Supplemental Material

BGS simulations

We conducted forward simulations using SliM (Messer 2013) to test if BGS could have
an effect strong enough to mask positive selection. We did not intend to get a very
precise estimate, since such an estimate would require knowledge of BGS patterns in
the human genome far better than currently available. Rather we seek to obtain the
order of magnitude of the decrease of diversity (is it closer to 1% or 10%?) that can be
observed when comparing strongly and weakly constrained regions, as is the case in the
near versus far test.

BGS varies in two ways along the human genome that make it very challenging
to simulate realistically. It depends first on the amount of constrained sites, and second
on what the distribution of fitness effects (DFE) of deleterious mutations looks like at
these sites. The first issue when simulating BGS is that the average amount of
constrained sites in human is not known precisely. In the windows bootstrapped for the
near versus far test, 7% of positions belong to phastCons segments that are conserved
between mammals and/or primates. This represents a low minimal estimate of the
average amount of constrained sites. Indeed, this includes only segments that are
conserved in all mammals or all primates, which may represent only a fraction of all,
more species-specific constrained elements. Indeed, 40% of the human genome can be
aligned with the mouse genome (Schwartz et al. 2003). In our simulations, we used
conservative proportions of constrained positions ranging from 0 to 10%. In total,
simulated regions span one megabase. The constrained positions fall within 250 bases
segments distributed randomly between 250 and 750 kb of the simulated regions (to
avoid edge effects). Each simulated region has 200 such segments, and we adjust the
amount of constraint by randomly choosing the proportion of constrained sites in these
segments between 0 and 1. To obtain accurate estimates of the decrease of diversity as
a function of the amount of constrained sites, we simulated 40,000 regions with a
recombination rate of 1 cM/Mb, and 40,000 regions with a recombination rate of 0.5
cM/Mb (supplemental Fig. 1).

The second issue is what distribution of fithess effects to use at constrained
positions. Estimates of this distribution have been obtained for coding sequences

(Keightley and Eyre-Walker 2007), but not for non-coding sequences. For simplicity we



used the DFE provided by Keightley and Eyre-Walker (Keightley and Eyre-Walker 2007)

for all the simulated constrained sites.

The omnibus near versus far and functional versus non-functional tests reveals a
strong departure from neutrality

The near versus far test (Fig. 1) and the functional versus non-functional tests (Fig. 2)
look for different signals in the data and should be independent of one another. Indeed,
all regions in the functional versus non-functional test are located near an amino acid
substitution and thus they all are in the “near” category in the near versus far test. The
fact that the near regions have lower diversity than the far regions should not affect the
results of the test that looks within the near regions. In addition, we confirmed that the
finite number of regions used in the bootstrap procedure does not generate spurious
correlations between the two tests. To ensure that the near versus far and functional
versus non-functional tests are independent, we verify that their results are uncorrelated.
To do so we run 500 neutral population simulations using SliM (rescaling factor 20, see
Methods). From these 500 simulations we calculate (as for Figs. 1 and 2) 500 pairs of
TTnear Trar aNd TTrune/Tron-runc @Nd calculate the correlation between the two values. As
expected there is no correlation between the two ratios (=500, Spearman’s p=5x10"
P=0.99), which shows that the two tests are completely independent. The independence
of the two tests enables us to run the randomization test separately for the near/far and
for the functional/non-functional tests and combine the results. To do so we run 10,000
iterations of our randomization procedure separately for both tests and we couple
near/far iteration n with functional/non-functional iteration n. This is made possible by the
fact that the two tests are independent. In all human populations together the observed
combined decreases are highly unexpected, as shown by the P-values of the combined
randomization test on Fig. 3. Even in Africa where the signal of positive selection is
consistently weaker in both the near versus far and the functional versus non-functional
tests, the probability of both observed decreases by chance is less than 1%. In
European and Asian populations the same probability is lower than 0.1%. Taken
together these results strongly suggest that positive selection has significantly

decreased neutral diversity in the human genome.



