Supplemental Table S1. Description of the 8 genes

Total number of  Number of Rare Median Mean Coding length

SNPs variants MAF MAF
PLCH2 116 113 2.25E-04 8.47E-03 29212
KANK4 68 57 2.25E-04 5.20E-02 83247
GALNT2 57 48 2.25E-04 2.03E-02 214921
GBP3 33 27 2.25E-04 6.01E-02 16184
IQGAP3 132 125 2.25E-04 1.50E-02 47200
ACTN2 87 81 2.25E-04 1.34E-02 77790
SCLT1 59 55 2.25E-04 8.22E-03 209614
MDN1 347 311 2.25E-04 2.22E-02 176213




Supplemental Table S2. Average type 1 error rates of the statistics for testing

interaction between two genes with both common and rare variants

Model Sample Size 0.05 0.01 0.001
500 0.0516 0.0104 0.0013
1000 0.0502 0.0103 0.0011
Model 1 2000 0.0475 0.0095 0.0009
3000 0.0472 0.0097 0.0011
4000 0.0476 0.0098 0.0012
5000 0.0455 0.0089 0.0011
500 0.0495 0.0103 0.0011
1000 0.0493 0.0106 0.0010
2000 0.0495 0.0102 0.0011
Model 2 3000 0.0470 0.0092 0.0009
4000 0.0476 0.0096 0.0009
5000 0.0465 0.0092 0.0008
500 0.0518 0.0115 0.0013
1000 0.0503 0.0102 0.0011
2000 0.0493 0.0099 0.0009
Model 3 3000 0.0465 0.0097 0.0011
4000 0.0471 0.0099 0.0009
5000 0.0470 0.0094 0.0009




Supplemental Table S3. Type 1 error rates of the statistics for
testing interaction between genes: GBP3 and KANK4 with
rare variants and existence of LD between them

Model Sample Size 0.05 0.01 0.001
500 0.0478 0.0106 0.0012
1000 0.0432  0.0094  0.0006
Model 1 2000 0.0494 0.0112 0.0014
3000 0.0524 0.0098 0.0012
4000 0.0516  0.0094 0.0010
5000 0.0522 0.0118 0.0008
500 0.0474  0.0096 0.0004
1000 0.0448 0.0106 0.0012
2000 0.0506  0.0096 0.0008
Model 2 3000 0.0496  0.0084 0.0010
4000 0.0538 0.0120 0.0014
5000 0.0514 0.0118 0.0012
500 0.0430 0.0084 0.0010
1000 0.0466  0.0068  0.0008
2000 0.0490 0.0100 0.0008
Model 3 3000 0.0526  0.0082 0.0014
4000 0.0492 0.0100 0.0012
5000 0.0530 0.0080 0.0012




Supplemental Table S4. The interaction models: 0 and r stand for a quantitative trait mean given
the genotypes.

Models First locus Second locus
thth thqhz Uy, A,
Dominant OR Q,Q, r r r
Dominant
Qs Ay, r r r
0y, O, r r 0
Dominant AND | Q, Q,, r r 0
Dominant
' Q,, 0, r r 0
Oy, An, 0 0 0
Recessive OR Q,,Qx, r r r
Recessive
Q;, 0, r 0 0
Gy, O, r 0 0
Threshold Q,Q, r 0
Q;, 0, r 0 0
05, G, 0 0 0




Supplemental Table 5. P-values of 130 pairs of mildly interacted genes (Exile file:
Supplemental Table S5)



Supplemental Table S6. MAF of SNPs from genes BMF and BHMT2 and P-value
of their interactions

BMF MAF BHMT?2 MAF P-value

rs16970349 0.053483  rs61058144 0.010787 5.52E-08
rs16970349 0.053483  rs60166823 0.010562 6.83E-08
rs16970349 0.053483  rs143035984 0.000449 6.29E-04
rs16970349 0.053483  rs59804781 0.004944 4.37E-02
rs148420422 0.000674  rs60158007 0.000225 3.91E-02
rs148420422 0.000674  rs59804781 0.004944 2.55E-02
rs148420422 0.000674  rs145099848 0.000899 3.19E-02

rs143072589 0.000225  rs60158007 0.000225 4.20E-02




Supplemental Figure 1

Figure S1: The LD map of genes: GBP3 and KANKA4.



