Supplementary Results
Functional analysis of significantly varying protein traits
We used Gene Ontology term analysis to determine functional enrichment of protein traits that vary significantly in the BYxRM cross.  We used a 20% protein level variation cutoff for both up and down-regulated protein traits.  The 96 genes showing at least 20% decreased protein level in outcrossed progeny are significantly enriched in biological process terms for hexose catabolism, trehalose metabolism, and the stress response (p<10-4, Supplementary Table 3, Supplementary Methods). Conversely, the 101 genes associated with a 20% or greater increased protein level in outcrossed cells are enriched in sterol and alcohol metabolism and heme binding.  

Identification of causal alleles underlying several mapped pQTLs
We found that the Hxt2-GFP fusion protein was present at an average 33% higher level in the RMxBY compared to the BYxBY offspring (Fig. 1D). The largest RM allele frequency difference between Hxt2-GFP high and low populations was centered on the RGT2 gene (restores glucose transport 2, Fig. 3B), which also harbors a non-synonymous variant labeled deleterious by SIFT (Ng and Henikoff 2003; Bergstrom et al. 2014). We performed a reciprocal hemizygosity test (Steinmetz et al. 2002) to validate the causal role of the RGT2RM allele.  We observed a fourfold increase of the Hxt2-GFP level in RGT2RM/rgt2ΔBY compared to rgt2ΔRM/RGT2BY and RGT2RM/RGT2BY genotypes (Fig. 3C). Similarly, we confirmed that the RM allele of the PDR1 (pleiotropic drug resistance 1) gene with deleterious mutations contributes to increased Pdr5-GFP abundance (Supplementary Dataset 2). 

The causality of the genes affecting protein abundance of HXT2 and PDR5 are further supported by independent evidence in the literature.  An RGT2 mutation is known to upregulate HXT2 expression in high glucose conditions (Ozcan et al. 1996; Ozcan et al. 1998), and PDR1 mutations affect the abundance of PDR5 transcript levels (Meyers et al. 1992). In both of the presented cases, we observe that the RM allele of the regulator is associated with higher target gene product levels compared to the BY allele.
Supplementary Methods

Strain construction
Strains were generated from the BY4742 (BY) or LK1552 (RM11-A) strain (Supplementary Table 1) using the lithium acetate transformation method (Gietz and Schiestl 2007), and PCR-validated for integration of the cassettes. Query strains used for crossing to the GFP collection were checked for correct segregation of the selection markers. Allele replacements in the queries were performed either by crossing and genotyping restriction digest lengths if near-isogenic lines were available (Smith and Kruglyak 2008), or by a two-step method introducing the KlURA3-kanMX cassette to knock out the native allele, incorporating the alternative allele by counter-selecting URA3 construct on 5-fluoroortic acid, confirming loss of G418 resistance, and PCR genotyping.

For reciprocal hemizygosity analysis of PDR1 and RGT2, we knocked out each gene in the haploid MATα RM query strain and the haploid MATa PDR5 or HXT2 GFP array strain (Supplementary Table 1). For both ORFs, we then created three otherwise isogenic diploid hybrids that carry zero to one putative causal gene deletion alleles, and phenotyped these strains  using cytometry as described below.

Generating populations of haploid progeny
The query strains were crossed to the GFP array strains using a modified Synthetic Genetic Array procedure (Tong and Boone 2006). Each query strain was grown overnight (all growth at 30°C unless stated otherwise) on a rectangular YPD plate (2% w/v agar, 2% glucose, 2% peptone, 1% yeast extract) to a thick lawn. The query and array strains were mated by pinning both to the same new YPDA plate (performed using an automated pinning system from S&P robotics, www.sprobotics.com). After overnight growth, the colonies were pinned to diploid selection plate (2% w/v agar, 2% glucose, 0.67% yeast nitrogen base without amino acids (Difco), 10% v/v amino acid dropout mix without histidine, uracil (Sigma Aldrich)), and after two more days of growth, pinned to the second diploid selection plate. After two more days of growth, the colonies were pinned from the second diploid selection plate to sodium acetate sporulation plate (2% w/v agar, 1% sodium acetate, 0.1% yeast extract, 0.05% glucose, amino acid addback mix (methionine, lysine, leucine, uracil, histidine, arginine)). The sporulation plate was incubated at 23°C for 7-10 days, and then pinned to haploid selection plate (2% w/v agar, 2% glucose, 0.67% yeast nitrogen base without amino acids, 10% v/v amino acid dropout mix without histidine, uracil, leucine, arginine, 50 μg/ml canavanine sulfate to select for mating type, ORF-GFP construct, and the nuclear marker HTA2-mCherry-URA3). From counting cells from multiple scraped plates, we measured the average number of BYxRM spores pinned to the haploid selection plate that could grow on the medium to be ~120,000.

