

Supplemental information on bioinformatic analysis

Image analysis, basecalling and error calibration was performed using standard Illumina software. Alignments to the annotated sequence of *C. elegans* available at WormBase WS225 were performed by BWA. Samtools was used for SNP and indel calling, with BAQ calculation turned off. All non-unique SNPs and indels are considered to be pre-existing and were filtered out using custom Perl scripts. We considered a SNP to be real if at least 80% of the called bases were non-wildtype for SNPs that are covered ≥ 4 times. As a second filter at least one of MA lines of the same genotype should be called as wildtype: having a coverage ≥ 4 of which $\geq 80\%$ was of wildtype nature according to pileup generated with mpileup. Sanger sequencing of predicted SNPs validated these criteria.

To identify microsatellite mutations and deletions we used Pindel, developed by Ye et al¹⁸. Standard settings were used, except for changing the maximum allowed mismatch rate (-u) from 0.02 to 0.01. In addition, the sequencing error rate (-e) was adjusted to 0.0001. Pindel results were filtered using custom Java software that selects structural variations that are unique for one sample or the variation was supported by more than eight reads in one sample and eight times less often seen in any other sample. The latter criterium allowed us to also detect variations in homopolymers, which frequently contain sequencing errors. A deletion or deletion with template insertion of ≥ 20 nt was selected if the local average coverage was below five, while the directly surrounding area was covered >20 fold. Deletions and deletions with template insertions of <20 nt were included when both Pindel

and SAMtools reported the variation and SAMtools reported it to be homozygous ($\geq 80\%$ non-wildtype). A representative set of deletions was validated by Sanger sequencing. The complete sequencing data have been submitted to the NCBI Sequence Read Archive (SRA) with accession ID SRP020555.

The simulated set was created in two steps. First, the N2 reference genome was edited by creating random deletions with a size distribution similar to *polh-1;polk-1* throughout the genome using a custom Perl script. Second, the software tool wgsim was used to generate pair-end reads with a 100x coverage based on the modified genome. Subsequently, the reads were analyzed using the same pipeline as used for the MA lines.

For the analysis of the natural isolates paired-end whole genome sequence data was downloaded from the NCBI Sequence Read Archive (SRP011413)³⁸, and sequence reads were mapped to the *C. elegans* reference genome (Wormbase release 225). The average base coverage was 176x, 164x, 166x and 75x for AB2, CB4857, RC301 and CB4856, respectively. Pindel was used to detect structural variations (SVs) in the natural isolates as compared to the N2 reference genome. We included only SVs that had at least 10 reads supporting the SV and no reads supporting the reference genome. Next, we grouped all SVs from AB2, CB4857, RC301 together as the phylogenetic tree indicate that they are closely related (as compared to CB4856. As a second criterion, we collected only those SVs that were N2-like in CB4856, but were flagged as a SV in the AB2, CB4857 or RC301 group (and vice versa). We found 6,279 and 5,028 deletions of at least 1bp for CB4856 and the combined group that consists of CB4857, AB2 and RC301, respectively. The

regression curves displayed in figure 4 were created by iterating over the natural isolate datasets.

Table S1. Whole genome sequencing statistics.

genotype	sample	# generations	# reads	average coverage	# bp >= 4x covered
N2	N2	60	45,258,326	28x	100,140,732
	N4	60	23,693,826	16x	99,675,920
<i>polh-1(lf31)</i>	H7	60	46,203,688	39x	100,229,062
	H8	60	44,982,616	37x	100,238,324
<i>polk-1(lf29)</i>	K1	60	41,517,548	21x	99,970,233
	K4	60	39,275,458	30x	100,235,635
	K9	60	40,037,564	24x	100,120,773
<i>polh-1(lf31);polk-1(lf29)</i>	D4	32	46,284,780	21x	99,911,564
	D13	25	38,712,292	29x	100,224,845
	D14	25	59,163,976	27x	100,202,641
<i>msh-6 (pk2504)</i>	M13	10	48,338,722	19x	99,236,278
	M15	10	44,129,942	12x	99,799,729

Table S2. *unc-22* deletions in *polh-1polk-1* and *polh-1polk-1polq-1*.