Supplemental Figure 2
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Figure S2: Power curves of three statistics: the FRG, the regression on PCA, the pair-wise
interaction tests where permutations were used to adjust for multiple testing for testing
interaction between two genomic regions that consist of rare variants for a quantitative trait as a
function of the sample size at the significance level o =0.05 under the Dominant AND
Dominant model, assuming the relative risk parameter r =1.
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Recessive OR Recessive Interaction Model
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Figure S3. Power curves of three statistics: the FRG, the regression on PCA, the pair-wise
interaction tests where permutations were used to adjust for multiple testing for testing
interaction between two genomic regions that consist of rare variants for a quantitative trait asa
function of the sample size at the significance level o =0.05 under the Recessive OR Recessive
model, assuming the relative risk parameterr = 0.1.
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Figure S4. Power curves of three statistics: the FRG, the regression on PCA, the pair-wise
interaction tests where permutations were used to adjust for multiple testing for testing
interaction between two genomic regions that consist of rare variants for a quantitative trait as a
function of the sample size at the significance level o =0.05 under the Threshold model,
assuming the relative risk parameterr =1.



Supplemental Note 1
Similar to the Kempthorne model (Mao et al. 2006), we assume that the SNPs between two
genomic regions are in linkage equilibrium. To find genetic effect and interaction effect

functions, we minimize the following objective function using variation of theory (Struwe 1990):

Fla(t),B(s), v(t,s)] = E{[Y —a, —Ja(t)(x (t) - E(X(1))dt - IB(S)(X (s) - E(X(s))ds -

(S1)
[ [ 7t s)(X (1) - E(X(©)(X (5) ~ E(X(s))dtds]’}

The first variation of F(a(t),p(s),y(t,s)) at a(t) is given by

3 Pl O3 Sh(gi),ﬁ(S),y(t, 9)]

= E{Y — 0 - ja(t)(xa) E(X (D)dt - IB(S)(X(S) E(X ())ds -
j jy(t X EKONX () - E(X(s»dtds]jh(u)X(u)du}
- j h(u)cov(Y , X (u))du + j I h(u)R(t,u)oc(t)dtdu.
U uTt

By the first necessary condition for a relative minimum of a functional, we have

SF[h] = J’{j R(t,u)a(t)dt — cov(Y , X (u))}h(u)du = O. (S2)
UurT
Substituting h(u) :J'R(t,u)a(t)dt —cov(Y, X (u)) into equation (S2) yields the following integral

equation:

jR(t, wa(t)dt = cov(Y, X (u)) . (S3)
J

Similarly, we can obtain the integral equations:

JR(S,V)B(s)dv = cov(Y, X (V)

: (S4)
H R(U, t)y(t, $)R(s,v)dtds = cov(Y , X (u) X (v)).

TS

When we consider only one SNP in the genomic region, equation (S3) is reduced to

Var(X)a =cov(Y,X).



Let M, and m, be two alleles in the first locus with allele frequencies p, and q,, respectively.
Similarly, we define two alleles M, andm, with frequencies p, and g, for the second locus. Nine

genotypic values are denoted in the following Table 1.

Table 1. Notations for nine genotypic values at two loci.

M, M, M,m, My,
M;M; Goo Gos Gz
M;m, Gio Gy Gr
mm Gy Gy Gy,

Let G, ,G, ,G, be the genotypic values of the genotypes M;M;,M;m; andmm,, G ;,G ,,G , be

the genotypic values of the genotypes M,M,,M,m, andm,m,, respectively.

Consider a standard quantitative genetic model:
Gy, =p+20,00+€
G, =p+(0, —pa+e, (S5)
G, =p—-2p,0+e;,.

Clearly, from model equation (S5) we have

2q, M, M,
Xl = (ql - pl) Mlml
-2p, m,m,

It follows from the above equations that

var(X,) =2p,q, and

cov(Y, X,) =2p,0,[p,G, +(0, - p,)G, —0,G, ], which implies that

o= plGO,. + (CI1 - pl)Gl,. _quz,. . (S6)

Equation (S6) gives the standard estimation of genetic additive effect or substitution effect.