Cytometry
After two days of incubation at 30°C, the colonies of haploid segregants from the haploid selection plate were pinned to subculture in 200 μl of low fluorescence liquid medium (2% w/v glucose, 0.1% monosodium glutamate, 0.17% yeast nitrogen base without amino acids and riboflavin, 10% v/v amino acid dropout mix without histidine, uracil, leucine, arginine, 50 μg/ml canavanine sulfate), diluted to ~0.05 optical density, and incubated while shaking at 200 rpm for six to eight hours to obtain mid-log phase growth. The inbred BYxBY and outbred segregant RMxBY populations were pooled in the liquid culture; cis effects screens and reciprocal hemizygosity confirmation were grown separately. We confirmed that about 95% of the cells in the culture have the desired phenotype of meiotic progeny by growing them as single colonies on solid YPDA plates, replica plating to haploid selection medium, and counting viable colonies. After subculturing, 50 μl of the culture was transferred to a 384 well plate (Matrix), and processed in an inverted-horn sonicator (Qsonica, Newton CT) using 10,000J total energy. Single-cell fluorescence and optical scatter were measured using a special-order LSRII flow cytometer equipped with an HTS sampler (BD Biosciences, San José, CA).  GFP, FSC, and SSC parameters were collected from a 50mW 488nm laser through 510/20nm, 488/10nm, and 488/10nm filters, respectively.  mCherry levels were collected from a 50mW 561nm laser through a 610/20nm bandpass filter.  Pulse area and width parameters were collected for scatter parameters, pulse area was collected for fluorescence parameters.  For each strain, 10µl of culture was introduced into the cytometer and data from up to a maximum of 50,000 cells per well were collected.  

Cytometry data processing
All the Python code used to perform the processing, classification, quantification, and normalisation below is available as Supporting Data.
Processing raw data
Four readouts (forward scatter pulse area “FSC-A”, side scatter pulse width “SSC-W”, RFP pulse area “RFP”  and GFP pulse area “GFP”) were extracted from the raw .fcs data files. For each screen plate, the cells were filtered (gated) based on FSC-A, SSC-W, and RFP measurements to include only RFP-positive cells of reasonable size (representative example of filters in Supplementary Fig. 1). Filters were kept constant for the same cytometer settings, and were changed only when the instrument setup changed. 
Identifying unbudded cells, distinguishing RMxBY and BYxBY progeny
The FSC-A, SSC-W and RFP measurements from random 100,000 cells from random 48 wells on each plate were used to cluster the cells into budded vs unbudded cell and BYxBY (high RFP) vs RMxBY (low RFP) progeny classes. To cluster budding state, we fit a three-component Gaussian mixture model including one noise component (with a large prior on variance of individual features) on standardized FSC-A and SSC-W data using the Python sklearn package (Pedregosa et al. 2011). We performed 20 random restarts of the model, ran the EM inference until convergence, and retained the classifier with the highest lower bound. We then fit another classifier to cluster the cells in the unbudded cluster (posterior probability of being in the cluster > 0.8) based on their RFP level. Again, we used a three-component Gaussian mixture model with one noise component on the standardized RFP data, and classified cells into RFP low (RMxBY cross), RFP high (BYxBY cross) or noise population. 
Calculating GFP summary statistics
After training the classifiers, we processed the data from each well by first applying filters, then applying the classifiers to the filtered data, and retaining BYxBY (RFP high) and RMxBY (RFP low) cells in the unbudded cluster (posterior probability > 0.8), discarding the rest. We then calculated the GFP summary statistics (mean, median, variance, count) both on raw data, and log10-transformed data for BYxBY and RMxBY populations. Further, we calculated the same summaries for the 10% of the cells centered on the median cell size (FSC-A). In the following, we use mq,a,s,r, medq,a,s,r, σ2q,a,s,r  to denote the mean (m), median (med), and variance (σ2) of the GFP level within the 10% slice for query strain q, array strain a, screen s, and replicate r. These values, together with additional metadata, are reported in Supplementary Tables 2 and 5. 
Normalizing and comparing GFP measurements
We normalized GFP levels for each query within each plate to a common baseline to account for the daily variation in laser power, alignment, and detector drift. To do so, we fit a linear model mBY,a,1,1 = μ + β mq,a,s,r + εq,a,s,r  and used the fit of that model μ + β mq,a,s,r in analyses to make all values aligned to BYxBY cross screen 1 replicate 1. We discarded clusters that had fewer than 200 cells in the 10% slice, as we observed them to frequently have large variance, and low concordance between replicates. We further filtered out strains for which the average (allowed error 0.2 in log10-scale) or variance measurements (allowed error 1.0 in log10-scale) were discordant between biological replicates in the inbred parent (BYxBY) or outbred segregant (BYxRM) progeny. In total, we discarded 833 ORFs with such discrepancies between biological replicates. Our cytometry-based estimates of average GFP level were highly reproducible between biological replicates of the cross (r2 > 0.98), and across cytometric and microscopic assays (r2 > 0.96, Supplementary Fig. 2-4). 

