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Supplemental Figures

Supplemental Fig. S1. STARR-seq for BG3 cells

Replicate 1 Replicate 2

Reads 20,892,038 16,506,577
Fragments 24,536 207,707
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We performed STARR-seq for BG3 cells (Ui et al. 1994). Shown are the number of paired-
end reads and collapsed fragments obtained for the two biological replicates (Top). The
two biological replicates had a Pearson correlation coefficient of 0.75. Pie charts showing
the distribution STARR-seq peaks called on the combined replicates in defined genomic
regions and the relative sizes of these regions in the genome. The enrichment of peaks in
the different genomic regions relative to the regions’ sizes in the genome is quantified as
fold enrichment (in logz2). All deep sequencing data are available at www.starklab.org and
GEO (series accession number GSE49809).
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Supplemental Fig. S2. Gene Ontology (GO) analysis
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Genes associated to enhancers from
different enhancer classes were
enriched in particular GO categories.
Shown are the GO categories that
are most highly enriched for genes
associated with a given enhancer
class versus the other three
enhancer classes (according to fold
enrichment; categories are selected
from the top 10, excluding non-
specific categories; broad (purple),
S2-specific (blue), OSC-specific (red)
and BG3-specific (yellow) enhancers;
* FDR adjusted p-value < 0.05; **
FDR adjusted p-value < 0.001). The
table shows the same GO categories
but with values for each of the
enhancer classes.
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15
Fold Enrichment

S2-cells
log2(FE) p-value
0.386 0.955
0.713 0.852
0.386 0.919
0.464 1.000
0.853 0.821
0.409 0.967
0.662 0.969
18.542 0.000
0.193 0.991
0.244 0.995
0.480 0.997
3.013 0.007
11.589 0.008
0.302 0.994
0.464 0.884
0.331 0.944
11.589 0.008
0.632 0.844
0.386 1.000
0.290 1.000

OSC-cells BG3-cells
log2(FE) p-value logz(FE) p-value logz(FE) p-value
4.104 0.010 0.310 0.956 0.820 0.726
0.274 0.992 0.537 0.931 3.470 0.000
5.472 0.031 0.504 1.000 0.820 0.727
12.312 0.025 0.806 1.000 0.683 0.796
0.739 0.919 0.665 0.966 1.794 0.001
2.736 0.027 0.448 0.931 1.104 0.500
0.586 0.975 0.743 0.889 2.190 0.000
0.513 1.000 0.504 1.000 0.256 1.000
0.316 0.954 0.310 0.956 8.202 0.000
0.912 0.653 0.403 0.952 3.845 0.001
0.849 0.750 0.793 0.818 2.226 0.000
0.616 0.859 0.183 0.994 0.724 0.819
0.821 1.000 0.806 1.000 0.410 1.000
2.565 0.019 1.612 0.175 0.683 0.864
0.821 0.731 8.062 0.016 0.293 1.000
0.586 0.826 5.039 0.019 0.586 0.850
0.821 1.000 0.806 1.000 0.410 1.000
0.684 0.793 3.023 0.042 0.559 0.888
1.026 0.665 8.062 0.016 0.410 0.908
0.684 0.784 5.375 0.032 0.820 0.727



Supplemental Fig. S3. TSS distal enhancers are also enriched in DRMs
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With Promoter Without Promoter
FE p-value FE p-value
S2-spec. CA 1.154  4.479E-29 1.181 1.084E-30
GA 0.872 6.298E-07 1.010 3.726E-09
CG 0.941 0.001 1.000 0.000
TA -0.107 0.137 -0.250 0.006
BG3-spec. CA 1.369 1.688E-43 1.492 1.044E-53
GA 1.561 9.498E-24 1.312 7.392E-16
CG 0.163 0.355 0.263 0.249
TA 0.585  8.673E-13 0.672 8.057E-17
0SC-spec. CA 0.925  7.462E-18 0.896 1.056E-16
GA 0.905  2.036E-07 0.937 6.364E-08
CG 0.941 0.001 0.604 0.034
TA -0.420 1.650E-05 -0.453  4.405E-06
Broad CA 1.900 3.322E-100 1.935  3.355E-105
GA 3.082  1.084E-155 3.171  1.834E-170
CG 2.287  8.468E-24 2.263 3.844E-23
TA -0.150 0.062 -0.073 0.229

(A) Distribution of enhancer-to-TSS distances for enhancers from each of the four different
classes (500 enhancers each). Broad enhancers (purple) are more frequently found close
to TSS (e.g. 80 are within 500bp compared to 59 for S2-specific enhancers. (B) DRMs of
the CA, GA, and CG type are enriched in enhancers, in particular broadly active
enhancers when considering all enhancers (left columns) or only enhancers that were at
least 100bp from the nearest TSS (i.e. excluding enhancers that overlapped 201bp-long
windows centered on each TSS; right columns). Shown are fold-enrichment values (log2-
scale) and hypergeometric p-values.



Supplemental Fig. S4. Motif enrichments between enhancer classes
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log2 = 0.7) when comparing the enhancers of each class (500 enhancers each) against a
pool of enhancers from the other three classes (1500 enhancers; Pos).
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Supplemental Fig. S5. Sequence-based enhancer predictions

A.
vs. Neg AUC vs.Pos AUC
S2-spec 75.4 0.84 65.3 0.70
BG3-spec 745 0.80 63.9 0.67
OSC-spec  76.5 0.85 71.6 0.79
Broad 81.0 0.90 68.7 0.74
B.
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STARR-Mot36 TCA CAAA - 0.007

(A) Performance of the sequence-based enhancer predictions (binary classification) for
S2-specific, BG3-specific, OSC-specific and Broad active enhancers against either
negative regions (Neg) or against a pool with enhancers from the other three classes (Pos)
(see text) based solely on motif occurrences. Shown are the accuracies (recall; light
shading) and area under the ROC curve (AUC; grey shading) for each of the comparisons.
(B) Shown are the predictive power values (Pred Pow) for the motifs selected as the most
discriminative features (calculated by difference in the accuracy in the presence or
absence of the TF motif; see (Yanez-Cuna et al. 2012)) and that have a fold enrichment of
1.4 or higher for the S2-specific, BG3-specific, OSC-specific and broadly active enhancers.



Supplemental Fig. S6. Mutations of non-important control motifs

p=0.107/9
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Luciferase assays in S2 cells of the wild-type enhancer S2-1 (light blue) and three mutant
variants in which different control motifs were disrupted by point mutations. In Control 1
and 2, we mutated the sub-threshold motif matches of important motifs (AP-1 and GA [Trl/
ME137]). In Control 3 we mutated the motif TorRE, which was enriched in negative regions
and depleted in active enhancers. There was no significant drop in enhancer activity as
indicated by the p-value (shown is the lowest [i.e. most significant] t-test p-value from
comparing the wild-type enhancer against each of the controls). Error bars show the
standard deviation of at least 3 biological replicates. DNA sequences of the wild-type and
mutant enhancers are shown below (page 18).
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Supplemental Fig. S7. Motif occurrences of enriched TF motifs in all four enhancer
classes
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Boxplot of motif occurrences per enhancer as in Figure 4A in the 1,000 negative regions
(gray), the top 500 S2-specific (blue), OSC-specific (red), BG3-specific (yellow) and Broad
(purple) enhancers. The boxes indicate the median and the 25 and 75 percentiles and the
whiskers mark the 10 and 90 percentiles.