Now we consider simplification of interaction effect when each genomic region has only one
SNP. In such case, the model (1) and equation (S4) are reduced to

Y =0,+ X0+ X,B+ X, X,y+¢ and

var(X,X,)y =cov(Y, X, X,) .

After some algebra, we obtain

Var(xl’ Xz) = 4p1Q1 P.d, and

COV(Y ) Xlxz) =4 p1q1 quZ{pl[ pzeoo + (qz - pz)Gm - qzeoz] + (ql - pl)[ szlo + (qz - pz)Gn - qZGlz]
= 0,[P,Gy + (0, — P,)Gy — 0,6, 1}

Thus, we obtain

Y= pl[ szoo + (Q2 - pz)Gm - Q2Goz] + (ql - pl)[ pzelo + (qz - pz)Gn - qZGlz]
- ql[ pzezo + (qz - pz)Gzl - quzz]a

which coincides with the interaction results in the traditional quantitative genetics.



Supplemental Note 2

The classical concept of genetic additive variance and interaction variance can be extended to
functional model. When sequence data are considered in the genomic regions the covariance
functions will take linkage disequilibrium between SNPs into account. We first briefly review

some concepts of classical quantitative genetics. For simplicity, we assume that G, =a,G, =d

and G, =—a (Falconer 1989). Then, the average effect of the gene substitution is

a=p,Go, +(0— PG, —04G, =pa+(d—p)d+ga=a+(g-p)d.
which coincides with the standard results in the quantitative genetics.

Let 2 be overall population mean, «,and «, be the respective genic effects, the statistical
model for the three genotypic values can be expressed as

a=u+2a +e
d=u+a +a,+e, (L1)
—a=u+2a,+e,

where e,,e, and e, are the respective deviations of the genotypic values from their expectations

on the basis of a perfect fit of the model. From classical quantitative genetics theory we have that

o, = go
o, = —pao.

Therefore, the model (L1) can be written as
a=p+2qo+e
d=p+(q-pla+e, (L2)

—a=pu-2pa+e,

Three terms in equation (L1) make contribution to the genetic additive variance:



GZA = 4p20c12 +2pq(o, + a2)2 + 4q2a§

=4p*(da)” +2pa(q - p)°o’ +4q°(-pa)’ (L3)
=2pga’(2pq +(q - p)* +2pq)
=2pqo’.

In the text we define the indicator variable for the genotype as
0, mm
X=41, Mm (L4)
2, MM.
We add — 2p in the equation (L4) we obtain
—-2p, mm
x={q-p, Mm (L5)
20, MM.

The model (L2) can be rewritten as
y=p+Xo+e. (L6)

From model (L6), the additive genetic variance is given by

o% = var(xa) = var(x)o?. (L7)
But,
E[x]=(-2p)q” + (- p)2pg +20p° =2pa(-q+q—p+p)=0
and
var(x) = E[x’]=(-2p)*a” +(a - p)*2pq + (20)* p* (L8)

=2pa2pg +(d - p)* +2pq] =2 pa.
Substituting equation (L8) into equation (L7) yields
o4a =2pgo’. (L9)
Extension of equation (L7) to sequence data (multiple densely distributed SNPs) in a genomic

region and using stochastic calculus yields:



var([ x(t)a(t)dt) = [ [ a(s)R, (s, t)o(t)dsdt . (L10)

When only one SNP is located in the region, the covariance function R(s,t)is reduced to

var(x) =2pg and a(s) = a(t) = a. Then, from the model (L10) we obtain

var([ x(t)a(t)dt) = [ [ a(s)R, (s, t)a(t)dsdt = var(x)a’ = 2po’,

which exactly corresponds to the formula for additive genetic variance in the classical
quantitative genetics (L9) (Falconer 1989). When sequence data are considered in the genomic
regions the covariance functions will take linkage disequilibrium between SNPs into account.

Similarly, we have

var([ x(s)B(s)ds = [ [ B(u)R(u,v)B(v)dudv and

var( j j v(t, S)X(t)x(s)dsdt) = j j j j v(t, )R, (£, U)R, (5, v)y(u, v)dsdtdudy.

In summary, the variance of the overall genetic and interaction effects in two genomic regions

can be defined as

var( j x(Da(t)dt) = j j a(S)R(s, t)a(t)dsdt
var( j X(s)B(s)ds = j j B(U)R(u, v)B(v)dudv (L11)

var( j j v(s, t)x(s)x(t)dsdt = j j j j v(s,H)R(s, U)R(t, v)y(u, v)dsdtdudv.