Microscopy
We transferred concentration-normalized aliquots of the mid-log phase cell suspension used for cytometry into 384-well high throughput microscopy plates (PerkinElmer) based on measured optical density (OD600) of the source culture. We added Dextran Alexa Fluor 647 (MolecularProbes) to 10μg/ml final concentration in a total of 25 μl volume, and imaged four fields from each well on the Opera High Content Screening Platform (PerkinElmer). We first collected the mCherry measurement (561nm excitation wavelength, 600nm emission filter, 800ms exposure), and then the GFP and AlexaFluor measurements (488 and 640 nm excitation wavelength, 540 and 650 nm emission filters, 1200 ms exposure) to avoid bleed-through from the GFP to the RFP channel. 

Processing microscopy data
We used CellProfiler (Stoter et al. 2013) to segment the images and calculate GFP features (pipeline in Supplementary Dataset 3). First, we corrected the image background for any spatial illumination effects. We then smoothed the image using 1 pixel window radius to remove speck noise. We segmented the RFP channel to detect nuclei (tagged with the HTA2-mCherry fusion), expanded from the nuclei in the far red channel to find cell boundaries, and calculated various shape, GFP level and RFP level features for individual cells. Features from individual images were normalized to have the same median across all images, and filtered to only include cells with area between 400 and 3000 pixels, perimeter between 60 and 430 pixels, and nuclear area below 800 pixels. We then calculated GFP summary statistics for each ORF. First, we classified each cell based on nuclear RFP level and nuclear RFP area to belong to the inbred BYxBY cross (normalized log10(RFP) > -0.95, nuclear area > 250), outbred RMxBY cross (normalized log10(RFP) < -0.95, nuclear area < 250), or other. For average GFP level summaries, we calculated the mean and median log10(GFP) for the cells classified to the corresponding cross. 

Estimating variance components from cell images
To obtain variance estimates, we computed pairwise squared differences in GFP level between cells. We distinguished “reciprocal closest” pairs of cells (one is the closest of all cells to the other, and the other is closest of all cells to the one), “near” pairs of cells (distance between nuclear centers below 60 pixels), and “far” pairs of cells (distance between nuclear centers between 160 and 240 pixels). The near and reciprocal closest pairs are aimed to quantify mother-daughter similarity, while the far pairs should capture general variance in the population within a limited region to avoid potential residual spatial effects of illumination. We further stratified the pairs as BY-BY (both cells from BYxBY cross), RM-RM (both cells from RMxBY cross), and the rest, and computed robust variance estimates for each stratum as the median of squared log10 GFP level differences between the pairs of cells. To visualize the relative contribution of mother-daughter, clone-clone, and between-clone variation, we plotted the fraction of variance explained in an equilateral triangle of height 1, where the distance to a side indicates the corresponding contribution (Supplementary Fig. 5). 