Testing the robustness of iHS and XPEHH to BGS
The strong sensitivity of average heterozygosity to BGS makes it very challenging to
distinguish the specific effects of positive selection using this particular measure of
diversity. Indeed, we could only detect a signature of selective sweeps when BGS is
weak, that is in regions with a low density of conserved coding sequences (Results).
Measures of diversity such as iHS and XPEHH should be much more robust to BGS
than average heterozygosity. Indeed they are based on the frequency and length of
haplotypes, and there is no a priori reason why BGS should affect haplotype length and
frequency. In particular, BGS is not expected to create the long and frequent haplotypes
that /HS and XPEHH are sensitive to.
In order to test the robustness of iHS and XPEHH to BGS, we use Slim to simulate 4 Mb
sequences that include a 100 kb central region where deleterious mutations occur with a
predefined strength of selection and rate. We simulate 4 Mb which is large to avoid edge
effects in the calculations of iHS and XPEHH. For this reason we exclude the first and
last megabases of the simulated sequences. The population size is 1000, the rescaled
mutation rate is set at 107 and the rescaled recombination rate is uniform and set at 10
cM/Mb.
We test the effect of different BGS configurations on average heterozygosity, iHS and
XPEHH. First, we test the effect of having 25% of the mutations in the 100kb central
region with Nes=-200, which corresponds to strongly deleterious mutations
(Supplemental Fig.1 first column). The same is done this time with 50% of strongly
deleterious mutations (Supplemental Fig. 1 second column). We then test the effect of
having 25% of weakly deleterious mutations with Nes=-5 (third column). The same is
repeated with 50% of weakly deleterious mutations (fourth column). Finally we test the
effect of deleterious mutations with gamma-distributed intensities of selection.
Parameters of the gamma distribution fit current estimates of the distribution of fitness
effects in human (Keightley and Eyre-Walker 2007). In this case we test 25% (fifth
column) of mutations being deleterious, which results in a 20% decrease of
heterozygosity that matches the average decrease observed near coding sequences in
human (McVicker et al. 2009). For each condition we run 500 independent simulations
to obtain averages and confidence intervals.

In every case tested, we find that BGS has virtually no effect on XPEHH, and a

weak, conservative effect on iHS (Supplemental Fig. 2).



CLR analysis

The analysis of iHS amd XPEHH suggest that positive selection is more common near
compared to far from amino acid substitutions. As a consequence, the allele frequency
spectra of neutral polymorphism should more often show characteristic deviations
consistent with positive selection near amino acid substitutions. We test this prediction
using the composite likelihood ratio test (CLR) (Williamson et al. 2007). The P-values of
the CLR test were retrieved from Williamson et al. (Williamson et al. 2007) for the East
Asian and European populations. We do not consider the results of the CLR test for the
African population because they were calculated by Williamson et al. (Williamson et al.
2007) using a sample of strongly admixed African-Americans individuals (Note that
running the CLR test on the 1000 genomes phase 1 data would have been
computationally prohibitive). We take the lowest P-value found in each window and then
compare the average 10%, 5%, 2% and 1% lowest P-value windows near and far from
amino acid substitutions as for iHS and XPEHH. We do detect more extreme values of
CLR P-values near amino acid substitutions in Europeans, in the low recombination
regions (<0.5 cM/Mbp) in East Asians, and in all regions in the combined analysis of the
European and East Asian populations (Supplemental Fig. 3). These results again
suggest that adaptation is more common near compared to far from amino acid

substitutions in the human genome.