	size	left flank	deletion left	deletion right	right flank	insertion
<i>polh-1polk-1</i>						
A	83 bp	GTACCTACTCA	CGTCCAAATG	TTATCGAAAA	GAACGTGTGC	-
B	74 bp	AATCCAGAAGT	CGATGACACC	CTTGGTTAGT	TATTTTTTGG	-
C	153 bp	ACAAGGCTGGG	CCTGGACAAC	TAAAGGCTGG	AGCCACTGTGTT	-
D	119 bp	GACTATCAAGG	CTGGTCAATC	TGATAACCCA	GAATACCAAT	AATCTGACTATCAAAGGAATC
E	93 bp	CTTGCAAAGGA	TCCATTTGGA	CACGTGACAA	CGGTGGATCA	TCAAGAATCTGACTATCAAAG
F	71 bp	TGTGAAGCCTT	ACGGAACCTGA	ACCACCACTT	GTTACTTGGC	-
G		not identified				
<i>polh-1polk-1polq-1</i>						
A	>4.7 kb					
B	>30.5 kb					
C	19 - 20.6 kb					
D	12660 bp	AAATGAGCACA	CTATTCTGTG	GAACAGGAGC	ATTTGGAGTT	
E	> 23.7 kb					
F		not identified				

Table S3. Frequency of *unc-22* mutations in *polq-1*, *polh-1polk-1* and *polh-1polk-1polq-1*.

Strain	total	# plates scored	# plates containing one or more twitchers	estimated mutation rate
N2 wildtype		40	0	0.00E+00
XF152 <i>polq-1</i>		40	0	0.00E+00
XF507 <i>polh-1polk-1</i>		46	7	8.00E-06
XF840 <i>polh-1polq-1polk-1</i>		39	6	8.00E-06

Table S4. Sequence analysis of reversion mutants for *unc-93(e1500)*.

wildtype

unc-93

deletions > 5kb	0	
substitutions	6	cagttt(g>a)tctggc; C>Y gacacg(t>a)cacagt; V>D tgtctg(g>c)aatact; G>A aaatat(c>t)gatttt; R>L ggaatc(g>a)cggctt; T>A tgttag(g>t)taatgg; splice
other	1	gaatat(tcga>deleted)aaaactt

sup-9

deletions > 5kb	2	
substitutions	1	ccattg(g>a)gactta; G>stop
other	2	ccaata(gtga>deleted)cgtcat

sup-10

deletions > 5kb	11	
substitutions	3	cagttc(t>a)cttgta; L>H tggaat(a>g)tggtcgg; M>V* agccag(g>t)tttgta;; splice site mutation

unknown	2	
---------	---	--

*also tcttt(t>c)caacca in intron 150 bp upstream

Table S5. Sequence analysis of reversion mutants for *polq-1*; *unc-93(e1500)*.

polq-1

unc-93

deletions > 5kb 6

substitutions 12 tgccga(c>a)aagtgc; Q>K
cgttga(c>a)gatttc; T>K
gatctc(g>a)gatctg; G>R
ttccat(c>t)atttat; S>L
tttcta(c>a)ctcatg; T>N
tttcat(g>t)attgta; M>I
ggggag(c>a)caaatg; A>D
aagtgc(t>a)cgaaaa; V>D
tccttt(c>t)gagaca; R>stop
tctata(c>a)attgtc; Y>stop
aatata(t>a)ttgctg; Y>stop
tgttag(g>a)taatgg; splice site mutation

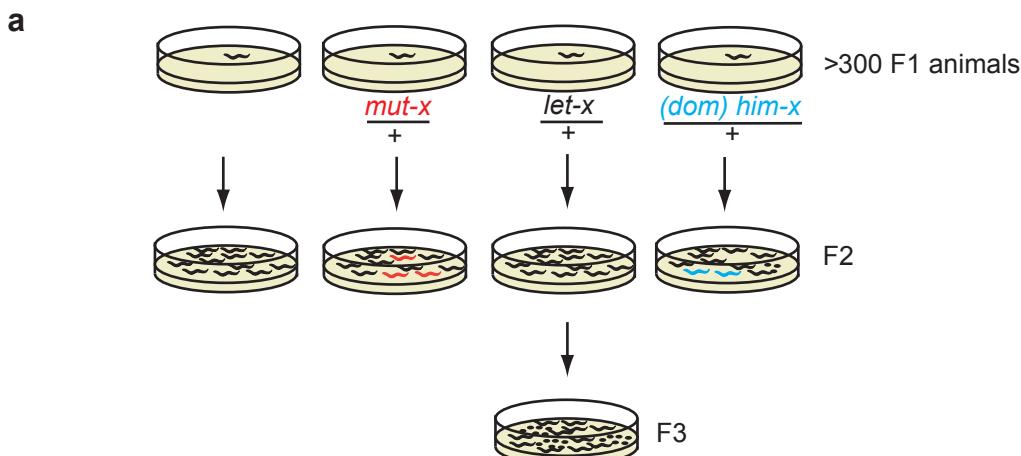
other 2 acgtca(ca>deleted)gttgaa
ttttac(t>deleted)tttttag other
microsatellite