TSTS
By the similar arguments, if we assume that each genomic region has only one SNP, then

equation (L11) is reduced to



2
(o)

ii =2p,q,0
iz =2 pzqzl3
2

o, =4p,0, pzquz,

2
(¢

which are the standard results in quantitative genetics. This demonstrates that the formulas for

genetic effect at single SNP are special cases of the proposed genetic effect models for genomic

regions.



Supplemental Note 3

Genetic additive and additive interaction variances

Let R(t,s) be the covariance function of the genotype profile X (t) . By Karhunen-Loeve
expansion (Ash and Gardner 1975), the covariance function R(t,s) can be expanded in terms of

orthonormal eigenfunctions ¢, (t) (functional principal components) and non-increasing

eigenvalues A;:

R(t,8) = > %9 (1)9;(5) (A1)
j=1
and the i th centered random genotype profile can be expanded as
X (t) = Ziijd)j ), (A2)
j=1

where &; are uncorrelated random variables with zero mean and variances E[Ej] =A;.

It follows from equation (A1) that

[R(L S0, ()t = [ 2, , (00, (5)8, ()t

T k=1

>[4, 06, ctd, () (A3)

T

Aib; (s).

Recall that the genetic effect functions can also be expanded in terms of eigenfunctions:

a(t) = Zajd)j(t)'B(S) = ZBk\Vk (s)andy(t,s) = ZZijd)j (Ow(s). (Ad)



From equations (2) and (A4) we know that the genetic additive variance Gil can be expressed as

ol = j J.a(s)R(s,t)oc(t)dsdt
TT

) ) (A5)
= _“.Zakd)k (S)R(I,S)Zaj(l)j(t)-
TS k=1 j=1
Substituting equation (A3) into equation (A5) yields
% = [ Yo (s)dsd o, [R(t ) (t)dlt
s k=1 =1 T
=[ > o ()t 0, (S)ds
s k=1 =1 (A6)
= ZZOLKOLJ-MJ‘% (s)9;(s)ds
k=1 j=1 S
= lekjoc? .
=
Similarly, we have
o, =30, (A7

k=1

Next we consider estimation of the variance of genetic interaction effect %, ,. It follows from

equations (2) and (A4) that

Gop = H j j vt )R, (t, U)R, (5, v)y(u, v)dsdtdudy.

iz

>y

11

kjekY%k -

7 id (OW ()R, (L, u)iiyil(bi (U, (V)R, (s, v)]dtdsdudv

1 i=1l =1

Y i 0y [ 0 (W Wdu [ i (s)w (s)ds
T S

L
MS

=
1

(A8)

s

'Mg TLMS
[ 2

L

LN
F

= =1



Supplemental Note 4

The genetic models for type 1 error calculations
We assumed the three models: model 1( without marginal effects), model 2 (with marginal effect
of one gene) and model 3 with marginal effects of two genes to generate a phenotype
Model 1 (without marginal effects):
Vi =n+g,i=12,---,n,
where pis an overall mean, ¢, are independent and identically distributed normal variables with

mean zero and variancec® =1.
Model 2 (with marginal effect of one gene):
ky
Vi =H+ D X0 g,
j=1
where x; is an indicator variable for the genotype at the j th SNP in the first gene,

a;=(1-p;)(r-1), p;isthe frequency of the minor allele, and ris a risk parameter and is equal

to 1.2. We assume that 20% of the variants to be risk variants.

Model 3 (with marginal effects of two genes):

Yy, = qu'kZl;xijocj + Ikzzl:z”Bl + g,

i -
where x; and z; are indicator variables for the genotype at the j th SNP in the first gene and at
the I of the SNP in the second gene, respectively, a; = (1-p;)(r,-1), B, =(1-p)(, -1), p,
and p, are the frequencies of minor alleles at the jth SNP in the first gene and at the | th SNP in

the second gene, respectively, and r,and r, are risk parameters and are equal to 1.2 and 1.4,

respectively. We assume that 20% of the variants to be risk variants.



Impact of the lengths of the genes and sequencing errors on the type 1 error

rates of the test.

