of the BY strain given a one minute increase in time; all genes with an effect size lower than 0.004 were discarded from the set of genes we identified at FDR = 10% as exhibiting allele-specific mRNA decay rate. We chose this threshold by comparing the distributions of the magnitude of the change in the odds of observing an mRNA allele of the BY strain given a one minute increase in time between genes with q-value < 0.10 and q-value > 0.10 (Figure S2A).
Supplementary Results
Our novel statistical framework with no overdispersion outperforms other methods of assessing statistical significance
From a standard binomial distribution, as well as from beta-binomial distributions corresponding to k = 1.25, 10, and 25, we simulated ten data set replicates, each of ten-thousand genes, for each  between 0.1 and 0.9, incrementing by 0.2 (see Table S1). We found that if binomially-distributed data are analyzed under the assumption of no overdispersion, our newly-developed statistical framework more accurately calculates  and better identifies individual genes as exhibiting allele-specific mRNA decay rate than the likelihood ratio test corrected for multiple testing with the QVALUE software (Figure S1 and Table S1). However, if binomially-distributed data are analyzed under an assumption of overdispersion, both methods of assessing statistical significance underestimate  and over-identify individual genes as exhibiting allele-specific mRNA decay rate (Figure S1 and Table S1). Interestingly, for moderately overdispersed data (k = 1.25), it is also more accurate not to assume overdispersion when using our model (Figure S1 and Table S1). When using the likelihood ratio test corrected for multiple testing with the QVALUE software on moderately overdispersed data, it is only marginally better to assume overdispersion  (Figure S1 and Table S1). If the data is more severely overdispersed (k = 10 or 25), both our newly-developed statistical framework and the likelihood ratio test corrected for multiple testing with the QVALUE software perform very poorly regardless of whether or not the method assumes overdispersion (Figure S1 and Table S1).

Gene sets identified as exhibiting allele-specific differences in mRNA decay rate via two different methods show a high degree of overlap
To identify genes exhibiting allele-specific differences in mRNA decay rate, we used a linear logistic model to measure the change in the proportion, pBY, of reads derived from the BY transcript as a function of time. We then assessed statistical significance with two different methods for dealing with genes that have high read counts, but only small (and, therefore, likely non-biologically significant) departures from non-constancy: a Bayesian hierarchical Markov chain Monte Carlo model (see Methods), or a likelihood ratio test in which we imposed a threshold on the effect size a gene needed to exhibit in order to be called as significant (see Supplementary Methods). Using the Bayesian hierarchical model, we identify 350 genes as significant (see Results). Before imposing a threshold on the results of the likelihood ratio test, we identify 358 genes as significant at a FDR = 10%; however, only 323 genes of these genes meet our threshold of a greater than 0.004 change in the odds of observing an mRNA allele of the BY strain given a one minute increase in time. 310 (96.0%) of the 323 genes we identify with our thresholding method overlap with the set of 350 genes we identify using the Bayesian hierarchical Markov chain Monte Carlo model (Figure S1B). Thus, the two approaches agree well with one another.
Supplementary Figure Legends
Supplementary Figure 1 ROC curves for analyses of simulated data sets using our novel statistical framework. From a standard binomial distribution, as well as from beta-binomial distributions corresponding to an overdispersion parameter, k, = 1.25, 10, and 25, we simulated ten data set replicates, each of ten-thousand genes, for a  = 0.7 (i.e. 30% of genes exhibited allele-specific mRNA decay rate). We then analyzed each of these data sets in two ways using our newly developed statistical framework: first, we calculated the variance for each gene assuming the data set came from a standard binomial (i.e., not overdispersed) distribution; second, we calculated the variance for each gene assuming the data came from a quasibinomial (i.e. overdispersed) distribution. To make each ROC curve, we varied the threshold on the posterior probability of no difference in mRNA decay rate that we used to identify genes with significant differences in allele-specific mRNA decay rate. The ROC curves calculated for data analyzed under the assumption of no overdispersion are shown in shades of red, while the ROC curves calculated for data analyzed under the assumption of overdispersion are shown in shades of blue. The black dotted line corresponds to the ROC curve we would expect to see if our analysis method were performing no better than random chance. As shown by the curves in the figure, it is more accurate to analyze binomially-distributed data under the assumption of no overdispersion than under the assumption of overdispersion when using our newly developed statistical framework. It is also more accurate to analyze modestly overdispersed (k = 1.25) data under the assumption of no overdispersion. For data with more severe overdispersion (k = 10 or k = 25), our newly developed statistical framework performs poorly, regardless of the assumptions made about overdispersion.