sup-9

deletions > 5kb 20

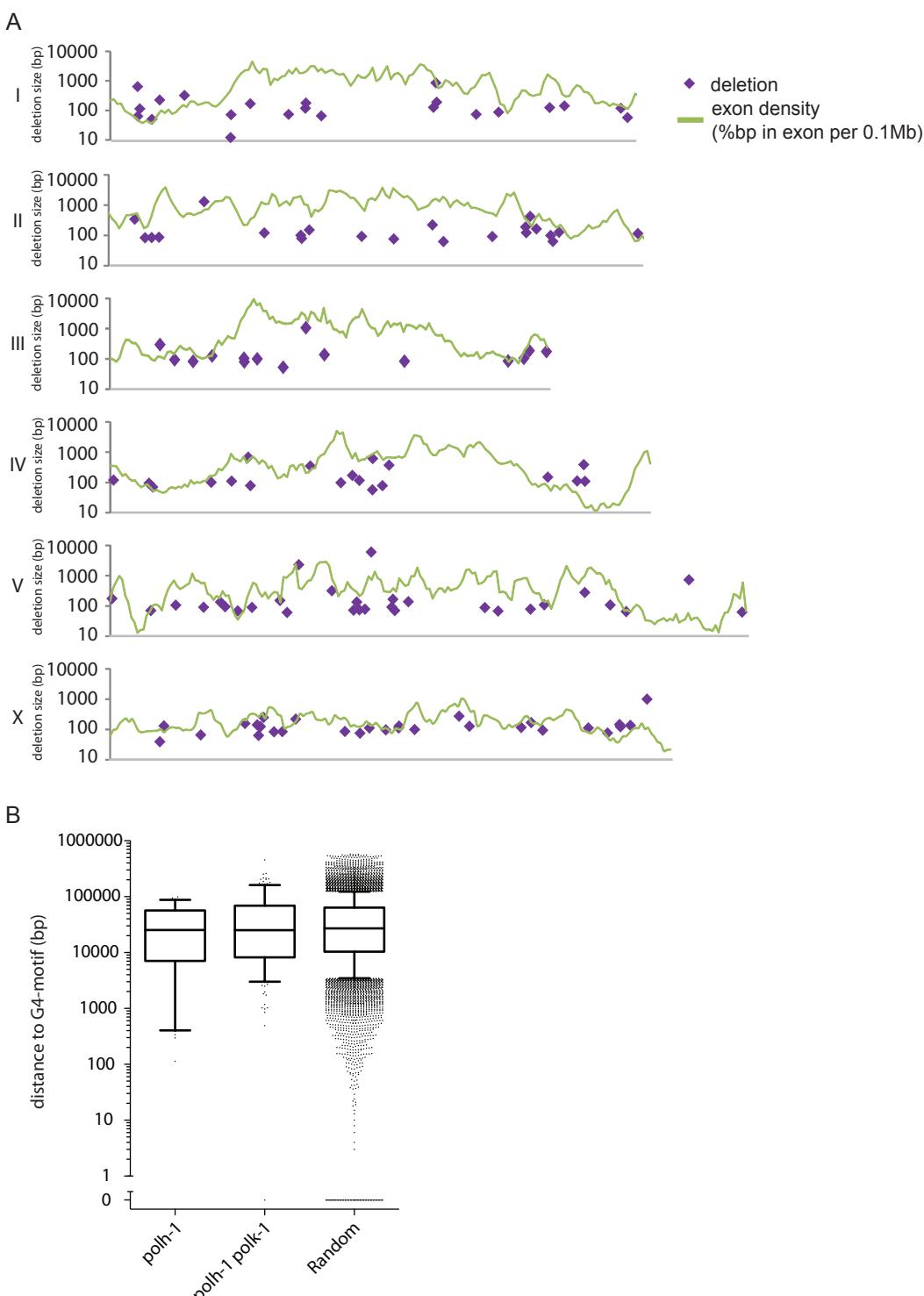
substitutions 7 tcttcg(g>a)gctcac; G>E
gggtac(c>a)agtggaa; Q>K
gtggag(c>a)atttta; A>E
ccattg(g>a)gactta; G>stop
aggcta(c>a)ggtcat; Y>stop
tccctg(c>t)aaactc; Q>stop
caagta(c>a)aacatg; Y>stop

