CellProfiler Pipeline: http://www.cellprofiler.org Version:1 SVNRevision:10415 LoadImages:[module_num:1|svn_version:\'10372\'|variable_revision_number:7|show_window:False|notes:\x5B\x5D] File type to be loaded:tif,tiff,flex movies File selection method:Text-Regular expressions Number of images in each group?:3 Type the text that the excluded images have in common:Do not use Analyze all subfolders within the selected folder?:No Input image file location:Default Input Folder\x7CNone Check image sets for missing or duplicate files?:Yes Group images by metadata?:No Exclude certain files?:No Specify metadata fields to group by: Image count:1 Text that these images have in common (case-sensitive):00\x5B56789\x5D0..003.tif Position of this image in each group:1 Extract metadata from where?:None Regular expression that finds metadata in the file name:^(?P.*)_(?P\x5BA-P\x5D\x5B0-9\x5D{2})_s(?P\x5B0-9\x5D) Type the regular expression that finds metadata in the subfolder path:.*\x5B\\\\/\x5D(?P.*)\x5B\\\\/\x5D(?P.*)$ Channel count:3 Group the movie frames?:Yes Grouping method:Interleaved Number of channels per group:3 Name this loaded image:0_Raw_protein_GFP Channel number:1 Name this loaded image:0_Raw_nuclear_RFP Channel number:3 Name this loaded image:0_Raw_Media Channel number:2 Smooth:[module_num:2|svn_version:\'10300\'|variable_revision_number:1|show_window:False|notes:\x5B\x5D] Select the input image:0_Raw_Media Name the output image:01_smoothed_Media Select smoothing method:Gaussian Filter Calculate artifact diameter automatically?:No Typical artifact diameter, in pixels:6.0 Edge intensity difference:0.1 Smooth:[module_num:3|svn_version:\'10300\'|variable_revision_number:1|show_window:False|notes:\x5B\x5D] Select the input image:0_Raw_nuclear_RFP Name the output image:01_smoothed_nuclear_RFP Select smoothing method:Gaussian Filter Calculate artifact diameter automatically?:No Typical artifact diameter, in pixels:5.0 Edge intensity difference:0.1 Smooth:[module_num:4|svn_version:\'10300\'|variable_revision_number:1|show_window:False|notes:\x5B\x5D] Select the input image:0_Raw_protein_GFP Name the output image:01_smoothed_protein_GFP Select smoothing method:Gaussian Filter Calculate artifact diameter automatically?:No Typical artifact diameter, in pixels:2.0 Edge intensity difference:0.1 ImageMath:[module_num:5|svn_version:\'10300\'|variable_revision_number:1|show_window:False|notes:\x5B\x5D] Operation:Invert Raise the power of the result by:1 Multiply the result by:1 Add to result:0 Set values less than 0 equal to 0?:Yes Set values greater than 1 equal to 1?:Yes Name the output image:02_smoothed_Inverted_Media Select the first image:01_smoothed_Media Multiply the first image by:1 Select the second image: Multiply the second image by:1 CorrectIlluminationCalculate:[module_num:6|svn_version:\'10300\'|variable_revision_number:2|show_window:False|notes:\x5B\x5D] Select the input image:02_smoothed_Inverted_Media Name the output image:001_Media_correction Select how the illumination function is calculated:Regular Dilate objects in the final averaged image?:No Dilation radius:1 Block size:60 Rescale the illumination function?:No Calculate function for each image individually, or based on all images?:Each Smoothing method:Fit Polynomial Method to calculate smoothing filter size:Automatic Approximate object size:10 Smoothing filter size:10 Retain the averaged image for use later in the pipeline (for example, in SaveImages)?:No Name the averaged image:IllumBlueAvg Retain the dilated image for use later in the pipeline (for example, in SaveImages)?:No Name the dilated image:IllumBlueDilated Automatically calculate spline parameters?:Yes Background mode:auto Number of spline points:5 Background threshold:2 Image resampling factor:2 Maximum number of iterations:40 Residual value for convergence:0.001 CorrectIlluminationApply:[module_num:7|svn_version:\'10300\'|variable_revision_number:3|show_window:False|notes:\x5B\x5D] Select the input image:02_smoothed_Inverted_Media Name the output image:03_smoothed_inverted_corrected_media Select the illumination function:001_Media_correction Select how the illumination function is applied:Subtract RescaleIntensity:[module_num:8|svn_version:\'Unknown\'|variable_revision_number:2|show_window:False|notes:\x5B\x5D] Select