Supplemental Fig. S8. DRM occurrences and lengths in all four enhancer classes
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Boxplots of (A) all DRM occurrences, (B) non-overlapping DRM occurrences per
enhancer, and (C) lengths of all DRM instances. Shown are the 1,000 negative regions
(Neg; gray), the top 500 S2-specific (blue), OSC-specific (red), BG3-specific (yellow) and
Broad (purple) enhancers. Wilcoxon p-values for the comparison of inactive regions (Neg)
against the cell type-specific enhancers and the cell type-specific against the broadly
active enhancers. The following motifs were used (see Fig 2C for motif logos): ME137
(GA), STARRMot15 (CA), GCGC (CG) and TATA (TA) with a PWM cutoff < 0.0039.



Supplemental Fig. S9. Increased evolutionary conservation of DRMs.
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Conservation rates of the DRMs in each of the four different classes of active enhancers
compared to their rates in negative regions (displayed is the ratio of (rate in enhancers /
rate in negative regions). The rates were determined as the proportion of motifs with
branch-length-scores [BLS] of 2.13 or 50% of the Drosophila phylogeny (Kheradpour et al.
2007).
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Supplemental Fig. S10. Conservation of DRM occurrences and lengths.
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pseudoobscura (D. pse). The respective trends for DRM occurrences and lengths are
conserved across species.
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Supplemental Fig. S11. The AP-1 motif is required for broadly active enhancers
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Luciferase assays in S2 cells (blue) and OSCs (red) of the broadly active enhancer 2
(BA-2; wt; light) and an AP-1 motif mutant variant (dark). Shown are t-test p-values and
error bars that depict standard deviations from three to five biological replicates. DNA
sequences of the wild-type and mutant enhancers are shown below (page 18).
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Supplemental Fig. S12. Synthetic enhancers
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(A-C) Synthetic enhancers created by copying DRMs and TF motifs from broadly active
enhancers BA-3 to BA-5 into an inactive sequence (backbones; B.bone) as in main Fig.
4F. Shown are normalized luciferase activities from S2 cells (blue) and OSCs (red) for
wildtype enhancer and backbone sequences (light) and synthetic enhancers (dark) (A)
Synthetic enhancer based on BA-3 from which only GA and CA type DRMs were copied.
(B) Synthetic enhancer based on BA-4 from which GA and CA type DRMs as well as E-
box and GATA motifs were copied. (C) Synthetic enhancer based on BA-5 from which GA,
CA, and CG type DRMs as well as a GATA motif were copied. For the OSC experiments
(red) two biological replicates are shown separately and the standard deviations are based
on three technical replicates each. P-values are from unpaired t-tests.
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Supplemental Tables

Supplemental Table S1. SVM Predictions using different cross-validation schemes

Set 1 Set2 Fold CV Acc SD
Loocv 0.757 0.008
5 0.752 0.004
S2 Neg 10 0.761 0.003
15 0.749 0.004
20 0.754 0.006
LooCcVv 0.637 0.034
5 0.661 0.031
S2 Pos 10 0.659 0.026
15 0.652 0.029
20 0.653 0.035
Loocv 0.751 0.008
5 0.741 0.020
BG3 Neg 10 0.730 0.013
15 0.748 0.016
20 0.745 0.013
Loocv 0.640 0.016
5 0.612 0.024
BG3 Pos 10 0.617 0.022
15 0.627 0.007
20 0.639 0.008
LOOCV 0.772 0.019
5 0.760 0.013
osc Neg 10 0.768 0.014
15 0.772 0.015
20 0.765 0.018
Loocv 0.721 0.007
5 0.698 0.004
osC Pos 10 0.705 0.007
15 0.710 0.009
20 0.716 0.009
LooCcVv 0.803 0.023
5 0.802 0.012
Broad Neg 10 0.813 0.013
15 0.818 0.011
20 0.810 0.011
Loocv 0.696 0.004
5 0.688 0.005
Broad Pos 10 0.683 0.004
15 0.685 0.009
20 0.687 0.001

SVM prediction accuracies (Acc) using different cross-validation schemes: Leave-One-Out
cross-validation as in the main text (LOOCV), 5-fold, 10-fold, 15-fold and 20-fold cross-
validation. The accurracy was calculated as the average of three different predictions with
bootstrapped test and training sets (SD: standard deviation). Predictions accuracies were
constant across all cross-validation schemes.
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Supplemental Table S2. Broad enhancers are a distinct enhancer class

A.
Set 1 Set 2 acc roc
Broad Negative 81.0 0.900
S2-spec + OSC-spec + BG3- 68.7 0.740
spec.
(S2 and OSC)-specific 61.4 0.618
(S2 and BG3)-specific 64.0 0.677
(OSC and BG3)-specific 62.4 0.675
B.
Set 1 Set 2 acc roc
(S2 and OSC)-specific Negative 66.2 0.715
S2-spec + OSC-spec 47.2 0.467
(S2 and BG3)-specific Negative 70.4 0.783
S2-spec + BG3-spec 53.8 0.533
(OSC and BG3)-specific Negative 63.4 0.702
OSC-spec + BG3-spec 54.1 0.555

(A) Broadly active enhancers can be successfully discriminated from negative regions,
enhancers that are active in two but not all three cell types, and — most importantly — from
a pool of enhancers that are specifically active in a single cell type (i.e. in either S2 cells,
OSCs, or BG3 cells). The latter and the observation that DRMs are specifically highly
enriched in broadly active enhancers argues that these enhancers constitute a distinct
enhancer class. (B) Enhancers that are active in two but not all three cell types can be
successfully discriminated from negative regions and broadly active enhancers (see A) but
not from a pool of cell type specific enhancers that are active in the same two cell types.
This suggests that enhancers that are active in two but not all three cell types carry
signatures of cell type specific enhancers but do not constitute a distinct enhancer class.
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Reporter and primer sequences for the luciferase experiments

Enhancer

S2-1

S2-2

S2-3

0OSC-1

0SC-2

0OSC-3

BA-1

BA-2

BA-3

B.bone

HsEnh-1

HsEnh-2

HsEnh-3

Primers
Forward
Reverse
Forward
Reverse
Forward
Reverse
Forward
Reverse
Forward
Reverse
Forward
Reverse
Forward
Reverse
Forward
Reverse
Forward
Reverse
Forward
Reverse
Forward
Reverse
Forward
Reverse
Forward