sup-10


deletions > 5kb 55

substitutions 1 atgtta(a>t)tataag; N>I

other 1 gtgatg(a>deleted)catcaa hairpin


unknown 7

b

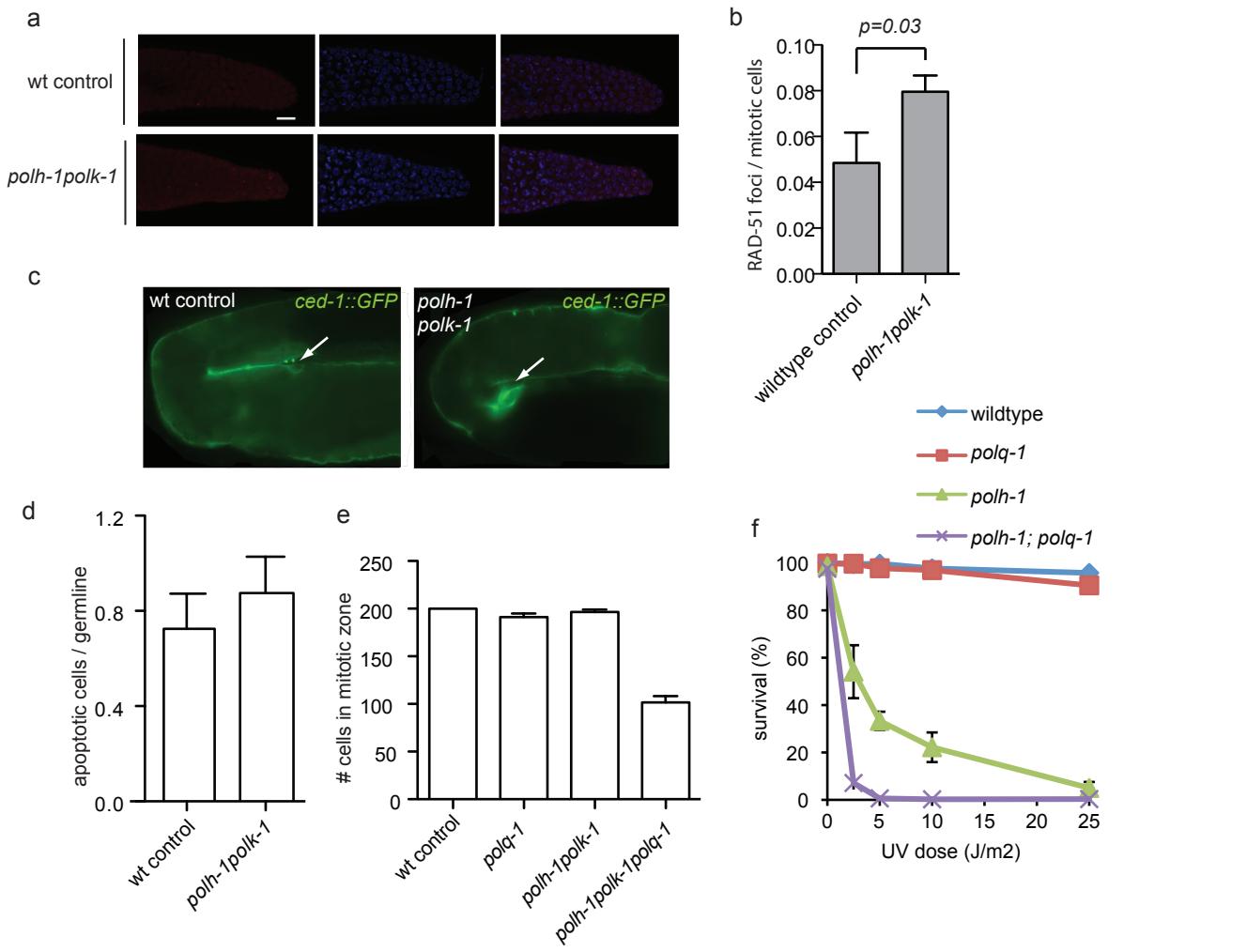

Genotype	# analyzed plates	Mutants found
N2	340	0
<i>polh-1(ok3317)</i>	340	0
<i>polh-1(lf31)</i>	340	0
<i>polk-1(lf29)</i>	340	0
<i>polh-1(ok3317);polk-1(lf29)</i>	740	<i>dpy(3); ste(1); let(15); him(6)</i>
<i>polh-1(lf31);polk-1(lf29)</i>	340	<i>dpy(3); let(5); him(3)</i>
<i>msh-6</i>	300	20 visible mutants

Figure S1. Occurrence of spontaneous visible mutants in TLS defective strains. **a**, Experimental set-up to determine spontaneous mutagenesis: the F1 brood of non-mutant segregating hermaphrodites (P0) were singled to establish individual populations. These were inspected for mendelian segregation of abnormal phenotypes indicating the occurrence of a recessive mutations in the gametes of the P0. Mutants affecting body morphology (e.g. dumpy/dpy) or movement (i.e. uncoordinated/unc) can be scored in the F2 progeny. Mutations in essential genes (i.e. lethal/let) give rise to islands of dead eggs when populations are allowed to clear the food supply. Elevated numbers of males in the F2 progeny indicate a high incidence of males (him) phenotype, arguing for a dominant him mutation in the F1. **b**, Quantification of visible mutant phenotypes. The data for *msh-6* mutants have been published previously⁶.

Figure S2. Genomic distribution of deletions in *polh-1*/*polh-1* mutant animals.

