
Supplemental Table S1. Description of the 8 genes  

  Total number of 
SNPs 

Number of Rare 
variants 

Median 
MAF 

Mean 
MAF 

Coding length 

PLCH2 116 113 2.25E-04 8.47E-03 29212 
KANK4 68 57 2.25E-04 5.20E-02 83247 
GALNT2 57 48 2.25E-04 2.03E-02 214921 
GBP3 33 27 2.25E-04 6.01E-02 16184 
IQGAP3 132 125 2.25E-04 1.50E-02 47200 
ACTN2 87 81 2.25E-04 1.34E-02 77790 
SCLT1 59 55 2.25E-04 8.22E-03 209614 
MDN1 347 311 2.25E-04 2.22E-02 176213 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplemental Table S2.  Average type 1 error rates of the statistics for testing 
interaction between two genes with both common and rare variants 
Model  Sample Size 0.05 0.01 0.001 

  500 0.0516 0.0104 0.0013 
  1000 0.0502 0.0103 0.0011 
Model 1 2000 0.0475 0.0095 0.0009 
  3000 0.0472 0.0097 0.0011 
  4000 0.0476 0.0098 0.0012 
  5000 0.0455 0.0089 0.0011 

  500 0.0495 0.0103 0.0011 
  1000 0.0493 0.0106 0.0010 
  2000 0.0495 0.0102 0.0011 
Model 2 3000 0.0470 0.0092 0.0009 
  4000 0.0476 0.0096 0.0009 
  5000 0.0465 0.0092 0.0008 

  500 0.0518 0.0115 0.0013 
  1000 0.0503 0.0102 0.0011 
  2000 0.0493 0.0099 0.0009 
Model 3 3000 0.0465 0.0097 0.0011 
  4000 0.0471 0.0099 0.0009 
  5000 0.0470 0.0094 0.0009 

 

 

 

 

 

 

 

 

 

 

 

 



Supplemental Table S3.   Type 1 error rates of the statistics for 
testing interaction between genes: GBP3  and  KANK4 with 
rare variants and existence of LD between them  
Model  Sample Size 0.05 0.01 0.001 

  500 0.0478 0.0106 0.0012 

  1000 0.0432 0.0094 0.0006 

Model 1 2000 0.0494 0.0112 0.0014 

  3000 0.0524 0.0098 0.0012 

  4000 0.0516 0.0094 0.0010 

  5000 0.0522 0.0118 0.0008 

  500 0.0474 0.0096 0.0004 

  1000 0.0448 0.0106 0.0012 

  2000 0.0506 0.0096 0.0008 

Model 2 3000 0.0496 0.0084 0.0010 

  4000 0.0538 0.0120 0.0014 

  5000 0.0514 0.0118 0.0012 

  500 0.0430 0.0084 0.0010 

  1000 0.0466 0.0068 0.0008 

  2000 0.0490 0.0100 0.0008 

Model 3 3000 0.0526 0.0082 0.0014 

  4000 0.0492 0.0100 0.0012 

  5000 0.0530 0.0080 0.0012 
 

 

 

 

 

 

 

 

 

 

 

 



Supplemental Table S4. The interaction models: 0 and r stand for a quantitative trait mean given 
the genotypes. 

Models  First locus Second locus 
 

22 hh QQ  
22 hh qQ  

22 hh qq  

Dominant OR 
Dominant 

11 hh QQ  r r r 

11 hh qQ  r r r 

11 hh qq  r r 0 

Dominant AND 
Dominant 

11 hh QQ  r r 0 

11 hh qQ  r r 0 

11 hh qq  0 0 0 

Recessive OR  
Recessive 

11 hh QQ  r r r 

11 hh qQ  r 0 0 

11 hh qq  r 0 0 

Threshold 
11 hh QQ  r r 0 

11 hh qQ  r 0 0 

11 hh qq  0 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplemental Table 5.  P-values of 130 pairs of mildly interacted genes  (Exile file: 
Supplemental Table S5) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplemental Table S6. MAF of  SNPs from genes BMF and BHMT2 and P-value 
of their interactions 
BMF MAF BHMT2 MAF P-value 
rs16970349 0.053483 rs61058144 0.010787 5.52E-08 
rs16970349 0.053483 rs60166823 0.010562 6.83E-08 
rs16970349 0.053483 rs143035984 0.000449 6.29E-04 
rs16970349 
rs148420422 
rs148420422 
rs148420422 
rs143072589 

0.053483 
0.000674 
0.000674 
0.000674 
0.000225 

rs59804781 
rs60158007 
rs59804781 
rs145099848 
rs60158007 

0.004944 
0.000225 
0.004944 
0.000899 
0.000225 

4.37E-02 
3.91E-02 
2.55E-02 
3.19E-02 
4.20E-02 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplemental Figure 1        

 

 

Figure S1: The LD map of genes: GBP3  and  KANK4. 