Reverse

5-3
GCCCGGGTTATAAAATACAAAATTCGAAAA
TGCACAATTTCTGTGAAGTGACAGCC
GCTTCCACATTGAATTCTCATCGTTTTG
CAAGCATAGAGTTTGCCAGAGAGCCG
CCAATGAATGTTTTCCAAACCTATATTAGTCA
TGAAACAGCAACAACATAGAGCAGAA
TGCGTGTCCACTAAAAGCCGAAAAA
AGTCATCATCGTCATCGTCGCCTGT
AGAATGCTCAGTTTTTCATAGTATTCAAATTGT
ATTATTGCCGAATTACGCCGCCC
TTTTGATAGCCCACGATGAGGGAG
CTGTTTGATATAGCCCCACAGCCAA
ACGTATCAGCGTTGGCGAATAAAAA
AAAAACGGAGTGAAAAAGCCA
CCATGCATATGCTTATCACAACGGA
TTTGGGTGCTTCAACTGCGGTTTTT
AATTTGCATTGACTGCTGCCACAAC
CGCAATTGATTTAAGGCCAGCACTTTT
CCAACACAAATCCCAAGAAAGAACACA

CCTGGTGGCTCCGCCTTCATC
CCCGTCGCGGTGGAGCTTAG

AACAGGGATTCCACCCGCCG
TCCATCACTGCCTTCAAGTATGATAAAATTGCT
TCACCAAGGAAAAGGTATTCTCCAA
GCCGCTCGCAACCCCGAC
TCTCGGATCTGCTGGAAGAATCAGC
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S2-1 wt
GCCCGGGTTATAAAATACAAAATTCGAAAATAGCACAACGCTTGGCTTTCGTAGCTAAACATCGAAAACGAA
ATCCAAAAACAAAGACTCAAAGCACCCTGTAGCCCGGCAATTGTGCGCAGTTACCCCAACAACTACACACAT
TTTTCAAACGACGAACAAAAGATAATGTCGACAACTAAACCGCAGATATGCATATGTTTATGTACTCCGTAC
AAGTCGCTGTACTACGCACATACACACATAGTATATTTAACAAAACGGAGCCAAGTCGCGGAAGTAATTCTC
CGCATCTTATCGCACTTAGAGATTCCGCCCCACAATCCAAATCCATCCCGCATCATTGGGAATGCAGACTGC
GTGCCAGATCTGGCCGTATGTATATCGTCTAAATTGATATTAGCGGACGAGAGCTACTTGACACTATTTCTC
AGTGGCTGTCACTTCACAGAAATTGTGCA

S2-1 GATA
GCCCGGGTTATAAAATACAAAATTCGAAAATAGCACAACGCTTGGCTTTCGTAGCTAAACATCGAAAACGAA
ATCCAAAAACAAAGACTCAAAGCACCCTGTAGCCCGGCAATTGTGCGCAGTTACCCCAACAACTACACACAT
TTTTCAAACGACGAACAAGATGCAATGTCGACAACTAAACCGCAGATATGCATATGTTTATGTACTCCGTAC
AAGTCGCTGTACTACGCACATACACACATAGTATATTTAACAAAACGGAGCCAAGTCGCGGAAGTAATTCTC
CGCATCTCTGGGCACTTAGAGATTCCGCCCCACAATCCAAATCCATCCCGCATCATTGGGAATGCAGACTGC
GTGCCAGATCTGGCCGTATGTATATCGTCTAAATTGATATTAGCGGACGAGAGCTACTTGACACTATTTCTC
AGTGGCTGTCACTTCACAGAAATTGTGCA

S2-1CA
GCCCGGGTTATAAAATACAAAATTCGAAAATAGCACAACGCTTGGCTTTCGTAGCTAAACATCGAAAACGAA
ATCCAAAAACAAAGACTCAAAGCACCCTGTAGCCCGGCAATTGTGCGCAGTTACCCCAACAACTACGTCTAT
TTTTCAAACGACGAACAAAAGATAATGTCGACAACTAAACCGCAGATATGCATATGTTTATGTACTCCGTAC
AAGTCGCTGTACTACGCACTAGGACACATAGTATATTTAACAAAACGGAGCCAAGTCGCGGAAGTAATTCTC
CGCATCTTATCGCACTTAGAGATTCCGCCCCACAATCCAAATCCATCCCGCATCATTGGGAATGCAGACTGC
GTGCCAGATCTGGCCGTATGTATATCGTCTAAATTGATATTAGCGGACGAGAGCTACTTGACACTATTTCTC
AGTGGCTGTCACTTCACAGAAATTGTGCA

S2-1 CG
GCCCGGGTTATAAAATACAAAATTCGAAAATAGCACAACGCTTGGCTTTCGTAGCTAAACATCGAAAACGAA
ATCCAAAAACAAAGACTCAAAGCACCCTGTAGCCCGGCAATTGATCAAAGTTACCCCAACAACTACACACAT
TTTTCAAACGACGAACAAAAGATAATGTCGACAACTAAACCGCAGATATGCATATGTTTATGTACTCCGTAC
AAGTCGCTGTACTACGCACATACACACATAGTATATTTAACAAAACGGAGCCAAGTATTCCAAGTAATTCTC
CGCATCTTATCGCACTTAGAGATTCCGCCCCACAATCCAAATCCATCCCGCATCATTGGGAATGCAGACTGC
GTGCCAGATCTGGCCGTATGTATATCGTCTAAATTGATATTAGCGGACGAGAGCTACTTGACACTATTTCTC
AGTGGCTGTCACTTCACAGAAATTGTGCA

S2-2 wt
GCTTCCACATTGAATTCTCATCGTTTTGGTGGGTGAAAACGTGACACGTTCACTCTTTTCGCCGCTGGCTTA
TCACGTTGGCTTATTCCGTATCACATGTTGCCACAGCAGTTTCTATTTTCGACACACACGCCGCCCCCTTTT
GTGTCTTCGCCCCCTGTTTGTGTATTGCTCTCTCCCCGCCGCTCTTTGGCGTTGATAATGAACCGAGTGACA
TGGAGTGAAGTGAGGCAATCATCGGCGGGCCAGCATTAGATCATATATACAGACAGAAACGACGACGACATC
ATCATGATGATCATGATCATCATCGTACACTCTGACTCATGAACCTCACTCGCCTCACTTGCACTGGACAGA
CTCTCCGGATATCTCTCGCTCTCGCTTGCTCGCTCGCTCCCTCGCCCGTCAGTAGATTCTCCAATTCTCCGG
CTCTCTGGCAAACTCTATGCTTG