In this section, we evaluate the lengths of the genes and sequencing errors on the type 1 error
rates of the test.

To examine whether the lengths of two genes will influence the type 1 error rates, we selected
genes DST and SYNE1 in chromosome 6 with the length of 497 k and 515 k and total of 430 and
645 SNPs, respectively, for simulations. The type 1 error rates were summarized in
Supplemental Table S7. We still observed that type 1 error rates for testing interaction between
two genes with large size were not appreciably different from the nominal levels. The impact of
the length of the genes on the type 1 error rates was limited.

Supplemental Table S7. Type 1 error rates of the statistics for testing interaction between
two large genes: DST and SYNE1 with rare variants

Model Sample Size 0.05 0.01 0.001
500 0.0440 0.0102 0.0014
1000 0.0450 0.0096 0.0012
Model 1 2000 0.0482 0.0098 0.0014
3000 0.0486 0.0102 0.0016
4000 0.0506 0.0106 0.0010
5000 0.0494 0.0098 0.0012
500 0.0474 0.0096 0.0012
1000 0.0454 0.0102 0.0010
2000 0.0466 0.0076 0.0006
Model 2 3000 0.0478 0.0086 0.0008
4000 0.0538 0.0106 0.0006
5000 0.0490 0.0106 0.0006
500 0.0504 0.0078 0.0008
1000 0.0478 0.0108 0.0016
2000 0.0530 0.0104 0.0004
Model 3 3000 0.0482 0.0090 0.0006
4000 0.0510 0.0092 0.0010



5000 0.0468 0.0100 0.0010

The error rates for the new generation of sequencing technologies are higher than traditional
Sanger sequencing (Harismendy et al. 2009). Variants caused by sequencing errors may bias
available genotype-phenotype association tests. Investigating the impact of sequencing errors on
association analyses will provide guidance for developing robust statistics for interaction tests.
For simplicity, we assumed that the genotyping error rate for rare variants (frequencies < 0.05)
ranges from 107°to 0.01, respectively. Supplemental Table S8 provides the type | error rates for
FRG model in the presence of the variant genotype error rate.

Supplemental Table S8. Average type 1 error rates of the statistics for
testing interaction between two genes with rare variants and genotyping

errors
Model Sequencing error rates 0.05 0.01 0.001
0.0% 0.04744  0.00958 0.00098
Model 1 0.1% 0.05004  0.00964 0.00084
1.0% 0.04620  0.00980 0.00120
0.0% 0.04908  0.00976 0.00100
Model 2 0.1% 0.04880  0.01025 0.00090
1.0% 0.04600  0.00920 0.00084
0.0% 0.04728  0.00940 0.00108
Model 3 0.1% 0.04910  0.01036 0.00106
1.0% 0.04620  0.00920 0.00080




Supplemental Note 5

In this section, we present the power pattern of the tests in several additional scenarios. In
practice, the number of causal variants may be small. To study the impact of the number of
causal variants on the power, we considered a simulation scenario where 10% of the rare variants

were randomly chosen as causal variants. Supplemental Figure S5 plotted the power curves of

Dominant OR Dominant

pem

FRG(10%)
————— Pair-wise Test(10%)
——— Regression on PCA (10%)
FRG(20%)

----- Pair-wise Test(20%)
- Regression on PCA (20%)

| | |
0 0.1 0.2 0.3 0.4 0.5
Risk Parameter

Figure S5. Power curves for three statistics: the FRG, the regression on PCA, the pair-wise
interaction tests for testing interaction between two genes with 10% of the rare variants and 20%
of the rare variants as causal variants under the Dominant OR Dominant model, and sample sizes

of 2,000.



three statistics for testing interaction between two genes with 10% and 20% of the rare variants
as causal variants under the Dominant OR Dominant interaction model . From Figure S5, we
observed that low percentage of causal variants will decrease the power, but will not change the
power pattern of three tests. We also observed that the FRG for risk parameters larger than 0.3
still has high power to detect interaction.