 

 

 

 

 

 

 

 

 

 



Supplemental Figure 2 

 

Figure S2: Power curves of three statistics: the FRG, the regression on PCA, the pair-wise 
interaction tests where permutations were used to adjust for multiple testing for testing 
interaction between two genomic regions that consist of rare variants for a quantitative trait  as a 
function of the sample size at the significance level 05.0  under  the Dominant AND 
Dominant model, assuming the relative risk parameter 1r .  
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Supplemental Figure 3 

 

Figure S3. Power curves of three statistics: the FRG, the regression on PCA, the pair-wise 
interaction tests where permutations were used to adjust for multiple testing for testing 
interaction between two genomic regions that consist of rare variants for a quantitative trait   as a 
function of the sample size at the significance level 05.0  under the Recessive OR Recessive 
model, assuming the relative risk parameter 1.0r . 
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Supplemental Figure 4 

 

Figure S4. Power curves of three statistics: the FRG, the regression on PCA, the pair-wise 
interaction tests where permutations were used to adjust for multiple testing for testing 
interaction between two genomic regions that consist of rare variants for a quantitative trait as a 
function of the sample size at the significance level 05.0  under the Threshold model, 
assuming the relative risk parameter 1r . 
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Supplemental Note 1 

Similar to the Kempthorne model (Mao et al. 2006), we assume that the SNPs between two 

genomic regions are in linkage equilibrium. To find genetic effect and interaction effect 

functions, we minimize the following objective function using variation of theory (Struwe 1990): 
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By the first necessary condition for a relative minimum of a functional, we have 
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Substituting  
T

uXYdttutRuh ))(,cov()(),()( into equation (S2) yields the following integral 

equation: 
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Similarly, we can obtain the integral equations: 
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When we consider only one SNP in the genomic region, equation (S3) is reduced to 

),cov()( XYXVar  . 



Let  1M and 1m be two alleles in the first locus with allele frequencies  1p and 1q , respectively. 

Similarly, we define two alleles 22 mM and with frequencies 22 qp and for the second locus. Nine 

genotypic values are denoted in the following Table 1. 

Table 1. Notations for nine genotypic values at two loci. 

 22MM 22mM 22mm

11MM  00G 01G 02G

11mM  10G 11G 12G

11mm  20G 21G 22G

 

Let ,..2,.1,.0 ,, GGG be the genotypic values of the genotypes 111111 , mmmMMM and , 2.,1.,0., ,, GGG be 

the genotypic values of the genotypes 222222 , mmmMMM and , respectively. 

Consider a standard quantitative genetic model: 
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Clearly, from model equation (S5) we have 
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It follows from the above equations that 

111 2)var( qpX   and 

])([2),cov( .,21,.111,.01111 GqGpqGpqpXY  , which implies that 

,.21,.111,.01 )(ˆ GqGpqGp  .       (S6) 

Equation (S6) gives the standard estimation of genetic additive effect or substitution effect.   



Now we consider simplification of interaction effect when each genomic region has only one 

SNP. In such case, the model (1) and equation (S4) are reduced to 

 21210 XXXXY  and 

),cov()var( 2121 XXYXX  . 

After some algebra, we obtain 
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Thus, we obtain 
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which coincides with the interaction results in the traditional quantitative genetics. 



Supplemental Note 2 

The classical concept of genetic additive variance and interaction variance can be extended to 

functional model. When sequence data are considered in the genomic regions the covariance 

functions will take linkage disequilibrium between SNPs into account.  We first briefly review 

some concepts of classical quantitative genetics. For simplicity, we assume that dGaG  10 ,  

and aG 2  (Falconer 1989). Then, the average effect of the gene substitution is 

dpqaaqdpqapGqGpqGp )()()(ˆ 111111,.21,.111,.01  . 

which coincides with the standard results in the quantitative genetics.   