S2-2 GATA
GCTTCCACATTGAATTCTCATCGTTTTGGTGGGTGAAAACGTGACACGTTCACTCTTTTCGCCGCTGGCTCA
TAACGTTGGCTTATTCCGTATCACATGTTGCCACAGCAGTTTCTATTTTCGACACACACGCCGCCCCCTTTT
GTGTCTTCGCCCCCTGTTTGTGTATTGCTCTCTCCCCGCCGCTCTTTGGCGTTTCGCATGAACCGAGTGACA
TGGAGTGAAGTGAGGCAATCATCGGCGGGCCAGCATTAGATCATATATACAGACAGAAACGACGACGACATC
ATCATGATGATCATGATCATCATCGTACACTCTGACTCATGAACCTCACTCGCCTCACTTGCACTGGACAGA
CTCTCCGGATATCTCTCGCTCTCGCTTGCTCGCTCGCTCCCTCGCCCGTCAGTAGATTCTCCAATTCTCCGG
CTCTCTGGCAAACTCTATGCTTG
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S2-3 wt
CCAATGAATGTTTTCCAAACCTATATTAGTCAGTATATTTGGCCTATATATCAGTAAACAAATAAATAGCTA
AACGGTAGATTGTTGAAAATAATATCGCAATACGCCACTGTTCATAACAGAAGCAGAAGTTCGATGCCGGCA
GGGAATGAATGCGAATTAAGCAATACATATGATATGCAAATATGAAGCGCAACAATTATAACACGCTCTTTT
GTTGATATTCTTTGTTTGAACTGCGACTGATAAAGATAAAGCTGAAAACGTGCCGCGCAGCTGTTGCGGCTT
CTCATATCTATTTATAGCGGTTTTATTGCAGCACAGCACCCACACGCTTTTGTGTCGCTCTTCTCCATCCTC
CTTTGCTACTATTTTCATCTCATACGTGACTAGGCACGCATAGCATGGGAAGTGGTAGCCCTGTTGCACAGT
GCTTAACAACACTAAGTTTTCTGCTCTATGTTGTTGCTGTTTCA

S2-3 E-box
CCAATGAATGTTTTCCAAACCTATATTAGTCAGTATATTTGGCCTATATATCAGTAAACAAATAAATAGCTA
AACGGTAGATTGTTGAAAATAATATCGCAATACGCCACTGTTCATAACAGAAGCAGAAGTTCGATGCCGGCA
GGGAATGAATGCGAATTAAGCAATAATTACAATATGCAAATATGAAGCGCAACAATTATAACACGCTCTTTT
GTTGATATTCTTTGTTTGAACTGCGACTGATAAAGATAAAGCTGAAAACGTGCCGCGGGGCTCTTGCGGCTT
CTCATATCTATTTATAGCGGTTTTATTGCAGCACAGCACCCAGGCGCTTTTGTGTCGCTCTTCTCCATCCTC
CTTTGCTACTATTTTCATCTCATACGTGACTAGGCACGCATAGCATGGGAAGTGGTAGCCCTGTTGCACAGT
GCTTAACAACACTAAGTTTTCTGCTCTATGTTGTTGCTGTTTCA

OSC-1 wt
TGCGTGTCCACTAAAAGCCGAAAAAGAAGAGGAAGCGTAACGCGGCTCCATAAACAACGAAGGGCGCTCAGC
ACGCAAGTCGTCGAAGAACAATAAACACGAACCCCGAAAATCCAATGACTGTGCTCCGTCCAGCGGATTGAA
AGTGTCGTGGCTGGGTATGTGGATGTGGATTTGGATCGGGCACTGGAGGAGGAGGAGCTGTCCAAGTGGGGC
AGTCGCAAGGGCGAAGTGTTAGGGCGAAATTCGAGCAGCGTAAGCTGAAACCGAAACCAAAGCTGAAAACTC
GAGCCGCGCTCGCTCAAAACTATAACATTTTTCGTTTTATTCCCTTATTTTGTTGTGTTTTATTTTTATGGC
CAGCACTGCATTTATTGCGACAGCCCCCGGGTATCGAGAACAGGCGACGATGACGATGATGACT

OSC-1 Fkh
TGCGTGTCCACTAAAAGCCGAAAAAGAAGAGGAAGCGTAACGCGGCTCCTAGGTGAACGAAGGGCGCTCAGC
ACGCAAGTCGTCGAAGAACATTCGAAACGAACCCCGAAAATCCAATGACTGTGCTCCGTCCAGCGGATTGAA
AGTGTCGTGGCTGGGTATGTGGATGTGGATTTGGATCGGGCACTGGAGGAGGAGGAGCTGTCCAAGTGGGGC
AGTCGCAAGGGCGAAGTGTTAGGGCGAAATTCGAGCAGCGTAAGCTGAAACCGAAACCAAAGCTGAAAACTC
GAGCCGCGCTCGCTCAAAACTATAACATTTTTCGTTTTATTCCCTTATTTTGTTGTGTTTTATTTTTATGGC
CAGCACTGCATTTATTGCGACAGCCCCCGGGTATCGAGAACAGGCGACGATGACGATGATGACT

OSC-2 wt
AGAATGCTCAGTTTTTCATAGTATTCAAATTGTATTCTATTTTGTCCCCATGCCACATTCATATTCATATCT
GGGTTTTAGAAACCACCGAGTGGGTCTCAGCTTGCATCATAGATTTTGGGTTTCATCTCGCCGTTTTCCGAG
AAGTGGCATCTTCTGTGTGGTCTGTCGGCATGGATAAATGGGCTTCCAGCGACGACGACCCCCGCGGGCAAC
AGTTTAAGAATCAAAATAAACACTTCGATCCCGATCCCTCTGGACTTCGATAAGTTATGTCAACAAACTTCG
GTCGCGTAACGGCGCATGCAGGAGCTCTGGAGTAGTAGGAGCTCCAGCTGAAGTGCAGCATTGGGTTACAAT
CGTCCACATGGAGGAGATCAGCATCAGCCCCTAGGAGGGGGAGGGGGCGGTGTTGGAACTTTGGAGCAGTCC
AGCATTCAGTTGGGGCGGCGTAATTCGGCAATAAT

OSC-2 Fkh
AGAATGCTCAGTTTTTCATAGTATTCAAATTGTATTCTATTTTGTCCCCATGCCACATTCATATTCATATCT
GGGTTTTAGAAACCACCGAGTGGGTCTCAGCTTGCATCATAGATTTTGGGTTTCATCTCGCCGTTTTCCGAG
AAGTGGCATCTTCTGTGTGGTCTGTCGGCATGGATAAATGGGCTTCCAGCGACGACGACCCCCGCGGGCAAC
AGTTTAAGAATCAAAATCAGGACTTCGATCCCGATCCCTCTGGACTTCGATAAGTTATGTCAACAAACTTCG
GTCGCGTAACGGCGCATGCAGGAGCTCTGGAGTAGTAGGAGCTCCAGCTGAAGTGCAGCATTGGGTTACAAT
CGTCCACATGGAGGAGATCAGCATCAGCCCCTAGGAGGGGGAGGGGGCGGTGTTGGAACTTTGGAGCAGTCC
AGCATTCAGTTGGGGCGGCGTAATTCGGCAATAAT
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OSC-3 wt
TTTTGATAGCCCACGATGAGGGAGGGCAACAGACGAGAAGGCCCACAGGCGCTTAAATATTTGGGTAAAAGA
GAGTTGGGAATCAGGCCGGGAATTGGAACCTCACTTTGGCCGCCGATGGGAGTTTGCAGAATTCAAAAATTT
CACACCATCTCACAACTGTTTGTTTTTGCGCTGGAATGCAGTTCGAATGTTATTGCAGAGTGAATGTTTTTC
TGACTCACACTCACAATTCCCAGCCTCATTAAAACGAAGCCAGAGTTTCGTATAAACATCTTCTGCAGTCGT
TTGATTCCCGATTATAAACAATGCCTGCGAGCAAAATCCAAAAGACAAATAAACCACAATGGCCAATAATAA
ACGGAGAATCAGTGGGATTCATCATGGTAATTATACAGGGATTTGGATTTGAGCAGCTTGGACTGTTGGCTG
TGGGGCTATATCAAACAG