In many cases, causal variants are not randomly distributed. They may be clustered along the
chromosome. To investigate the impact of the distribution of causal variants on the power we
considered a scenario where the causal variants were close to each other rather than randomly
distributed. We used the SNPs in genes KANK4 with 68 SNPs (57 rare SNPs) and GBP3 with 33
SNPs (27 rare SNPs) to simulate genotypes of individuals. The LD map and distribution of
causal variants in genes KANK4 and GBP3 were shown in Supplemental Figure 1. The number
of SNPs in this two genes were much less than the number of SNPs in the genes IQGAP3 (132
SNPs, 125 rare SNPs) and ACTN2 (87 SNPs, 81 rare SNPs) which were used to simulate
genotypes for other power evaluation. Supplemental Figure 6 plotted the power curves of three
statistics under the Dominant OR Dominant interaction model, assuming the causal variants were
close to each other. Other parameters were unchanged as that in Figure 1. The results showed
that the power of linked causal variants was much higher than that of randomly selected causal
variants because linked causal variants had much stronger LD than unlinked causal variants. We
need to point out that the power of the test using genes KANK4 and GBP3 was lower than using
genes IQGAP3 and ACTN2 because the number of SNPs in genes IQGAP3 and ACTN2 was

much larger than the number of SNPs in genes KANK4 and GBP3 .
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Figure S6. Power curves of three statistics: the FRG, the regression on PCA, the pair-wise
interaction tests for testing interaction between genes KANK4 and GBP3 with 20% of the linked
rare variants and 20% of the randomly distributed rare variants as causal variants under the

Dominant OR Dominant model, and sample sizes of 2,000.



Next we exam the power of tests for common variants where 20% of the common variants
were chosen as causal variants. Supplemental Figures 7-10 plotted the power curves of three
statistics for testing interaction between two genomic regions (or genes) which consisted of only
common variants under Dominant OR Dominant, Dominant AND Dominant, Recessive OR
Recessive and Threshold models, respectively. Power of all three statistics for common variants
was higher than that for rare variants, but their power pattern for both common and rare variants

was the similar.
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Figure S7. Power curves of three statistics: the FRG, the regression on PCA, the pair-wise
interaction tests where permutations were used to adjust for multiple testing for testing
interaction between two genomic regions that consist of common variants for a quantitative trait
as a function of the relative risk parameter r at the significance level o =0.05 under the

Dominant OR Dominant interaction model, assuming sample sizes of 2,000.
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Figure S8. Power curves of three statistics: the FRG, the regression on PCA, the pair-wise
interaction tests where permutations were used to adjust for multiple testing for testing
interaction between two genomic regions that consist of common variants for a quantitative trait
as a function of the relative risk parameter r at the significance level o =0.05 under the

Dominant AND Dominant interaction model, assuming sample sizes of 2,000.
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Figure S9. Power curves of three statistics: the FRG, the regression on PCA, the pair-wise
interaction tests where permutations were used to adjust for multiple testing for testing
interaction between two genomic regions that consist of common variants for a quantitative trait
as a function of the relative risk parameter r at the significance level o =0.05 under the

Recessive OR Recessive interaction model, assuming sample sizes of 2,000.
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Figure S10. Power curves of three statistics: the FRG, the regression on PCA, the pair-wise
interaction tests where permutations were used to adjust for multiple testing for testing
interaction between two genomic regions that consist of common variants for a quantitative trait
as a function of the relative risk parameter r at the significance level o =0.05 under the

Threshold interaction model, assuming sample sizes of 2,000.



Supplemental Note 6

Interaction between loci which were identified to be associated with serum lipid levels in
recent GWAS

Next we examined whether loci which were identified to be associated with serum lipid levels
in recent GWAS (Aulchenko et al. 2009) were interacted with other genes to influence HDL.
Specifically, we investigated 31 genes: GALNT2, RPA2, GALNT2, PCSK9, GALNT3, APOB,
GCKR, HMGCR, MLXIPL, BAZ1B, TBL2, LPL, ABCA1, APOA5, APOA4, APOA1, FADS2,
FADS3, MADD, FOLH1, MVK, MMAB, LIPC, CETP, CTCF, PRMT7, GALNTY, LIPG, LDLR,
DNAH11, and APOE. We observed that all 31genes have trending interaction with more than
one gene (P-value range from 7.81x10°® to 9.97 x107°) (Supplemental Table S9 and

Supplemental Figure S11).
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Figure S11. Networks of 384 pairs of modest interactions between 31 genes that influenced lipid

levels and discovered in previous GWAS and other genes in our analysis.