Quantifying heritability
We calculated heritability estimates for both single cell protein level, as well as population average protein level. For single cell levels, we assumed the entire considered population to consist of 50% inbred parent (BYxBY) and 50% of outbred segregants (RMxBY), which produces an estimate for the total variance in the population σ2 as 0.5(σ2outbred + σ2inbred + 0.5Δ2), where the σ2outbred and σ2inbred are calculated directly from cytometry data, and Δ is the difference in the outbred and inbred means. We averaged these estimates across replicates. We then computed the heritability as max(0, 1 - σ2inbred/σ2). The assumptions of the population composition and log-transformation of the data affect the distribution of heritabilities, but not the qualitative conclusions drawn (Supplementary Fig. 3d,f). For population average level heritability, we repeated the calculation, but instead of estimating the variances directly from cell measurements in cytometry data, we estimated the average squared error of the population average measurements across replicate experiments (Supplementary Fig. 3e,g). We also used an empirical Bayes approach, employing a global data-driven prior on the per-gene variance to increase robustness to the low number of replicates. For log-scale measurements, we estimated σ2inbred, EB = [r σ2inbred + σ2inbred, global]/(r + 1), where r is the number of replicates used to estimate σ2inbred, and σ2inbred, global is the average σ2inbred estimate across all genes. For linear measurements, we applied the prior in log scale, calculating log10(σ2inbred, EB) = [r log10(σ2inbred) + log10(σ2inbred, global)]/(r + 1). In this case, we calculated the average log-fold mean change s as average log10(σ2inbred /m2inbred) across all genes, where minbred is the average GFP level, and estimated the per-gene empirical prior as σ2inbred, global = 10s*m2inbred. The variance for the outbred cells was estimated analogously. This approach did not affect the qualitative conclusions drawn about the distribution of heritabilities (Supplementary Fig. 3h-k).

Gene Ontology enrichment analysis
We used gProfiler (Reimand et al. 2011) to find statistical enrichment of ORFs with largest changes in GFP abundance between BYxBY and RMxBY crosses in Gene Ontology biological processes, molecular function, and cellular compartments (Supplementary Table 3). We used the options “significant only”, “ordered query”, and “hierarchical sorting”, with all other settings set as default, and looked for enrichment in the genes with at least 20% increase in the RMxBY cross, sorted by the increase in descending order, and in the genes with at least 20% decrease, sorted by largest decrease first. For mRNA level change enrichment, we similarly used the 100 genes with largest increase and decrease order by the magnitude of the effect.

Quantifying cis vs trans effects
We selected 62 ORFs with GFP fusion strains in the GFP collection in the BY haplotype block (BYG), and generated equivalent GFP fusions in the RM genetic background (RMG, see above). Originally, we selected 24 random genes, 24 genes with large variance in GFP level, 24 genes with cis eQTLs in Smith and Kruglyak, and 24 genes with large heritabilities. For the 62 successful RMG GFP fusions, we crossed the BY and RM query strains to the GFP fusion strains in both backgrounds, yielding BYxBYG, BYxRMG, RMxBYG and RMxRMG crosses, and performed the cytometry measurements as described above. We quantified the cis effect of the RM background as the difference between the BYxRMG and RMxBYG normalised GFP level. The 52 pairs of crosses with reproducible signals were used in the analysis.

Cell sorting
Cells we prepared as for cytometry, except the liquid growth was performed on cells combined from three biological replicate haploid selection colonies in 5ml of low fluorescence medium in glass tubes placed in a rolling drum. Cells were sonicated in plates and transferred to 5ml tubes immediately prior to introduction into a FACSAria flow sorter (BD Biosciences). GFP, PE, FSC, and SSC levels were measured from a 20mW 488nm laser through 535/45nm, 585/15nm, 488/10nm and 488/10nm filters, respectively. Compensation for cellular autofluorescence in the GFP channel was performed against the PE channel (~13%). First, cells were gated for size and cell cycle stage using the FSC-A and SSC-W channels, then sorted into populations of very high (top 5%), high (next 5%), very low (bottom 5%) and low (next 5%) populations, with 20,000 cells in each population. Each sorted population was plated onto six 10mm diameter round YPDA plates, grown two days at 30°C. Cells were scraped and pooled into fresh low-fluorescence media as used for pre-growth.  Aliquots of pooled cells were frozen for DNA extraction and archiving (in glycerol), and overnight cultures were inoculated for analysis of GFP level stability using analytical cytometry as described above.

DNA extraction and sequencing
DNA was extracted from sorted populations using a modification of the method of Hoffman and Winston (Hoffman and Winston 1987) followed by ethanol extraction. Multiplexed sequencing libraries were prepared using the Illumina Nextera XT protocol according to the manufacturer’s instructions, normalised according to qPCR yield (Kapa), and sequenced on the HiSeq 2500 instrument using paired end 100 bp reads. RNAseq libraries (see below) were sequenced on one lane of 37bp PE MiSeq and 50bp PE HiSeq 2500 instruments. For some replicates of eight samples, microarrays were used for bulk genotyping in place of sequencing, processed as described below. Both sequence and genotype data have been deposited to public databases (ENA accession PRJEB5268 and ArrayExpress accession E-MTAB-2269).