OSC-3 Fkh
TTTTGATAGCCCACGATGAGGGAGGGCAACAGACGAGAAGGCCCACAGGCGCTTAAATATTTGGGTAAAAGA
GAGTTGGGAATCAGGCCGGGAATTGGAACCTCACTTTGGCCGCCGATGGGAGTTTGCAGAATTCAAAAATTT
CACACCATCTCACAACTGTTTGTTTTTGCGCTGGAATGCAGTTCGAATGTTATTGCAGAGTGAATGTTTTTC
TGACTCACACTCACAATTCCCAGCCTCATTAAAACGAAGCCAGAGTTTCGTGCCATCATCTTCTGCAGTCGT
TTGATTCCCGATTATCGTGAATGCCTGCGAGCAAAATCCAAAAGACAAATAAACCACAATGGCCAATAATAA
ACGGAGAATCAGTGGGATTCATCATGGTAATTATACAGGGATTTGGATTTGAGCAGCTTGGACTGTTGGCTG
TGGGGCTATATCAAACAG

BA-1 wt
ACGTATCAGCGTTGGCGAATAAAAAAGTGCAGTGCATACCCGGCGGACTTATCTAATAGTTTTCACTTTCAA
TGTCGAGCGAAAGCTCTGCTGCCCCTGACGCGGTCGCTGCCTCGCTTATCGCGATTCGCAATTCGCAATTCG
CAATTCTCAATTCGCATTTCAGCGCGAGCGGGACGGAAACAGGAGAGAGACAGAGAGAGAGGCGGCAAGAGA
GAGAGAGAGAGAGAGAGAGGGAGAGGTGAAATGCCCCGAAAGTTGTCTGTATTCAAATTATTTATTTTTTTT
TGGGATTTCTTTTCTGCAAGATGTCCAGATGGGAACAGAGCGGAGCGACCGACCCCCATCCCTGTTTACCCC
GCAACGCACCGTACCGTACAAGTGTTCTTGGTATATTCGCATTTGTTATAGTTCGCTTTTTTTCACTCCTCC
CTCCATTTGCGATGCGTTGGCTTTTTCACTCCGTTTTT

BA-1 GA
ACGTATCAGCGTTGGCGAATAAAAAAGTGCAGTGCATACCCGGCGGACTTATCTAATAGTTTTCACTTTCAA
TGTCGAGCGAAAGCTCTGCTGCCCCTGACGCGGTCGCTGCCTCGCTTATCGCGATTCGCAATTCGCAATTCG
CAATTCTCAATTCGCATTTCAGCGCTATTGGGACGGAAACAGTGCCTCCACAGCCTAGTAGGCGGCATGACG
ACAAGGCTGCTAACACGAGGGAGAGGTGAAATGCCCCGAAAGTTGTCTGTATTCAAATTATTTATTTTTTTT
TGGGATTTCTTTTCTGCAAGATGTCCAGATGGGAACGCGTCGGAGCGACCGACCCCCATCCCTGTTTACCCC
GCAACGCACCGTACCGTACAAGTGTTCTTGGTATATTCGCATTTGTTATAGTTCGCTTTTTTTCACTCCTCC
CTCCATTTGCGATGCGTTGGCTTTTTCACTCCGTTTTT

BA-2 wt
CCATGCATATGCTTATCACAACGGAAAGAACATCTTATTGCTGCTCTTTAAGGTTTTTTAAGGAATGAAGGT
TTGGCCATTGCCTAAAATGGGCGAACTACAAATTATATTTATAAATAAATAGTTTTAATACAGTTTTAGGCC
AGAAAGGATAATGCAAAAGCAGTTCGATGGCTCCATGCTTCCGCTACAGTTACAAGTCCACCTTATCGGGCG
CCCACTGTGAGTACGACTCATGCACGCACACATGCGCAGCTCTCTGAGTCACTCGCGCAAACGAAAATGACA
CGTATGGGAGTTTCGCTCTCGCTCTGCGCCAGTGCGTGCATGTGTATGCGAGTTTATCAATGCTGTTGAACT
GCGGTTAACAAAAACAACATCGCACACGTATTTGGCTCATTGAAAACATTCTCACACACACTGGCACACGCA
TTTCAATTAAAGCCTTAAAAGGCCAGAAAAAAACCGCAGTTGAAGCACCCAAA

BA-2 GA
CCATGCATATGCTTATCACAACGGAAAGAACATCTTATTGCTGCTCTTTAAGGTTTTTTAAGGAATGAAGGT
TTGGCCATTGCCTAAAATGGGCGAACTACAAATTATATTTATAAATAAATAGTTTTAATACAGTTTTAGGCC
AGAAAGGATAATGCAAAAGCAGTTCGATGGCTCCATGCTTCCGCTACAGTTACAAGTCCACCTTATCGGGCG
CCCACTGTGAGTACGACTCATGCACGCACACATGCGCAGGGTGCGCCGATACTCGCGCAAACGAAAATGACA
CGTATGGGAGTTTCGATCGAGGCTTGCGCCAGTGCGTGCATGTGTATGCGAGTTTATCAATGCTGTTGAACT
GCGGTTAACAAAAACAACATCGCACACGTATTTGGCTCATTGAAAACATTCTCACACACACTGGCACACGCA
TTTCAATTAAAGCCTTAAAAGGCCAGAAAAAAACCGCAGTTGAAGCACCCAAA
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BA-2 AP-1
CCATGCATATGCTTATCACAACGGAAAGAACATCTTATTGCTGCTCTTTAAGGTTTTTTAAGGAATGAAGGT
TTGGCCATTGCCTAAAATGGGCGAACTACAAATTATATTTATAAATAAATAGTTTTAATACAGTTTTAGGCC
AGAAAGGATAATGCAAAAGCAGTTCGATGGCTCCATGCTTCCGCTACAGTTACAAGTCCACCTTATCGGGCG
CCCACTGTGAGTACAGCAAATGCACGCACACATGCGCAGCTCTCTATCCGACTCGCGCAAACGAAAATGACA
CGTATGGGAGTTTCGCTCTCGCTCTGCGCCAGTGCGTGCATGTGTATGCGAGTTTATCAATGCTGTTGAACT
GCGGTTAACAAAAACAACATCGCACACGTATTAGTCGAATTGAAAACATTCTCACACACACTGGCACACGCA
TTTCAATTAAAGCCTTAAAAGGCCAGAAAAAAACCGCAGTTGAAGCACCCAAA