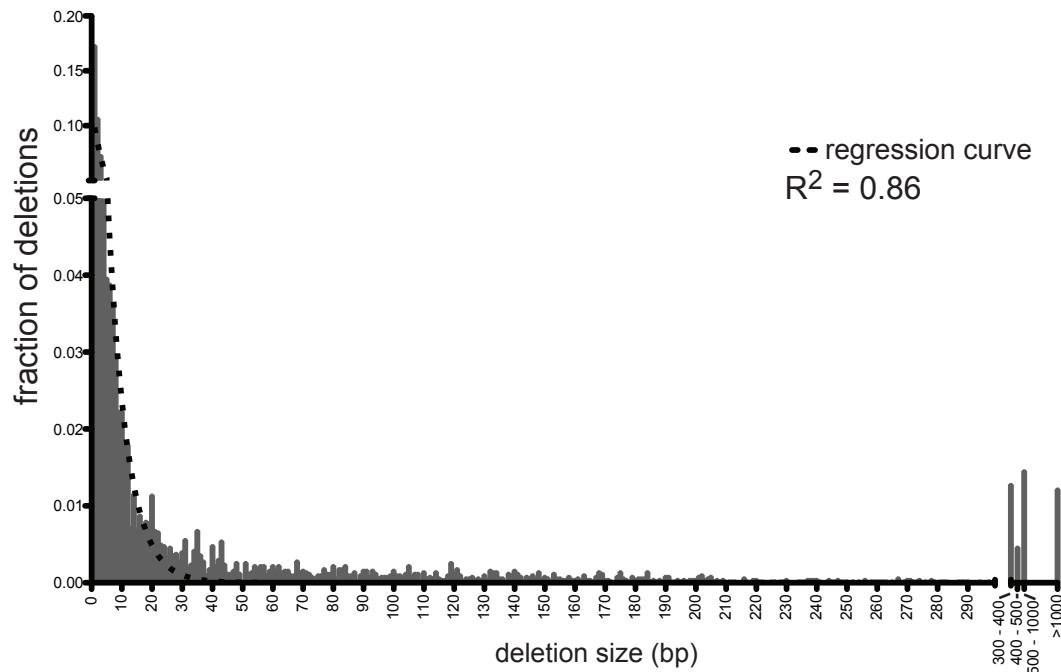
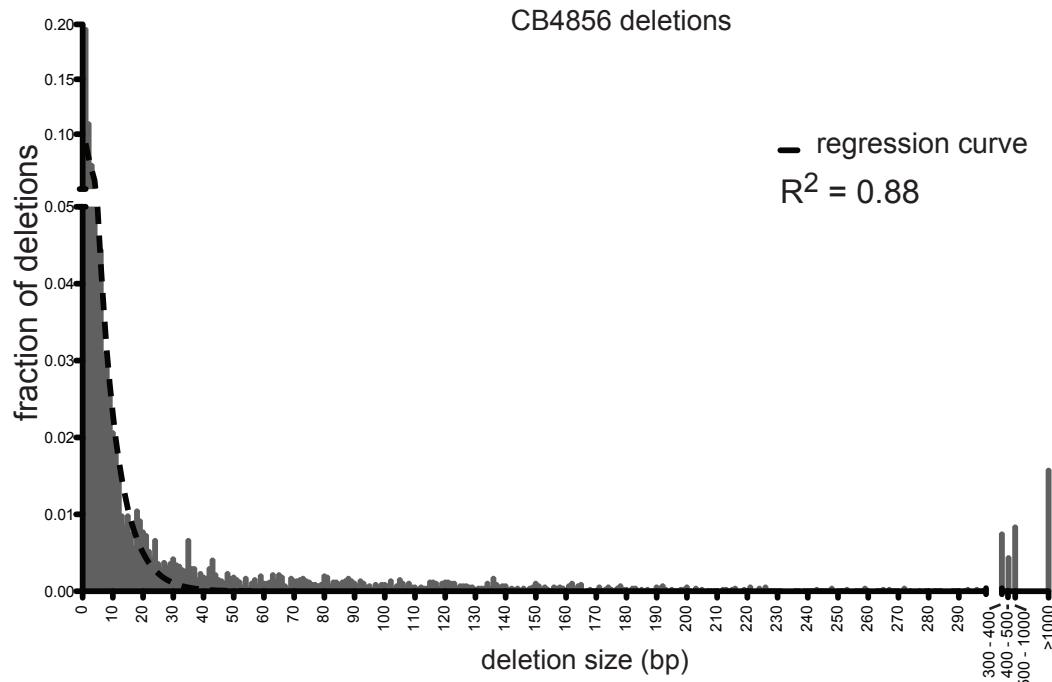
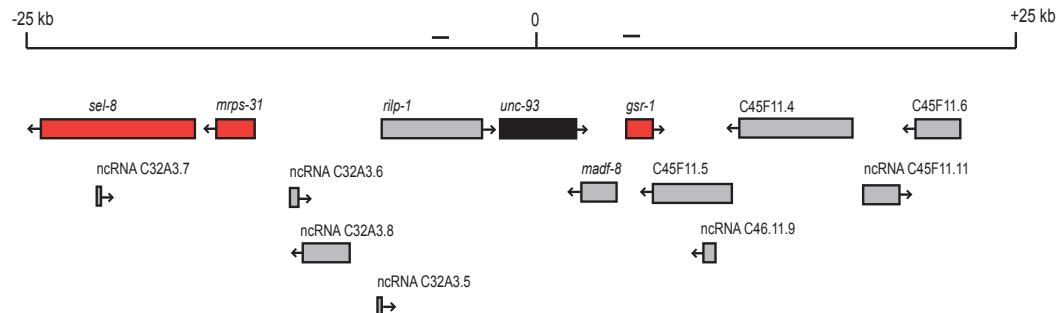