Correlations between ijHS, ENCODE regulatory elements and coding sequences
We investigate the correlations between iHS (Voight et al. 2006) and ENCODE
regulatory elements (ERE) and between iHS and coding sequences to test whether
regulatory elements are the main source of adaptive mutations in the human genome.
ERE density in our analysis is the density of elements predicted as DNASE1
hypersensitive sites and also as transcription factor binding sites identified by Chip-Seq
by the ENCODE Consortium (Gerstein et al. 2012). Using the overlap of both prediction
methods ensures that we work with higher confidence ERE. In this analysis we calculate
iHS using the latest 1000 Genomes project data for three human population (Yoruba,
British and Beijing Chinese phase 1 July 2012 release) instead of using publicly
available results from published scans. Indeed in this correlation analysis we need to
calculate the correlation between values of iHS and values of average heterozygosity
that have to be calculated from the same set of variants. To calculate this correlation we

use 1 Mb windows sliding every 50 kb along the human genome. For this analysis we



use 1 Mb instead of 500 kb windows because the correlation between coding density
and iHS is slightly higher when using 1 Mb windows (windows of recombination rate
lower than 0.5 cM/Mb; 1 Mb n=9,471; Yoruba Spearman’s p=0.044 P<2x107"®: British
p=0.086 P<2x10™'%; Beijing Chinese p=0.137 P<2x10™'%; 500 kb n=12,515; Yoruba
Spearman’s p=0.012 P=0.14; British p=0.072 P<2x10'®; Beijing Chinese p=0.107
P<2x107"®). It is important that we use the window size that maximizes the correlation
between iHS and coding density since we later evaluate the effect of controlling for
coding density on the correlation between iHS and ERE. In addition windows less than 5
Mb from centromeres and telomeres or with more than 20% assembly gaps are removed
from the correlation analysis.

In each window positive selection may result in extreme iHS values only for a
small subset of variants. Thus for each window we select only the top 5% absolute iHS
variants and measure the average absolute iHS of this top 5%. This is done separately
for 50 individuals in the British population (GBR, first 50 individual in the July 2012 phase
1 VCF files), 50 individuals in the Chinese Beijing population (CHB, first 50 individual in
the July 2012 phase 1 VCF files) and 50 individuals in the Yoruba population (YRI, first
50 individual in the July 2012 phase 1 VCF files). We use a limited number of individuals
in each population so that the calculations of iHS are computationally feasible in a
reasonable amount of time.

We first calculate the correlation between iHS (top 5% average) and average
heterozygosity to confirm the robustness of iHS to BGS previously deduced from our
forward simulations. In all the three populations, the top 5% average iHS correlates
positively with average heterozygosity (windows with recombination rate lower than 0.5
cM/Mb; n=9,471; YRI p=0.073 P<2x10"®; CHB p=0.117 P<2x107'°; GBR p=0.144
P<2x107"®). Thus iHS is conservative relative to BGS, as already observed in population
simulations. We correct for this conservativeness by controlling for average
heterozygosity when calculating the correlations between iHS and coding density and
between iHS and ERE density (see above and Fig. 7). Therefore all the correlations in
the analysis are calculated controlling for recombination rate and average
heterozygosity, except for the correlation between iHS and average heterozygosity,

where we control only for recombination rate.



Defining genomic windows to measure diversity

Scaled neutral diversity is calculated within 500 kb windows sliding every 5 kb in the
genome. A fixed physical size is chosen instead of a genetic size in order to make the
windows used in the near versus far and the functional versus non-functional tests
comparable. In fact an important problem with using windows with a fixed genetic size is
that they can vary greatly in physical size. Depending on the recombination rate, a 0.1
cM window in the human genome can represent a physical size of 50 kb (if the
recombination rate is 2 cM/Mb) or a megabase (if the recombination rate is 0.1 cM/Mb).
Using a fixed genetic size can thus result in using windows with vastly different absolute
content of functional elements. For instance background selection (BGS) is expected to
decrease diversity more strongly in a 0.1 cM, one megabase window with 1% (10,000) of
its positions in coding exons compared to a 0.1 cM, 50kb window also with 1% (500)
coding exon positions. We therefore choose to use fixed physical distances and to
match recombination rates as part of the bootstrap procedure used for our near versus
far and functional versus non-functional tests (see Bootstrap procedure below). We use
large windows of 500kb to prevent other additional issues with using smaller windows.
First, bigger windows tend to exhibit less variable, closer to genomic average
parameters such as GC content, CDS, UTR content, and others compared to smaller
windows. This is crucial for the bootstrap procedure used in the near versus far test and
in the functional versus non-functional test. Because large windows tend to be closer to
the genomic average compared to smaller windows, in both tests it is much easier to find
control windows that match the tested window in terms of recombination, GC content
and diverse functional contents (see Bootstrap procedure below). For instance, using
500 kb windows for the near versus far test (conserved coding density<0.5%, windows
further than 1 cM windows excluded, recombination rate lower than 1 cM/Mb), after 10
bootstraps we can match on average 3,260 near windows with far windows out of the
13,678 near windows in the genome. In other words, 24% of the windows of interest can
be controlled for. Using 100kb instead of 500kb windows, we found that only 1.8% of the
near windows can be used.