BA-2 CA
CCATGCATATGCTTATCACAACGGAAAGAACATCTTATTGCTGCTCTTTAAGGTTTTTTAAGGAATGAAGGT
TTGGCCATTGCCTAAAATGGGCGAACTACAAATTATATTTATAAATAAATAGTTTTAATACAGTTTTAGGCC
AGAAAGGATAATGCAAAAGCAGTTCGATGGCTCCATGCTTCCGCTACAGTTACAAGTCCACCTTATCGGGCG
CCCACTATTGGTACGACTCATGCGGTCCTCGATGCGCAGCTCTCTGAGTCACTCGCGCAAACGAAAATGACA
CGTATGGGAGTTTCGCTCTCGCTCTGCGCCATCTATTACATAGGTATGCGAGTTTATCAATGCTGTTGAACT
GCGGTTAACAAAAACAACATTACGAAGGTATTTGGCTCATTGAAAACATTCATAAGAATCCTGGCGAAGCCG
TTTCAATTAAAGCCTTAAAAGGCCAGAAAAAAACCGCAGTTGAAGCACCCAAA

BA-2 GATA
CCATGCATATGCACCTAACAACGGAAAGAACATCTTATTGCTGCTCTTTAAGGTTTTTTAAGGAATGAAGGT
TTGGCCATTGCCTAAAATGGGCGAACTACAAATTATATTTATAAATAAATAGTTTTAATACAGTTTTAGGCC
AGAAAGGCTTATGCAAAAGCAGTTCGATGGCTCCATGCTTCCGCTACAGTTACAAGTCCACCTTAGTGGGCG
CCCACTGTGAGTACGACTCATGCACGCACACATGCGCAGCTCTCTGAGTCACTCGCGCAAACGAAAATGACA
CGTATGGGAGTTTCGCTCTCGCTCTGCGCCAGTGCGTGCATGTGTATGCGAGTTTATCAATGCTGTTGAACT
GCGGTTAACAAAAACAACATCGCACACGTATTTGGCTCATTGAAAACATTCTCACACACACTGGCACACGCA
TTTCAATTAAAGCCTTAAAAGGCCAGAAAAAAACCGCAGTTGAAGCACCCAAA

BA-3 wt
AATTTGCATTGACTGCTGCCACAACATAACTGCACTTTGCACTCACACACACTAAGATATGTTTTTCAACGC
AAAGCATTCGGGGCGGGGTTTTAATATTGCTATTGAGCTACAGGCAGAGTAATCCGAAATATTAAGAATAAT
AATACTACACACCAGACGCGGAGCTCCCGACTCGACGGCAGACAAAGACGCAGTGTGGTAAAATGTGCCCAG
ACCAGACGGGGCGCTCCTCTCTCTCACACTCTCTTTCTCTCTCTCGTTTCCGCTGCGAGTGTAGATATATGG
ATGGAAAATCGAAACTCTGTGGCTGTGGCCAGCCCCCGCGGCCCCCTTTTGCTATCTCGCTTGCTCGCATGG
ACAAAATCAACACAAGTTCACACACATACAGGCACACGGATGTGAACTCACAATGACAACCACTTCGTCACC
AGCAGATAAAAAAGTGCTGGCCTTAAATCAATTGCG

BA-3 GA
AATTTGCATTGACTGCTGCCACAACATAACTGCACTTTGCACTCACACACACTAAGATATGTTTTTCAACGC
AAAGCATTCGGGGCGGGGTTTTAATATTGCTATTGAGCTACAGGCAGAGTAATCCGAAATATTAAGAATAAT
AATACTACACACCAGACGCGGAGCTCCCGACTCGACGGCAGACAAAGACGCAGTGTGGTAAAATGTGCCCAG
ACCAGACGGGGCGCTCATAGCCACCACACTATGATTCCCTGATCAGTTTCCGCTGCGAGTGTAGATATATGG
ATGGAAAATCGAAACTCTGTGGCTGTGGCCAGCCCCCGCGGCCCCCTTTTAGGATGCCGCTTGCTCGCATGG
ACAAAATCAACACAAGTTCACACACATACAGGCACACGGATGTGAACTCACAATGACAACCACTTCGTCACC
AGCAGATAAAAAAGTGCTGGCCTTAAATCAATTGCG

BA-3 CA
AATTTGCATTGACTGCTGCCACAACATAACTGCACTTTGTGATTCTGTATTCTAAGATATGTTTTTCAACGC
AAAGCATTCGGGGCGGGGTTTTAATATTGCTATTGAGCTACAGGCAGAGTAATCCGAAATATTAAGAATAAT
AATACTAGGTATCAGACGCGGAGCTCCCGACTCGACGGCAGACAAAGACGCAACCGAGTAAAATGTGCCCAG
ACCAGACGGGGCGCTCCTCTCTCTTGATCTCTCTTTCTCTCTCTCGTTTCCGCTGCGAGTGTAGATATATGG
ATGGAAAATCGAAACTCTTTGGCTTCGGCCAGCCCCCGCGGCCCCCTTTTGCTATCTCGCTTGCTCGCATGG
ACAAAATCAACACAAGTTCACCTATAGCATGTTCAACGGATGTGAACTCACAATGACAACCACTTCGTCACC
AGCAGATAAAAAAGTGCTGGCCTTAAATCAATTGCG
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B.bone
CCAACACAAATCCCAAGAAAGAACACAGTGTCGTGGAAAAAGGACTTGGATACCGCCGGCCCGCTGAAGGTC
AACTAATTTCGTGTTATATTTGGGACAGGGAACCCTTCTCCTTTTTCGCTTTTCGAATCGATTCCCCTAAAC
TGACCGCCAGGTTCAATCAACCTTTGGCCCGAAAAGTACACTTCAGAAGCAGAAGCCAAATAGATTTGTCAA
CCCATTGACACATCGCTTGAGACTTCCGGCAGCTGGCTCGCAGGCTCTTGACCGATTCGCTTTACGTCATCC
ACAACATCTTAACCTAATCGAATGGGTTCAATGGACTCGATCTAATTGTCACAACTTAAGGCCACTAAAAAT
AGGCTCAAAAACCACAGAGGTTTCGAGTTCAACGCTCAACGAGTTGGCAGCATTTGCATGCACTCGCACAAG
ATTCACTATTCCTGCACAGTCAGCGGATGAAGGCGGAGCCACCAGG

synEnh - BA-2
CCAACACAAATCCCAAGAAAGAACACAGTGTCGTGGAAAAAGGACTTGGATACCGCCGGCCCGCTGAAGGTC
AACTAATTTCGTGTTATATTTGGGACAGGGAACCCTTCTCCTTTTTCGCTTTTCGAATCGATTCCCCTAAAC
TGACCGCCAGGTTCAATCAACCTTTGGCCCGAAAAGTACACTTCAGAAGCAGAAGCCAAATAGATTTGTCAA
CCCACTGTGAGTACGACTCATGCACGCACACATGCGCAGCTCTCTGAGTCACTCGTTCGCTTTACGTCATCC
ACAACAGGAGTTTCGCTCTCGCTCTGCGCCAGTGCGTGCATGTGTATGTCACAACTTAAGGCCACTAAAAAT
AGGCTCAAAAACCACAACATCGCACACGTATTTGGCTCATTGATTACATTCTCACACACACTGGCACACGCA
TTTCACTATTCCTGCACAGTCAGCGGATGAAGGCGGAGCCACCAGG