Processing sequencing data
Reads were mapped to the S. cerevisiae R64 reference sequence using BWA 0.6.2 (Li and Durbin 2009) and alignments processed with samtools 0.1.12.a (Li et al. 2009) (reference indexed with default flags, bwa aln [ref] [read1.fasta] > [read1.aln]; bwa aln [ref] [read2.fasta] > [read2.aln]; bwa sampe [ref] [read1.aln] [read2.aln] [read1.fasta] [read2.fasta] | samtools view –bSu –F 0x04 - | samtools sort –m 536883412 – [bamfile]), and the alignment .bam files used to create pileups at segregating sites (samtools pileup -vcs -N 2 -l [sites] -f [ref] [bamfile] > [outfile], Supplementary Table 6). Data from mRNA sequencing were processed in the same way, except the pileups were constructed at each site (samtools pileup -s -f [ref] [bamfile] > [outfile]).

Allele frequency inference
For each sequenced sample, the posterior distribution of the RM allele frequency at each locus was calculated as outlined before (Parts et al. 2011). Briefly, we posited the allele frequency fi of site i in a sample to follow a beta distribution, and have an uninformative prior. Given the observed allele counts aj and bj at each locus, the log probability of the full generative model is Σj I[rij < 0.1]  rij (aj log fi + bj log (1 – fi)).  Here, I[] is the indicator function, the observed rij are calculated as the expected number of crossovers between sites i and j assuming 80 parental haplotype blocks per segregant, and we only consider sites j that are no more than 10 centimorgans away from site i. To avoid outliers in coverage to have a disproportionate effect on the results, we rescaled ai and bi such that their sum was no more than twice the median sequencing coverage of the sample. We also filtered out sites for which the maximum likelihood allele frequency estimate ai/(ai+bi) differed from the posterior mean of fi by more than 0.2, and, and recalculated the posterior allele frequencies. The beta posterior can be obtained from the coefficients of log fi and log (1 – fi) for each site i.

Processing microarray genotyping data
Agilent SurePrint oligonucleotide microarrays with 60nt probes (Agilent Technologies, Santa Clara, CA), as described in (Gresham et al. 2010) were used to detect relative enrichment of BY and RM sequence in pooled DNA samples.  Purified genomic DNA was used as input to a random nonamer primed Klenow labeling using Cy3 and Cy5-dCTP (Gresham et al. 2008). Arrays were washed as described, and scanned using an Agilent G2505B scanner.  Agilent Feature Extraction was used to automatically align the feature grid and generate background-subtracted intensities and ratios. We then computed the difference between the BY and RM probe intensities for each sample at each locus as the genotype signal. We then simultaneously classified each probe into a good probe, bad probe, or noisy probe class, and inferred the signal of the good probes. We called the pQTLs from array data as below, but due to additional uncertainty in the signal due to probe classification, only retained the three strongest loci.

QTL calling
QTLs were called as regions for which the posterior allele frequency difference between the GFP very high and low populations was at least 20% in the replicate assessed to be of higher quality (“discovery replicate”; strong selection at all SGA markers, no evidence of clonality), and the posterior mean of the allele frequency difference was at least 5 standard deviations away from 0. For completeness, we also report weaker pQTLs with QTL signals between 0.15 and 0.2 (Supplementary Table 7). The QTL peak center was inferred as the site with highest combined allele frequency difference, the QTL start and end as the first and last site with at least 10% allele frequency difference, and the QTL peak start and end as the first and last site with allele frequency difference magnitude no more than 4% smaller than at the peak. As potential causal genes, we reported all genes that overlap the region from the peak start to the peak end, ordered by the distance from the peak center to the gene midpoint. Frequency of expected false positives was calculated as the fraction of all sites in the other replicate that exhibited allele frequency change of at least 10% in the same direction within 500 bp of the QTL peak center. From reproducibility of the calls in the replication sample, we estimate the empirical false discovery rate at the 0.2 frequency difference cutoff to be 22% (Supplementary Fig. 8), but depending on the number of pQTLs, sequencing coverage, and quality of the replication sample, the sorted strains have different false positive rates at the same allele frequency difference cutoff (Supplementary Table 7). SIFT data was used from (Bergstrom et al. 2014).