For example, GALNT3 has modest interactions with 104 genes (P-value range from
2.96x107"to 9.87 x107°). Among them, KCNJ1 was reported to be associated with fasting
glucose (Karnes et al. 2012), NFATC2 was associated with type 2 diabetes (Bailey et al. 2010),
KCTD15 was associated with obesity and related vascular diseases (Winter et al. 2013), ADD3
was associated with hypertension (Manunta et al. 2007).

To examine the patterns of interaction between genes, we plotted Supplemental Figure S12

which showed 4 pair-wise interaction between BMF ( SNP: rs16970349) and BHMT2 (two SNPs:
rs60166823 and rs59804781) where Q represents a major allele and g represents a minor allele

at a SNP. The P-value for testing interaction between BMF and BHMT2 was 2.27 x10™°. The
number of SNPs in BMF and BHMT2 were 7 and 26, respectively. Out of a 182 possible pairs of
SNPs, the number of pairs of SNPs with P-values less than 0.05 was 8 (Supplemental Table S6).
In Supplemental Table 6 we also listed the MAF of these SNPs. Three genotypes of rs16970349
in BMF were represented on the x axis, three genotypes of two SNPs in BHMT2 were

represented in the legend, and HDL was represented on Y axis. When we could not observe a

homozygous genotype (qq) of minor allele at the SNPs in BMF and hence we only showed two
mean HDL values for individuals with genotype QQ and Qg at SNPs in BMF. If only
homozygous genotype QQ was observed, we used one point to represent interaction. We
observed from the interaction plot Supplemental Figure 12 that these HDL lines were not parallel
and that the effect of changing genotypes of SNPs in BMF on HDL highly depends on the

genotypes of one of two SNPs in BHMT2.



Plot of Interaction Between Genes BHMT2 and BMF
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Figure S12. Plot of the interactions between BMF (rs16970349) and BHMT2 (two SNPs:
rs60166823, and rs59804781) where three genotypes of rs16970349 in BMF were represented
on the x axis, three genotypes of two SNPs in BHMT2 were represented in the legend, and HDL

was represented on Y axis. The effect of changing genotypes of SNPs in BMF on HDL highly

depends on the genotypes of one of two SNPs in BHMT2.



Supplemental Table S9. P-values of interaction between Loci influencing lipid levels discovered
in previous GWAS and other genes in our analysis (Exile file: Supplemental Table S9).



Interaction analysis when log rank transformation of the HDL was taken as a quantitative
trait.

We performed the rank-based inverse normal transformation (INT)of the phenotype HDL before
we test interactions using three test statistics. The P-values of testing interactions between 10
pairs of genes that were selected form Table 2 using INT were listed in Supplemental Table S10.
Supplemental Table S8 showed that the patterns of P-values by two transformations look similar,
the P-values calculated by FRG, in general, is much smaller than that calculated by regression on
PCA and the pair-wise test.

Supplemental Table S10. P-values of 10 pairs of genes selected from Table 2 using INT
transformation

Gene 1 Chr Noof Gene2 Chr No of P-value

SNPs SNPs | FRG pcA  rair-wise

(mim)
VSIG8 1 29 SLC35A1 6 17 | 1.19E-09 1.05E-01 4.42E-06
CCDC115 2 17 CALM1 14 11 | 2.76E-06 5.51E-05 7.47E-05
Clorf92 1 29 ITPKA 15 15| 1.09E-09 1.64E-02 4.33E-09
BHMT?2 5 26 BMF 15 7 | 1.96E-05 1.77E-01 4.21E-05
HSPA2 14 23 C18orf56 18 5| 6.73E-08 4.92E-01 3.58E-06
PRDM13 6 18 TBC1D3B 17 2 | 1.42E-09 3.46E-09 5.07E-09
SNTB1 8 36 FLJ35776 18 6 | 3.53E-05 2.71E-02 1.32E-03
SNTB1 8 36 DBNDD2 20 46 | 1.87E-05 1.60E-03 1.39E-03
DIRC2 3 20 INSM2 14 16 | 4.30E-09 4.28E-02 3.84E-10
PRDM13 6 18 ATP6V1D 14 16 | 3.09E-08 1.03E-07 5.85E-10
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