synEnh - BA-3
CCAACACAAATCCCAAGAAAGAACACAGTGTCGTGTTTGCACTCACACACACTAAGCGGCCCGCTGAAGGTC
AACTAATTTCGTGTTATATTTGGGACAGGGAACCCTTCTCCTTTTTCGCTTTTCGAATCGATTCCCCTAAAC
AATACTACACACCAGATCAACCTTTGGCCCGAAAAGTACACTTCAGAACGCAGTGTGGTAAAGATTTGTCAA
CCCATACGGGGCGCTCCTCTCTCTCACACTCTCTTTCTCTCTCTCGTTTCCGCGATTCGCTTTACGTCATCC
ACAACATCTTAACACTCTGTGGCTGTGGCCATGGACTCGATCCCCCTTTTGCTATCTCGCTCCACTAAAAAT
AGGCTCAAAAACCAAGTTCACACACATACAGGCACACGGAGAGTTGGCAGCATTTGCATGCACTCGCACAAG
ATTCACTATTCCTGCACAGTCAGCGGATGAAGGCGGAGCCACCAGG

synEnh - BA-4
CCAACTTACTCACACACGCACGCACACGTGTCGTGGAAAAAGGACTTGGATACCGCCGGCCCGCTGAAGGTC
AACTAATTTCGTGTTATATTTGGGACAGGGAACCCTTCTCCTTTTTCGCTTTTCGAATCGATTCCCCTAAAC
TGACCGCCAGGTTCAATCAACCGCGCACACACACACGCACCTTCAGAAGCAGAAGCTGTACACACACACACA
TGATTTGACACATCGCTTGAGACTTCCGGCAGCTGGCTCGCAGGCTCTTGACCGATGGGGCTAAACAGCTGC
ACAACATCTTAACCTAATCGAATGGGTTCAATGGACTCGATCTAATTGTCACAACTTAAGGCCACTAAAAAT
AGGCTCAAAAACCACAGAGGTTAAACTGCTTATCGCAGCCGAGTTGGCAGCATTTGCATGCACTCGCACAAG
ATTCACTATTCCTGCACAGTCGTGATGTGTGTTGTGAGCCACCAGG

synEnh -BA-5
CCAACAGGTTTCTCTCTCGCAGACACAGTGTCGTGGAAAACCTGCTCTCTCTCTCTCGAGCGCGCGATCGGT
GTGCGCTTTCGTGTTATATTTGGGACAGGGAACCCTTCTCCTTTTTCGCTTTTCGAATCGATTCCCCTAAAC
TGTTTGTTGTTATCGCGTTGCCTTTGGCCCGAAAAGTACACTTCAGAAGCAGAAGCCAAATAGATTTGTCAA
CCCATTGACACATCGCTTGAGACTTCCGGCAGCTGGCTCGCAGGCTCTTGACCGATTCGCTTTACGTCTGTT
GGTGTGCGTGCGCGTGTTCGAATGGGTTCACTTGTGTGTGAGTGTGTGTGTATGGTTAAGGCCACTAAAAAT
AGGCTCAAAAACCACAGAGGTTTCGAGTTCAACGCTCAACGAGTTGGCAGCATTTGCATGCACTCGCACAAG
ATTCACTATTCCTGCACAGTCAGCGGATGAAGGCGGAGCCACCAGG

HsEnh-1
AAGTCAGGTTGGAGGCGGCCTTTAAGCGCCGCGCGTCTCTCGGAACTTAAATATTACCCGGAATCGTCTCTG
TGAATTGGAAAGCCCATTGAAGCCTCAGAGAAGCCGCGCCATTGCGGAGGCACGTAACGTCAAGCAGGGACT
TCCTGCGTCCTCGCCGCGGTGGCCATTTTGGCTTGTCGGGACCATCCACCTATGCTGCGTCTGTACCTCTTT
GTCAGGACCGAGAGCGCGCGAGAGGAGTGGTTGTGCCCATTGCACACAGGCGGATCTGAGGCTTGGCGACGC
CGCTGGTCGCGACCTGGGACAGGACGAGCACAGGAACCGCCTGGCCTGCGTCCCCGCCCGCGCATGAAGTCG
TGGCGGCGGCCGCTCAAGTGAGCCCTGCGACCTCCAGGCCTCACCCGCCATCCCCACACAGACCCTGAGACC
CCTGACTGTGAGGGGCGCTTCCTCGCGTC
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HsEnh-1 GA
AAGTCAGGTTGGAGGCGGCCTTTAAGCGCCGCGCGGACTTAGGAACTTAAATATTACCCGGAATCGTCACCG
TGAATTGGAAAGCCCATTGAAGCCTCATCTTAGCCGCGCCATTGCGGAGGCACGTAACGTCAAGCAGGGACT
TCCTGCGTCCTCGCCGCGGTGGCCATTTTGGCTTGTCGGGACCATCCACCTATGCTGCGTCTGTACCTCTTT
GTCAGGACCGAGAGCGCGCATGCCGAGTGGTTGTGCCCATTGCACACAGGCGGATCTGAGGCTTGGCGACGC
CGCTGGTCGCGACCTGGGACAGGACGAGCACAGGAACCGCCTGGCCTGCGTCCCCGCCCGCGCATGAAGTCG
TGGCGGCGGCCGCTCAAGTGAGCCCTGCGACCTCCAGGCCTCACCCGCCATCCCCACACAGACCCTGAGACC
CCTGACTGTGAGGGGCGCTTCCTCGCGTC

HsEnh-1 CA
AAGTCAGGTTGGAGGCGGCCTTTAAGCGCCGCGCGTCTCTCGGAACTTAAATATTACCCGGAATCGTCTCTG
TGAATTGGAAAGCCCATTGAAGCCTCAGAGAAGCCGCGCCATTGCGGAGGCACGTAACGTCAAGCAGGGACT
TCCTGCGTCCTCGCCGCGGTGGCCATTTTGGCTTGTCGGGACCATCCACCTATGCTGCGTCTGTACCTCTTT
GTCAGGACCGAGAGCGCGCGAGAGGAGTGGTTGTGCCCATTGAATACCGGCGGATCTGAGGCTTGGCGACGC
CGCTGGTCGCGACCTGGGACAGGACGAGCACAGGAACCGCCTGGCCTGCGTCCCCGCCCGCGCATGAAGTCG
TGGCGGCGGCCGCTCAAGTGAGCCCTGCGACCTCCAGGCCTCACCCGCCATCCCTCTTTAGGCCCTGAGACC
CCTGACTGTGAGGGGCGCTTCCTCGCGTC