the input image:03_smoothed_inverted_corrected_media Name the output image:04_Rescaled_Corrected_Inverted_Smoothed_Media Select rescaling method:Stretch each image to use the full intensity range How do you want to calculate the minimum intensity?:Custom How do you want to calculate the maximum intensity?:Custom Enter the lower limit for the intensity range for the input image:0 Enter the upper limit for the intensity range for the input image:1 Enter the intensity range for the input image:0.000000,1.000000 Enter the desired intensity range for the final, rescaled image:0.000000,1.000000 Select method for rescaling pixels below the lower limit:Mask pixels Enter custom value for pixels below lower limit:0 Select method for rescaling pixels above the upper limit:Mask pixels Enter custom value for pixels below upper limit:0 Select image to match in maximum intensity:None Enter the divisor:1 Select the measurement to use as a divisor:None RescaleIntensity:[module_num:9|svn_version:\'Unknown\'|variable_revision_number:2|show_window:False|notes:\x5B\x5D] Select the input image:01_smoothed_nuclear_RFP Name the output image:02_Rescaled_nuclear_RFP Select rescaling method:Stretch each image to use the full intensity range How do you want to calculate the minimum intensity?:Custom How do you want to calculate the maximum intensity?:Custom Enter the lower limit for the intensity range for the input image:0 Enter the upper limit for the intensity range for the input image:1 Enter the intensity range for the input image:0.000000,1.000000 Enter the desired intensity range for the final, rescaled image:0.000000,1.000000 Select method for rescaling pixels below the lower limit:Mask pixels Enter custom value for pixels below lower limit:0 Select method for rescaling pixels above the upper limit:Mask pixels Enter custom value for pixels below upper limit:0 Select image to match in maximum intensity:None Enter the divisor:1 Select the measurement to use as a divisor:None ImageMath:[module_num:10|svn_version:\'10300\'|variable_revision_number:1|show_window:False|notes:\x5B\x5D] Operation:Add Raise the power of the result by:1 Multiply the result by:1 Add to result:0 Set values less than 0 equal to 0?:Yes Set values greater than 1 equal to 1?:Yes Name the output image:05_withrfp_rescaled_corrected_inverted_smoothed_Media Select the first image:04_Rescaled_Corrected_Inverted_Smoothed_Media Multiply the first image by:1 Select the second image:02_Rescaled_nuclear_RFP Multiply the second image by:0.3 IdentifyPrimaryObjects:[module_num:11|svn_version:\'10372\'|variable_revision_number:7|show_window:False|notes:\x5B\x5D] Select the input image:02_Rescaled_nuclear_RFP Name the primary objects to be identified:1_Nuclei Typical diameter of objects, in pixel units (Min,Max):7,35 Discard objects outside the diameter range?:Yes Try to merge too small objects with nearby larger objects?:No Discard objects touching the border of the image?:Yes Select the thresholding method:Otsu Adaptive Threshold correction factor:1 Lower and upper bounds on threshold:0.05,1.0 Approximate fraction of image covered by objects?:0.01 Method to distinguish clumped objects:Intensity Method to draw dividing lines between clumped objects:Intensity Size of smoothing filter:10 Suppress local maxima that are closer than this minimum allowed distance:7 Speed up by using lower-resolution image to find local maxima?:Yes Name the outline image:1_NucleusOutlines Fill holes in identified objects?:Yes Automatically calculate size of smoothing filter?:Yes Automatically calculate minimum allowed distance between local maxima?:Yes Manual threshold:0.0 Select binary image:None Retain outlines of the identified objects?:Yes Automatically calculate the threshold using the Otsu method?:Yes Enter Laplacian of Gaussian threshold:0.5 Two-class or three-class thresholding?:Two classes Minimize the weighted variance or the entropy?:Weighted variance Assign pixels in the middle intensity class to the foreground or the background?:Foreground Automatically calculate the size of objects for the Laplacian of Gaussian filter?:Yes Enter LoG filter diameter:5 Handling of objects if excessive number of objects identified:Continue Maximum number of objects:500 Select the measurement to threshold