     Let   be overall population mean, 1 and 2  be the respective genic effects, the statistical 

model for the three genotypic values can be expressed as 
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where 21,ee  and 3e  are the respective deviations of the genotypic values from their expectations 

on the basis of a perfect fit of the model. From classical quantitative genetics theory we have that 
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Therefore, the model (L1) can be written as 
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Three terms in equation (L1) make contribution to the genetic additive variance: 
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In the text we define the indicator variable for the genotype as 
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We add p2 in the equation (L4) we obtain  
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The model (L2) can be rewritten as 

exy  .      (L6) 

From model (L6), the additive genetic variance is given by 
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Substituting equation (L8) into equation (L7) yields 

22 2  pqA .        (L9) 

Extension of equation (L7) to sequence data (multiple densely distributed SNPs) in a genomic 

region and using stochastic calculus yields: 
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When only one SNP is located in the region, the covariance function ),( tsR is reduced to 

pqx 2)var(   and .)()(  ts  Then, from the model (L10) we obtain 
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, 

which exactly corresponds to the formula for additive genetic variance in the classical 

quantitative genetics  (L9) (Falconer 1989). When sequence data are considered in the genomic 

regions the covariance functions will take linkage disequilibrium between SNPs into account. 

Similarly, we have 

dudvvvuRudsssx
S S S

)(),()()()(var(     and 

      
T S T S T S

dsdtdudvvuvsRutRstdsdtsxtxst .),(),(),(),())()(),(var( 21  

In summary, the variance of the overall genetic and interaction effects in two genomic regions 

can be defined as 
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By the similar arguments, if we assume that each genomic region has only one SNP, then 

equation (L11) is reduced to 
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which are the standard results in quantitative genetics.  This demonstrates that the formulas for 

genetic effect at single SNP are special cases of the proposed genetic effect models for genomic 

regions.  

 

 



Supplemental Note 3 

Genetic additive and additive  interaction variances 

Let ),( stR be the covariance function of the genotype profile )(tX . By Karhunen-Loeve 

expansion (Ash and Gardner 1975), the covariance function ),( stR can be expanded in terms of 

orthonormal eigenfunctions  )(tj (functional principal components) and  non-increasing 

eigenvalues j : 
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and the i th centered  random genotype profile can be expanded as 
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where ij are uncorrelated random variables with zero mean and variances jijE  ][ 2 . 

It follows from equation (A1) that 
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Recall that the genetic effect functions can also be expanded in terms of eigenfunctions: 
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From equations (2) and (A4) we know that the genetic additive variance 2

1A  can be expressed as 
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Substituting equation (A3) into equation (A5) yields 
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Similarly, we have 
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Next we consider estimation of the variance of genetic interaction effect 2
AA .  It follows from 

equations (2) and (A4) that 
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Supplemental Note 4 

The genetic models for type 1 error calculations 

We assumed the three models: model 1( without marginal effects), model 2 (with marginal effect 

of one gene) and model 3 with marginal effects of two genes  to generate a phenotype 

Model 1 (without marginal effects): 

,,,2,1, niy ii   

where  is an overall mean, i are independent and identically distributed normal variables with 

mean zero and variance 12  .   

Model 2 (with marginal effect of one gene): 
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where ijx is an indicator variable for the genotype at the j th SNP in the first gene, 

)1)(1(  rp jj , jp is the frequency of the minor allele, and r is a risk parameter and is equal 

to 1.2. We assume that 20% of the variants to be risk variants.	

Model 3 (with marginal effects of two genes): 
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where ijx  and ilz  are  indicator variables for the genotype at the j th SNP in the first gene and at 

the l of the SNP in the second gene, respectively, )1)(1( 1  rp jj , )1)(1( 2  rpll , jp

and lp are the frequencies of minor alleles at the j th SNP in the first gene and at the l th SNP in 

the second gene, respectively, and 1r and 2r are risk parameters and are equal to 1.2 and 1.4, 

respectively. We assume that 20% of the variants to be risk variants.  



 

Impact of the lengths of the genes and sequencing errors on the type 1 error 

rates of the test. 

In this section, we evaluate the lengths of the genes and sequencing errors on the type 1 error 

rates of the test. 