HsEnh-1 CG
AAGTCAGGTTGGAGGCGGCCTTTAAGCGCATTAAATCTCTCGGAACTTAAATATTACCCGGAATCGTCTCTG
TGAATTGGAAAGCCCATTGAAGCCTCAGAGAAGCATGTACATTGCGGAGGCACGTAACGTCAAGCAGGGACT
TCCTGCGTCCTCGCCGCGGTGGCCATTTTGGCTTGTCGGGACCATCCACCTATGCTGCGTCTGTACCTCTTT
GTCAGGACCGAGAATCTTTGAGAGGAGTGGTTGTGCCCATTGCACACAGGCGGATCTGAGGCTTGGCGACGC
CGCTGGTCGCGACCTGGGACAGGACGAGCACAGGAACCGCCTGGCCTGCGTCCCCGCCTAGATATGAAGTCG
TGGCGGCGGCCGCTCAAGTGAGCCCTGCGACCTCCAGGCCTCACCCGCCATCCCCACACAGACCCTGAGACC
CCTGACTGTGAGGGGCGCTTCCTCGCGTC

HsEnh-2
TCCATCACTGCCTTCAAGTATGATAAAATTGCTAATTTCATGGGGTATGTCTAAGCTCTTTTCTTTGGTTTC
TCTGAGGTACTTTTTAAATGTTTATTGGGGCTATCTTAAAACTATCTTCCTTTGATTCTTCTGAAGTTGCAT
TTTAAAGTTTTGCTTCCCAGTGACTCATGCTTTCTTCATTTCCTGTTTCAGCTTCTCTTCTGCCGTCTGCTC
CATAAATGGGGCCCTCTGCCAAGTTTCTGTTCCCTTTCTATGTTTTCTCTCTTATACATTGTATATACCTCT
ATGGCTTTAAATGTTGCTACTAAGTTAAAGATTTCTCAATTCATTTATTTGGCAGCATATCTCTCTTGGTTC
CAGTTAAAATTTCAGCTCCCCATCCGTAAGCTTTACATGTGCATCCTATGTAATATTTCTGGCTTCCAGCCT
GTTCTGATCATGTTGCACTTGGAGAATACCTTTTCCTTGGTGA

HsEnh-2 GA
TCCATCACTGCCTTCAAGTATGATAAAATTGCTAATTTCATGGGGTATGTCTAAGCTCTTTTCTTTGGTTTT
GCAGAGGTACTTTTTAAATGTTTATTGGGGCTATCTTAAAACTATCTTCCTTTGATTCTTCTGAAGTTGCAT
TTTAAAGTTTTGCTTCCCAGTGACTCATGCTTTCTTCATTTCCTGTTTCAGCTTCTCTTCTGCCGTCTGCTC
CATAAATGGGGCCCTCTGCCAAGTTTCTGTTCCCTTTCTATGTTTTTCATGGTATACATTGTATATACCTCT
ATGGCTTTAAATGTTGCTACTAAGTTAAAGATTTCTCAATTCATTTATTTGGCAGCATACATTTAATGGTTC
CAGTTAAAATTTCAGCTCCCCATCCGTAAGCTTTACATGTGCATCCTATGTAATATTTCTGGCTTCCAGCCT
GTTCTGATCATGTTGCACTTGGAGAATACCTTTTCCTTGGTGA

HsEnh-3
GCCGCTCGCAACCCCGACTGTCGCCAGCGCCGCAACACCAGCGCTTCCCGCCTGGCTGAGTGGCCCCGGCTG
CGCGCGGGTTGCCATGGAGACGGTTCCGCCCTCTCGTGCGGACGCACTCAGGCGCGACCTCCGCCCCTACGC
CGCCATGAGCGGAAAACGGGGAATGTGAGGCTGACGGCGCCATGTTTGAATTGGTCGCAGCGCCTCCTGCAA
GACCTGGAAGAAAGAAAAGTAACGATTCTTCTCGGCCAGAGAGAGAAGCATGACCGGTTTTGCATACCCTGT
CCCCAGAAAAAGCACTCTAAGAGTAGGCGCGCTACTCCTGGGCGAGGAAACTGCGGAAGTGAGGCATTGGTG
CCAGGTTCAAAGATGGCGCTGAGCAGCCAAGCGCAGAAGCGAAGAGAGGGCGGCAGCCTGCGGCCGTGGCCG
GCCCGCGAGGTCTGGGCCTGGGAGCGCAGATCTGGCTGAGCAGCTGATTCTTCCAGCAGATCCGAGA
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HsEnh-3 GA
GCCGCTCGCAACCCCGACTGTCGCCAGCGCCGCAACACCAGCGCTTCCCGCCTGGCTGAGTGGCCCCGGCTG
CGCGCGGGTTGCCATGGAGACGGTTCCGCCGCATGGTGCGGACGCACTCAGGCGCGACCTCCGCCCCTACGC
CGCCATGAGCGGAAAACGGGGAATGTGAGGCTGACGGCGCCATGTTTGAATTGGTCGCAGCGCCTCCTGCAA
GACCTGGAAGAAAGAAAAGTAACGATTCTTCTCGGCCATAAACTAGAGCATGACCGGTTTTGCATACCCTGT
CCCCAGAAAAAGCACTCTAAGAGTAGGCGCGCTACTCCTGGGCGAGGAAACTGCGGAAGTGAGGCATTGGTG
CCAGGTTCAAAGATGGCGCTGAGCAGCCAAGCGCAGAAGCGAGAATTTGGCGGCAGCCTGCGGCCGTGGCCG
GCCCGCGAGGTCTGGGCCTGGGAGCGCAGATCTGGCTGAGCAGCTGATTCTTCCAGCAGATCCGAGA

HsEnh-3 CG
GCCGCTCGCAACCCCGACTGTCGCCAGCGCCGCAACACCAGCGCTTCCCGCCTGGCTGAGTGGCCCCGGCTT
CAGGTGGGTTGCCATGGAGACGGTTCCGCCCTCTCGTGCGGACGCACTCAGGTCAGACCTCCGCCCCTACGC
CGCCATGAGCGGAAAACGGGGAATGTGAGGCTGACGGCGCCATGTTTGAATTGGTCGCAGCGCCTCCTGCAA
GACCTGGAAGAAAGAAAAGTAACGATTCTTCTCGGCCAGAGAGAGAAGCATGACCGGTTTTGCATACCCTGT
CCCCAGAAAAAGCACTCTAAGAGTAGGTCCTATACTCCTGGGCGAGGAAACTGCGGAAGTGAGGCATTGGTG
CCAGGTTCAAAGATGGCGCTGAGCAGCCAAGCGCAGAAGCGAAGAGAGGGCGGCAGCCTGCGGCCGTGGCCG
GCCCGCGAGGTCTGGGCCTGGGAGCGCAGATCTGGCTGAGCAGCTGATTCTTCCAGCAGATCCGAGA
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