Supplementary Figure 2. A) Choice of a threshold for identifying genes with allele-specific mRNA decay rate differences based on comparison of the distributions of the parameter estimate . We compared the distributions of the magnitude of the change in the odds of observing an mRNA allele of the BY strain given a one minute increase in time (|λBY – λRM|) between the set of genes we identified from a likelihood ratio test at FDR = 10% as exhibiting allele-specific mRNA decay rate (bottom histogram) and all other genes (top histogram). Based on these two distributions, we chose a threshold of |λBY – λRM| = 0.004 (red vertical line) and discarded genes with a |λBY – λRM| below this threshold from our set of significant genes. B) Overlap between gene sets identified as exhibiting allele-specific differences in mRNA decay rate via two different methods. Using a Bayesian hierarchical Markov chain Monte Carlo model to determine whether the parameter estimate , which we obtained from linear logistic model, differed from zero, we identified 350 genes with allele-specific mRNA decay rate differences. Using a likelihood ratio test in which we imposed a threshold on the effect size a gene needed to exhibit in order to be called as significant, we identified 323 genes with allele-specific mRNA decay rates. 310 (96%) of the 323 genes we identify with our thresholding method overlap with the set of 350 genes we identify using the Bayesian hierarchical Markov chain Monte Carlo model. Thus, the two approaches agree well with one another.
Supplementary Table Legends
Supplementary Table 1 Estimates of π0 and the number of significant genes from a likelihood ratio test corrected for multiple testing with the QVALUE software and from our novel statistical framework for eight sets of simulated data. From a standard binomial distribution, as well as from beta-binomial distributions in which the parameters a and b corresponded to an overdispersion parameter, k, of 1.25, 10, and 25, we simulated ten data set replicates, each of ten-thousand genes, for each  between 0.1 and 0.9, incrementing by 0.2. In the table, each row corresponds to one group of ten replicates (each replicate consists of a set of ten-thousand genes), while column 1 identifies the distribution from which we sampled the data, column 2 gives the k for that distribution, and column 3 gives the proportion of genes that we simulated under the null hypothesis for each data set in the group of ten replicates. Column 4 identifies whether we analyzed the simulated data sets with or without assuming overdispersion, i.e. whether we calculated the variance under a standard binomial distribution or under a quasibinomial distribution, respectively. The mean and standard deviation of the  we calculated for the ten replicates using likelihood ratio test corrected for multiple testing with the QVALUE software (Storey 2002; Storey and Tibshirani 2003; Storey et al. 2004), or using our newly-developed statistical framework involving a Bayesian hierarchical Markov chain Monte Carlo model are shown in columns 5 and 6, respectively. The mean and standard deviation of the number of genes we identified as exhibiting allele-specific mRNA decay rate across the ten replicates using likelihood ratio test corrected for multiple testing with the QVALUE software (Storey 2002; Storey and Tibshirani 2003; Storey et al. 2004), or using our newly-developed statistical framework involving a Bayesian hierarchical Markov chain Monte Carlo model are shown in columns 7 and 8, respectively.
Supplementary Table 2 Genes that exhibit allele-specific mRNA decay and contain a lone single nucleotide variant. We identified 13 genes with allele-specific mRNA decay (ASD) that possess a single variant between the BY and RM alleles of the transcript. In the table, column 1 identifies the gene in which the lone single variant resides, while column 4 provides the location of the variant in the BY genome and column 6 provides the location of the variant in the RM genome. Column 2 shows the posterior probability of ASD we calculated for the gene from our statistical model (see Methods) and column 3 shows our estimate of the slope calculated from the linear logistic model for the gene. The exponential of the slope is the change in the odds of observing an mRNA allele of the BY strain given a one minute increase in time for the gene. Columns 5 and 7 provide the BY and RM alleles of the variant, respectively; column 8 lists the type of change the variant affects in the transcript.
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