     To examine whether the lengths of two genes will influence the type 1 error rates, we selected 

genes DST and SYNE1 in chromosome 6 with the length of 497 k and 515 k and total of 430 and 

645 SNPs, respectively, for simulations. The type 1 error rates were summarized in 

Supplemental Table S7. We still observed that type 1 error rates for testing interaction between 

two genes with large size were not appreciably different from the nominal   levels. The impact of 

the length of the genes on the type 1 error rates was limited. 

Supplemental Table S7.   Type 1 error rates of the statistics for testing interaction between 
two large genes: DST  and  SYNE1 with rare variants   
Model  Sample Size 0.05 0.01 0.001 

  500 0.0440 0.0102 0.0014 
  1000 0.0450 0.0096 0.0012 
Model 1 2000 0.0482 0.0098 0.0014 
  3000 0.0486 0.0102 0.0016 
  4000 0.0506 0.0106 0.0010 
  5000 0.0494 0.0098 0.0012 

  500 0.0474 0.0096 0.0012 
  1000 0.0454 0.0102 0.0010 
  2000 0.0466 0.0076 0.0006 
Model 2 3000 0.0478 0.0086 0.0008 
  4000 0.0538 0.0106 0.0006 
  5000 0.0490 0.0106 0.0006 

  500 0.0504 0.0078 0.0008 
  1000 0.0478 0.0108 0.0016 
  2000 0.0530 0.0104 0.0004 
Model 3 3000 0.0482 0.0090 0.0006 
  4000 0.0510 0.0092 0.0010 



  5000 0.0468 0.0100 0.0010 

 

 

 

The error rates for the new generation of sequencing technologies are higher than traditional 

Sanger sequencing (Harismendy et al. 2009). Variants caused by sequencing errors may bias 

available genotype-phenotype association tests.  Investigating the impact of sequencing errors on 

association analyses will provide guidance for developing robust statistics for interaction tests.  

For simplicity, we assumed that the genotyping error rate for rare variants (frequencies < 0.05) 

ranges from 510 to 0.01, respectively. Supplemental Table S8 provides the type I error rates for 

FRG model in the presence of the variant genotype error rate.  

Supplemental Table S8.  Average type 1 error rates of the statistics for 
testing interaction between two genes with rare variants and genotyping 
errors 
Model  Sequencing error rates 0.05 0.01 0.001 

  0.0% 0.04744 0.00958 0.00098 
Model 1 0.1% 0.05004 0.00964 0.00084 
  1.0% 0.04620 0.00980 0.00120 

  0.0% 0.04908 0.00976 0.00100 
Model 2 0.1% 0.04880 0.01025 0.00090 

  1.0% 0.04600 0.00920 0.00084 

  0.0% 0.04728 0.00940 0.00108 
Model 3 0.1% 0.04910 0.01036 0.00106 
  1.0% 0.04620 0.00920 0.00080 

 

 



Supplemental Note 5 

 In this section, we present the power pattern of the tests in several additional scenarios. In 

practice, the number of causal variants may be small. To study the impact of the number of 

causal variants on the power, we considered a simulation scenario where 10% of the rare variants 

were randomly chosen as causal variants. Supplemental Figure S5 plotted the power curves of

 

Figure S5. Power curves for three statistics: the FRG, the regression on PCA, the pair-wise 

interaction tests for testing interaction between two genes with 10% of the rare variants and 20% 

of the rare variants as causal variants under the Dominant OR Dominant model, and sample sizes 

of 2,000. 
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three statistics for testing interaction between two genes with 10% and 20% of the rare variants 

as causal variants  under the  Dominant OR Dominant interaction model . From Figure S5, we 

observed that low percentage of causal variants will decrease the power, but will not change the 

power pattern of three tests. We also observed that the FRG for risk parameters larger than 0.3 

still has high power to detect interaction. 

