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SUPPLEMENTARY TABLE LEGENDS
Table S1. Genome sequencing and annotation of single nucleotide polymorphisms (SNPs), deletions and insertions in the genome of Saccharomyces cerevisiae for the first evolution line (Msh2-1). Mutations for each of the isolation points (Msh2-1 passage 20 to passage 100) were identified and compared to that of the ancestor. The presence of the mutation at each time point is indicated and its absence is labeled with -. The chromosome, position, type of mutation, annotation of the mutation, gene affected, and gene annotation are indicated.
Table S2. Genome sequencing and annotation of single nucleotide polymorphisms (SNPs), deletions and insertions in the genome of Saccharomyces cerevisiae for the second evolution line (Msh2-2). Mutations for each of the isolation points (Msh2-2 passage 20 to passage 100) were identified and compared to that of the ancestor. The presence of the mutation at each time point is indicated and its absence is labeled with -. The chromosome, position, type of mutation, annotation of the mutation, gene affected, and gene annotation are indicated.
Table S3. Genome sequencing and annotation of single nucleotide polymorphisms (SNPs), deletions and insertions in the genome of Saccharomyces cerevisiae for the third evolution line (Msh2-3). Mutations for each of the isolation points (Msh2-3 passage 20 to passage 100) were identified and compared to that of the ancestor. The presence of the mutation at each time point is indicated and its absence is labeled with -. The chromosome, position, type of mutation, annotation of the mutation, gene affected, and gene annotation are indicated.
Table S4. Genome sequencing and annotation of single nucleotide polymorphisms (SNPs), deletions and insertions in the genome of Saccharomyces cerevisiae for the fourth evolution line (Msh2-4). Mutations for each of the isolation points (Msh2-4 passage 20 to passage 100) were identified and compared to that of the ancestor. The presence of the mutation at each time point is indicated and its absence is labeled with -. The chromosome, position, type of mutation, annotation of the mutation, gene affected, and gene annotation are indicated.
Table S5. Genome sequencing and annotation of single nucleotide polymorphisms (SNPs), deletions and insertions in the genome of Saccharomyces cerevisiae for the fifth evolution line (Msh2-5). Mutations for each of the isolation points (Msh2-5 passage 20, 50 and passage 90) were identified and compared to that of the ancestor. The presence of the mutation at each time point is indicated and its absence is labeled with -. The chromosome, position, type of mutation, annotation of the mutation, gene affected, and gene annotation are indicated.
Table S6. Cellular localization of gene duplicates in Saccharomyces cerevisiae. The sub-cellular localization of each of the gene copies of duplicates in S. cerevisiae was extracted using the GO functional annotation from the Munich Information Centre for Protein Sequences using the Comprehensive yeast Genome Database (MIPS Saccharomyces cerevisiae genome database: http://mips.helmholtz-muenchen.de/genre/proj/ yeast/singleGeneReport.html?entry = yer175c (Guldener et al. 2005). Missing information is indicated (-).
[bookmark: _GoBack] Table S7. Gene duplicates are more plastic in their expression than singletons. We compared the variation in expression levels of duplicates to that of singletons under 32 conditions of stress (column 1 of the table). Second column refers to such expression variation for all duplicates, the third to that of singletons, the fourth variation of expression of whole-genome duplicates (WGDs), and the fifth refers to that of small-scale duplicates. Variation of expression was calculated as in equation (eq.4) of the manuscript. The reference to the studies that obtained the microarray data under each of the stress conditions is given in the sixth column of the table.
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