with:None ExpandOrShrinkObjects:[module_num:12|svn_version:\'10300\'|variable_revision_number:1|show_window:False|notes:\x5B\x5D] Select the input objects:1_Nuclei Name the output objects:2_ShrunkenNuclei Select the operation:Shrink objects by a specified number of pixels Number of pixels by which to expand or shrink:3 Fill holes in objects so that all objects shrink to a single point?:Yes Retain the outlines of the identified objects for use later in the pipeline (for example, in SaveImages)?:No Name the outline image:ShrunkenNucleiOutlines ExpandOrShrinkObjects:[module_num:13|svn_version:\'10300\'|variable_revision_number:1|show_window:False|notes:\x5B\x5D] Select the input objects:1_Nuclei Name the output objects:2_PointNuclei Select the operation:Shrink objects to a point Number of pixels by which to expand or shrink:3 Fill holes in objects so that all objects shrink to a single point?:Yes Retain the outlines of the identified objects for use later in the pipeline (for example, in SaveImages)?:No Name the outline image:ShrunkenNucleiOutlines IdentifySecondaryObjects:[module_num:14|svn_version:\'10300\'|variable_revision_number:7|show_window:False|notes:\x5B\x5D] Select the input objects:2_ShrunkenNuclei Name the objects to be identified:2_CellsFromNuclei Select the method to identify the secondary objects:Watershed - Image Select the input image:05_withrfp_rescaled_corrected_inverted_smoothed_Media Select the thresholding method:Otsu Adaptive Threshold correction factor:7.00 Lower and upper bounds on threshold:0.000000,1.000000 Approximate fraction of image covered by objects?:0.2 Number of pixels by which to expand the primary objects:30 Regularization factor:0.0 Name the outline image:2_CellOutlinesFromNuclei Manual threshold:0.0 Select binary image:None Retain outlines of the identified secondary objects?:Yes Two-class or three-class thresholding?:Three classes Minimize the weighted variance or the entropy?:Weighted variance Assign pixels in the middle intensity class to the foreground or the background?:Foreground Discard secondary objects that touch the edge of the image?:No Discard the associated primary objects?:No Name the new primary objects:FilteredNuclei Retain outlines of the new primary objects?:No Name the new primary object outlines:FilteredNucleiOutlines Select the measurement to threshold with:None Fill holes in identified objects?:Yes PauseCellProfiler:[module_num:15|svn_version:\'9434\'|variable_revision_number:1|show_window:False|notes:\x5B\x5D] Pause here, skip subsequent modules or continue without prompting?:Continue MeasureObjectSizeShape:[module_num:16|svn_version:\'1\'|variable_revision_number:1|show_window:False|notes:\x5B\x5D] Select objects to measure:2_CellsFromNuclei Select objects to measure:1_Nuclei Calculate the Zernike features?:No MeasureObjectIntensity:[module_num:17|svn_version:\'10300\'|variable_revision_number:3|show_window:False|notes:\x5B\x5D] Hidden:1 Select an image to measure:0_Raw_protein_GFP Select objects to measure:2_CellsFromNuclei MeasureObjectIntensity:[module_num:18|svn_version:\'10300\'|variable_revision_number:3|show_window:False|notes:\x5B\x5D] Hidden:1 Select an image to measure:02_Rescaled_nuclear_RFP Select objects to measure:1_Nuclei ExportToSpreadsheet:[module_num:19|svn_version:\'10251\'|variable_revision_number:7|show_window:False|notes:\x5B\x5D] Select or enter the column delimiter:Comma (",") Prepend the output file name to the data file names?:Yes Add image metadata columns to your object data file?:No Limit output to a size that is allowed in Excel?:No Select the columns of measurements to export?:No Calculate the per-image mean values for object measurements?:No Calculate the per-image median values for object measurements?:No Calculate the per-image standard deviation values for object measurements?:No Output file location:Default Output Folder\x7CNone Create a GenePattern GCT file?:No Select source of sample row name:Metadata Select the image to use as the identifier:None Select the metadata to use as the identifier:None Export all measurements?:Yes Press button to select measurements to export: Data to export:Do not use Combine these object measurements with those of the previous object?:No File name:DATA.csv Use the object name for the file name?:Yes