 In many cases, causal variants are not randomly distributed. They may be clustered along the 

chromosome. To investigate the impact of the distribution of causal variants on the power we 

considered a scenario where the causal variants were close to each other rather than randomly 

distributed. We used the SNPs in genes KANK4 with 68 SNPs (57 rare SNPs)  and GBP3 with 33 

SNPs (27 rare SNPs) to simulate genotypes of individuals.    The LD map and distribution of 

causal variants in genes KANK4  and GBP3  were shown in Supplemental Figure 1. The number 

of SNPs in this two genes were much  less than the number of SNPs in the genes IQGAP3 (132 

SNPs, 125 rare SNPs) and ACTN2 (87 SNPs, 81 rare SNPs) which were used to simulate 

genotypes for other power evaluation.  Supplemental Figure 6 plotted the power curves of three 

statistics under the Dominant OR Dominant interaction model, assuming the causal variants were 

close to each other. Other parameters were unchanged as that in Figure 1. The results showed 

that the power of linked causal variants was much higher than that of randomly selected causal 

variants because linked causal variants had much stronger LD than unlinked causal variants. We 

need to point out that the power of the test using genes KANK4  and GBP3  was lower than using 

genes IQGAP3 and ACTN2 because the number of SNPs in genes IQGAP3 and ACTN2 was 

much larger than the number of SNPs in genes KANK4  and GBP3 .  



 

Figure S6. Power curves of three statistics: the FRG, the regression on PCA, the pair-wise 

interaction tests for testing interaction between genes KANK4 and GBP3  with 20% of the linked 

rare variants and 20% of the randomly distributed rare variants as causal variants under the 

Dominant OR Dominant model, and sample sizes of 2,000. 
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Next we exam the power of tests for common variants where 20% of the common variants 

were chosen as causal variants.  Supplemental Figures 7-10 plotted the power curves of three 

statistics  for testing interaction between two genomic regions (or genes) which consisted of only 

common variants under Dominant OR Dominant, Dominant AND Dominant, Recessive OR 

Recessive and Threshold  models, respectively. Power of all three statistics for common variants 

was higher than that for rare variants, but their power pattern for both common and rare variants 

was the similar.  

 

 



 

Figure S7. Power curves of three statistics: the FRG, the regression on PCA, the pair-wise 

interaction tests where permutations were used to adjust for multiple testing for testing 

interaction between two genomic regions that consist of common variants for a quantitative trait 

as a function of the relative risk parameter r   at the significance level 05.0  under the 

Dominant OR Dominant interaction model, assuming sample sizes of 2,000. 

 



 

Figure S8. Power curves of three statistics: the FRG, the regression on PCA, the pair-wise 

interaction tests where permutations were used to adjust for multiple testing for testing 

interaction between two genomic regions that consist of common variants for a quantitative trait 

as a function of the relative risk parameter r   at the significance level 05.0  under the 

Dominant AND Dominant interaction model, assuming sample sizes of 2,000. 



 

Figure S9. Power curves of three statistics: the FRG, the regression on PCA, the pair-wise 

interaction tests where permutations were used to adjust for multiple testing for testing 

interaction between two genomic regions that consist of common variants for a quantitative trait 

as a function of the relative risk parameter r   at the significance level 05.0  under the 

Recessive OR Recessive interaction model, assuming sample sizes of 2,000. 



 

Figure S10. Power curves of three statistics: the FRG, the regression on PCA, the pair-wise 

interaction tests where permutations were used to adjust for multiple testing for testing 

interaction between two genomic regions that consist of common variants for a quantitative trait 

as a function of the relative risk parameter r   at the significance level 05.0  under the 

Threshold  interaction model, assuming sample sizes of 2,000. 



Supplemental Note 6 

Interaction between loci which were identified to be associated with serum lipid levels in 

recent GWAS 

Next we examined whether loci which were identified to be associated with serum lipid levels 

in recent GWAS (Aulchenko et al. 2009) were interacted with other genes to influence HDL. 

Specifically, we investigated 31 genes: GALNT2, RPA2, GALNT2, PCSK9, GALNT3, APOB, 

GCKR, HMGCR, MLXIPL, BAZ1B, TBL2, LPL, ABCA1, APOA5, APOA4, APOA1, FADS2, 

FADS3, MADD, FOLH1, MVK, MMAB, LIPC, CETP, CTCF, PRMT7, GALNT1, LIPG, LDLR, 

DNAH11, and APOE.  We observed that all 31genes have trending interaction with more than 

one gene (P-value range from 81081.7   to 51097.9  ) (Supplemental Table S9 and 

Supplemental Figure S11).  

 

Figure S11. Networks of 384 pairs of modest interactions between 31 genes that influenced lipid 

levels and discovered in previous GWAS and other genes in our analysis.    