Second, an important issue with small windows is that functional elements outside of the
windows but at their immediate proximity may influence diversity inside windows more
strongly than if larger windows are used. Consider for example a 100 kb window within a
region of low recombination rate. This window has a 1% CDS density, but is surrounded

by regions with a 5% CDS density. In such a case it is likely that BGS due to the



surrounding CDS affects neutral diversity within the window even more than the CDS
within the window itself. Using larger windows does not remove this edge effect, but it
does improve it to some extent by reducing the effect of outside compared to inside
functional elements on diversity. The effect of nearby functional elements on diversity
can be estimated by measuring the partial correlation between neutral diversity and the
amount of functional elements surrounding windows at a close genetic distance,
controlling for the amount of functional elements within windows and recombination rate.
For CDS, we measure that using 100kb windows sliding every 50kb, the partial
Spearman’s correlation coefficient is -0.14 between diversity in the African population
and the absolute amount of CDS surrounding the windows up to a genetic distance of
0.1 cM (n=44,986, P<2x107'®). The same partial correlation coefficient is reduced to -
0.06 when using 500 kb windows sliding every 50kb (n=44,858, P<2x10'®). The smaller
influence of nearby functional elements on bigger windows reflects the fact that on
average any position in bigger windows is further from the surrounding functional
elements compared to smaller windows. Within 500kb windows, the average physical
distance of a position to the closest window boundary is 125 kb, whereas for 100 kb the
average distance is only 25 kb.

Finally, using larger windows makes the measures of diversity less noisy, especially
given the fact that on average only a third of the positions within each window are used
to measure scaled neutral diversity (as a reminder, those positions that occur out of

CDS, UTR and CNEs, out of repeats and that are aligned with a nucleotide in macaque).
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Supplemental Figure 1. Results of BGS simulations

Black curve: simulation recombination rate 1 cM/Mb. Red Curve: simulation
recombination rate 0.5 cM/Mb. Curves were obtained by calculating average decreases
with a smoothing range of 0.05 (proportion of constrained sites, x axis).
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Supplemental Figure 2. Robustness of iHS and XPEHH to various rates and
strengths of BGS
We tested the effect of BGS on iHS and XPEHH (Results and Supplemental Material).
Upper row: average heterozygosity. Middle row: iHS. Lower row: XPEHH. The full line
represents the average iHS or XPEHH along the simulated region. The dashed lines

represent the limits of the iHS or XPEHH 95% confidence intervals.
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Supplemental Figure 3. CLR analysis for the near vs. far test

For the CLR test we take the lowest P-value found in each window and then compare
the average 10%, 5%, 2% and 1% lowest P-value windows near and far from amino acid
substitutions. * randomization test P<0.05; ** P<0.01; *** P<0.001. Left side of
histograms: all regions irrespective of recombination rates. Rigth side: only regions with
recombination rates lower than 0.5 cM/Mb. The max(EA,EU) histograms show the

results obtained when retaining for each window the maximum signal of the East Asian
and European populations.
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Supplemental Table 1. Amount of sequences used in the bootstrap procedure’