Reciprocal hemizygosity analysis
We constructed reciprocal hemizygous combinations of PDR1 and RGT2 alleles by amplifying the corresponding KanMX cassette from the yeast deletion collection, and using it to knock out the gene in the haploid MATα RM query strain and the haploid MATa PDR5 or HXT2 GFP array strain (Supplementary Table 1). We then crossed the parental strains to create the three otherwise isogenic diploid hybrids that carry zero to one putative causal gene deletion alleles, phenotyped them using cytometry as described above, using –his –ura dropout media without canavanine, and including leucine, arginine, to quantify the differences in GFP level. Two different transformed clones were used for all assays, and all measurements were performed in three technical replicates.

RNA extraction, library preparation, and sequencing
We pooled two replicates of 96 populations of the BYxBY cross, and two replicates from an equal mix of RMxBY and BYxRM crosses. After growing them in 20ml liquid culture to 0.6 OD, we extracted total RNA from pools of using the hot phenol method. Poly-A RNA isolation, RNA fragmentation, and cDNA synthesis were performed as described in (Yoon and Brem 2010) and the cDNA libraries were prepared according to (Parkhomchuk et al. 2009). Briefly, the protocol includes RNA fragmentation, first-strand synthesis, and second-strand synthesis with dNTPs and dUTPs. End repair, A-tailing, and ligation were performed according to Illumina library preparation protocol. The second strand was cleaved by hydrolysis of uracil in the dsDNA using USER enzyme (NEB). The resulting strand-specific cDNA was amplified, size selected for 280-300 bp and sequenced (50bp paired end) on a Hiseq 2000.

Comparison of genome-wide distribution of pQTLs and eQTLs
We counted the number of eQTLs and pQTLs in nonoverlapping 30kb windows along the genome. For each eQTL with LOD > 3, we added 1 to all bins that overlap the region from 15 kb before to 15 kb after the eQTL. We considered an eQTL peak as a consecutive stretch of bins where at least one bin has over 30 linkages. There were 14 such peaks, three of which overlapped regions not freely segregating in our cross. Chromosome III eQTL peak is due to the LEU2 genotype, and chromosome II 560kb to the AMN1 genotype, fixed to leu2Δ, and AMN1BY, respectively, in our cross. Chromosome II 350kb peak is linked to the HTA2 locus, which is fixed to HTA2-mCherry-URA3 in the cross, reducing our power to detect effects at the peak. The rest of the peaks are discussed in the main text. For pQTL distribution, we considered pQTLs with allele frequency differences of at least 15% to get a more comprehensive representation of the genome-wide density, and similarly, added 1 to all non-overlapping 30 kb bins that intersected with the region from 15 kb before the pQTL peak to 15 kb after the peak. We calculated the expected number of peak overlaps as 14 times the fraction of pQTL bins with at least four linkages.

Overlap and concordance of pQTL and eQTL signal
To compare the concordance of eQTL and pQTL signals, we took all loci linked to the mRNA levels of the sorted GFP fusion proteins, calculated the difference of the RM and BY allele effects at the locus, and compared it to the pQTL signal. If a pQTL overlapped the eQTL, we used the pQTL peak signal; otherwise, we calculated the average RM allele frequency difference between the GFP high and low pools across all available replicates. For the pQTLs identified from microarray genotyping data, we used the difference in probe intensities divided by 2. Similarly to the eQTL peak analysis, we did not consider the eQTLs in peaks on chromosome II, III, and at the IRA2 locus (gray markers in Fig. 2D). For the opposite analysis looking at the mRNA signal at the pQTL loci, we calculated the effect of a locus genotype on mRNA level in previously published segregant data as its weight in a multivariate regression model that includes genotypes at all QTL loci (log-odds > 3) for the corresponding mRNA. 

mRNA sequencing data analysis
We calculated the average coverage of each ORF for each replicate and each sample from the pileup files (see above). 

Analyzing effects of alternate alleles of transcriptional regulators
[bookmark: _GoBack]We constructed allele replacement strains of the BY parent background that were isogenic to the BY parent strain, but with HAP1RM, or MKT1RM and IRA2RM alleles. We repeated the crossing experiments, and measured the population average GFP level using a Tecan infinite M1000 plate reader (Supplementary Table 9). We considered all genes with eQTL LOD at least 5 as eQTL “targets” of MKT1, IRA2, and HAP1 loci, and compared four measures of the genotype effect. First, we considered the effect of the locus genotype in the mRNA level from previous data. Second, we used the total change in GFP level in the RMxBY cross compared to the BYxBY cross. Third, we looked at the change in the allele swap cross measured on the Tecan and the BYxBY control. Finally, we looked at total mRNA level changes in the RMxBY cross compared to BYxBY cross.
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