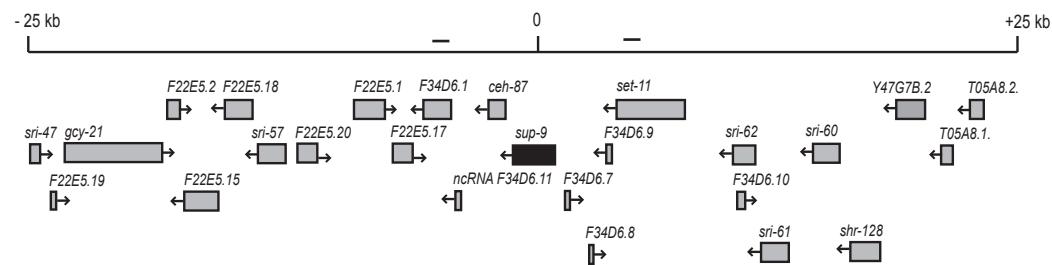
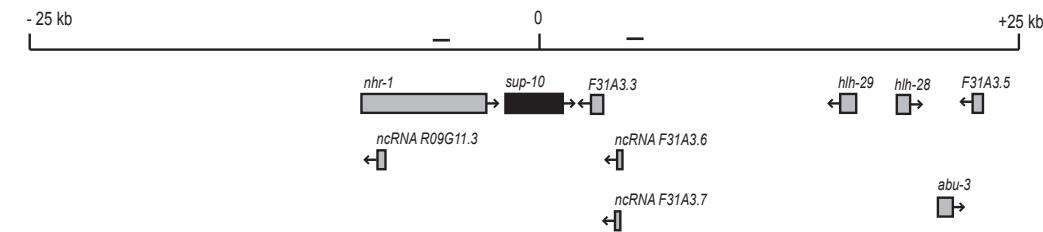