Recombination rate c:/l(;l'\ib cI\/T/:\/Ib le'\ib <2 cM/Mb all
Near vs far test na 614105 838185 971-262 .o
near vs far test CCDS<0.5% na 136-57 204-105 242-149 290-236
functional vs non-functional test na 523-320 662-471 733-587 823-768

functional vs non-functional test

CCDS<0.5% na 103-101 129-134 141-150 157-179

1562-

near vs far test XPEHH iHS CLR 665-87 na Na na 619

"This table provides the amount of sequence used in the different tests conducted. In the
grey-shaded cell 614-105 means the following: for the near vs test using only windows
with a recombination rate lower than 1 cM/Mb, 614 megabases of sequences near
amino acid changes are used, and 105 megabases of sequences far from amino acid
changes are used.




Supplemental Table 2. Robustness of the ERE and CDS versus iHS correlations

relative to window overlap

ERE vs iHS CDS vs iHS
Sparsing controlling | CDS vs controlling
population | (kb) ERE vs iHS | for CDS iHS for ERE

CHB 50 0.17 0.1 0.14 0.01 9449
250 0.17 0.11 0.12 -0.01 1884
500 0.18 0.12 0.14 0 943
1000 | 0.21, 5e-6 | 0.12, 1e-2 | 0.17, 2e-4 | 0.01, 8e-1 466
GBR 50 0.14 0.11 0.09 -0.03 9451
250 0.15 0.13 0.08 -0.04 1896
500 0.15 0.11 0.1 -0.01 942
1000 | 0.17, 1e-4 | 0.13, 4e-3 | 0.12, 1e-2 | f-0.02, 6e-1 478
YRI 50 0.07 0.06 0.04 -0.01 9313
250 0.08 0.04 0.06 0.01 1866
500 0.08 0.04 0.07 0.02 927
1000 | 0.1, 3e-2 0.06, 2e-1 | 0.09, 6e-2 | 0.02, 6e-1 466

This table shows the correlation coefficients also depicted in Fig.7 as a function of the

sparsing of genomic windows. For a sparsing of 1000 kb we also show the P-values of
the correlation test (greyed cells, right side number) since the windows are expected to
be largely independent from each other under these conditions.




Supplemental Table 3. Thresholds used for tested/control window matching in the

bootstrap procedure’

Recombination rate
GC content

CDS

CCDS

surrounding CDS
UTR

TFD

near vs far

50%-150%

97.2%-1.028%

90%-<
10%-125%

40%-
70%-160%
80%-130%

functional vs non- nearvs far
functional XPEHH iHS
CLR
50%-150% 10%-160%
95.3%-105%
75%-1.45% 70%-500%

70%-200%
45%-
70%-160%
65%-140%

"This table provides the thresholds used for choosing control windows as a function of
the values of different variables of the tested windows (first column). The grey-shaded
cell means that in the near versus far test recombination rate within a control window
has to be comprised between 50% and 150% of the recombination rate within the tested

window.




Supplemental Table 4. Robustness of the bootstrap test results to changing
thresholds

average number of bootstrapped
Conditions changed TTnear/TTfar windows

UTR(70,200) 0.925 3561

UTR(70,200), REC(50,200) 0.91 4037

REC(50,200) 0.905 3492

REC(10,275) 0.916 4110

REC(10,275), GC(96,104) 0.92 5032
REC(10,275), GC(96,104),

CCDS(10,150) 0.93 6555

This table gives the results of the near vs. test (low CCDS density, recombination rates
lower than 1 cM/Mb) for different thresholds of the controlled factors in the bootstrap
procedure. The factors that are included in the table and their combination are those that
we could vary while still comparing near and far windows conservatively. In the first
column, REC means recombination, UTR is for UTRs, GC is for GC content. The new
thresholds compared to Supplemental Table 3 are in parentheses.