For example, GALNT3 has modest interactions with 104 genes (P-value range from 

71096.2  to 51087.9  ). Among them, KCNJ1 was reported to be associated with fasting 

glucose (Karnes et al. 2012),  NFATC2 was associated with type 2 diabetes (Bailey et al. 2010),  

KCTD15 was associated with obesity and related vascular diseases (Winter et al. 2013), ADD3 

was associated with hypertension (Manunta et al. 2007). 

To examine the patterns of interaction between genes, we plotted Supplemental Figure S12 

which showed 4 pair-wise interaction between BMF ( SNP: rs16970349) and BHMT2 (two SNPs: 

rs60166823 and rs59804781) where Q represents a major allele  and q represents a minor allele 

at a SNP. The P-value for testing interaction between BMF and BHMT2 was 101027.2  . The 

number of SNPs in BMF and BHMT2 were 7 and 26, respectively.  Out of a 182 possible pairs of 

SNPs, the number of pairs of SNPs with P-values less than 0.05 was 8 (Supplemental Table S6).  

In Supplemental Table 6 we also listed the MAF of these SNPs. Three genotypes of rs16970349  

in BMF were represented on the x axis, three genotypes of two SNPs in BHMT2 were 

represented in the legend, and HDL was represented on y axis. When we could not observe a 

homozygous genotype (qq) of minor allele at the SNPs in BMF and hence we only showed two 

mean HDL values for individuals with genotype QQ and Qq at SNPs in BMF. If only 

homozygous genotype QQ was observed, we used one point to represent interaction. We 

observed from the interaction plot Supplemental Figure 12 that these HDL lines were not parallel 

and that the effect of changing genotypes of SNPs in BMF on HDL highly depends on the 

genotypes of one of two    SNPs in BHMT2. 

 



 

Figure S12. Plot of the interactions between BMF (rs16970349) and BHMT2 (two  SNPs: 

rs60166823,  and rs59804781) where three genotypes of rs16970349 in BMF were represented 

on the x axis, three genotypes of two SNPs in BHMT2 were represented in the legend, and HDL 

was represented on y axis. The effect of changing genotypes of SNPs in BMF on HDL highly 

depends on the genotypes of one of two SNPs in BHMT2. 
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Supplemental Table S9. P-values of interaction between Loci influencing lipid levels discovered 
in previous GWAS and other genes in our analysis (Exile file: Supplemental Table S9). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Interaction analysis when log rank transformation of the HDL was taken as a quantitative 

trait. 

We performed the rank-based inverse normal transformation (INT)of the phenotype HDL before 
we test interactions using three test statistics. The P-values of testing interactions between 10 
pairs of genes that were selected form Table 2 using INT were listed in Supplemental Table S10. 
Supplemental Table S8 showed that the patterns of P-values by two transformations look similar, 
the P-values calculated by FRG, in general, is much smaller than that calculated by regression on 
PCA and the pair-wise test.  

Supplemental Table S10. P-values of 10 pairs of genes selected from Table 2 using INT 
transformation  
Gene 1 Chr No of Gene 2 Chr No of P-value 

  
SNPs 

  
SNPs FRG PCA 

Pair-wise 
 (mim) 

VSIG8 1 29 SLC35A1 6 17 1.19E-09 1.05E-01 4.42E-06
CCDC115 2 17 CALM1 14 11 2.76E-06 5.51E-05 7.47E-05
C1orf92 1 29 ITPKA 15 15 1.09E-09 1.64E-02 4.33E-09
BHMT2 5 26 BMF 15 7 1.96E-05 1.77E-01 4.21E-05
HSPA2 14 23 C18orf56 18 5 6.73E-08 4.92E-01 3.58E-06
PRDM13 6 18 TBC1D3B 17 2 1.42E-09 3.46E-09 5.07E-09
SNTB1 8 36 FLJ35776 18 6 3.53E-05 2.71E-02 1.32E-03
SNTB1 8 36 DBNDD2 20 46 1.87E-05 1.60E-03 1.39E-03
DIRC2 3 20 INSM2 14 16 4.30E-09 4.28E-02 3.84E-10
PRDM13 6 18 ATP6V1D 14 16 3.09E-08 1.03E-07 5.85E-10
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