Figure S2. Genomic distribution of deletions in *polh-1* *polk-1* mutant animals.
 (A) Individual deletions (purple) were plotted onto a physical map of the *C. elegans* genome. The y-axis shows the size of the deletion on a logarithmic scale. The exon density is displayed in green (y-axis not shown). The length of the graph shows the size of the indicated chromosome relative to each other. (B) For each individual deletion the distance to the closest G4-motif G3-5N1-5G3-5N1-5G3-5N1-5G3-5 (1680 G4-motifs are present in the *C. elegans* genome) was determined. A random set of ~ 13000 deletions with a size distribution similar to those observed in *polh-1* *polk-1* mutants was plotted as a comparison. No statistical difference was found between this random set and the set obtained from *polh-1* or *polh-1* *polk-1* double mutant animals. Whiskers are drawn down to the 10th percentile and up to the 90th percentile. A distance of zero means that the nearest G4 motif is within the deletion.

Figure S3. Analysis of DNA damage induction and apoptosis in single, double and triple mutants of *polh-1*, *polk-1* and *polq-1*. **a.** Representative images and **b.** quantification of RAD-51 foci for the indicated genotypes in nuclei present in the proliferative compartment of the *C. elegans* reproductive system. DAPI stainings in blue, RAD-51 in red. Scale bar, 10 μ m. **c.** Representative images of the bend of the gonad arm of animals transgenic for the apoptotic marker *ced-1::GFP*; cells in the process of apoptotic engulfment are indicated with arrows. Scale bar, 10 μ m. **d.** Quantification of apoptotic cells in *polh-1; polk-1* mutant animals and wildtype controls. **e.** Quantification of the number of nuclei in the mitotic region of the germline. A reduction in the number of cells in this region is an established outcome of checkpoint activation. **f.** Sensitivity of *polh-1* and *polq-1* single and double mutants for exposure to UV, plotted as the fraction of surviving progeny after germline exposure of young adult worms.


AB2, CB4857, RC301 deletions

A

B

CB4856 deletions

Figure S4. Histogram of size distributions is plotted of the various *C. elegans* natural isolates that were analyzed. Regression analysis showed that an exponential fit for deletion sizes up to 20bp approaches the actual distribution best. (A) the grouped distribution for AB2, CB4857 and RC301. (B) as in (A), but now for CB4856.

AChromosome III, *unc-93*Chromosome II, *sup-9*Chromosome X, *sup-10***B**

	<i>unc-93</i>	<i>sup-9</i>	<i>sup-10</i>
wildtype	0	2	11
<i>polq-1</i>	6	20	55

Figure S5. Selective occurrence of large chromosomal deletions in regions that are devoid of essential genes in the *unc-93* mutagenesis assay. (A) Schematic representation of 50 kb regions surrounding the *unc-93*, *sup-9* and *sup-10* genes. Known essential genes are depicted in red. While *unc-93* is flanked by two essential genes, no essential genes are known in the 50 kb intervals around *sup-9* and *sup-10*. To estimate deletion sizes, amplification of PCR products at -5kb and +5kb positions has been tested. (B) Number of deletions larger than 5kb in *unc-93*, *sup-9* and *sup-10*.