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Table S1. Characteristics of primary GBMs used in this study.

A. GBMs profiled by MeDIP-seq and MRE-seq

Verhaak copy copy
% tumor expression number number
sex age cells TCGA# subtype amplif. homoz. del.
CDKA4,
GBM1 M 76 N.D. - N.D. MDM2 PTEN
GBM2 F 55 80 08-0354 classical EGFR CDKN2A/B
GBM3 F 59 90 08-0359 proneural none CDKN2A/B
GBM4 F 46 96 - mesenchymal none CDKN2A/B
GBM5 M 58 95 - proneural PDGFRA CDKN2A/B

N.D. -- not determined

GBMs 2 and 3 were profiled in The Cancer Genome Atlas (TCGA) project; sample ID numbers are given

copy number amplif. — high level copy number amplification detected by Agilent 244K arrays
copy humber homoz. del. — homozygous copy number deletion detected by Agilent 244K arrays

B. Other GBMs in this study

sex age
GBM®6 M 54
GBM7 F 45
GBMS8 M 47
GBM9 M 61
GBM10 M 51

Table S2. Complete GREAT enrichments for recurring hyper- and hypomethylated DMRs (Q<1le-13)
-- see accompanying Excel file Table S2.xlsx



Table S3. Recurring and individual hypomethylated DMRs consistently enrich for a Sp15 amplified

region in breast cancer.

Ontology: MSigDB Perturbation.

GSEA ID:NIKOLSKY BREAST CANCER 5P15 AMPLICON

GREAT RESULTS

DMR

significance Binom Binom FDR Hyper Hyper FDR

threshold Rank Q-Val Rank Q-Vval
COMMON HYPO Q<1E-13 1 2.03E-33 1 1.42E-10
COMMON HYPO Q<l1E-5 45 1.80E-21 64 0.0054369
GBM1 HYPO Q<1E-13 1 1.07E-59 1 1.29E-11
GBM2 HYPO Q<1E-13 1 2.05E-83 1 1.79E-12
GBM3 HYPO Q<1E-13 1 3.64E-33 5 1.7521E-10
GBM4 HYPO Q<1E-13 1 7.77E-31 4 0.00169554

Table S4. Disease Ontology functional enrichments of DNA hypo/K4me3 loci by GREAT. The 20 top
enrichments significant by both binomial and hypergeometric tests are shown.

GBM1

Binom  Binom FDR Q- Hyper Hyper FDR Q-
Term Name Rank Val Rank Val
myeloma 3 5.54E-04 2 2.51E-02
hemorrhagic disease 4 6.12E-04 9 4.35E-02
bone marrow cancer 5 5.12E-04 4 2.10E-02
hematologic cancer 8 6.61E-04 3 1.98E-02
bone marrow disease 10 1.59E-03 7 5.27E-02
lymphoma 12 2.61E-03 8 4.65E-02
anthracosis 14 4.63E-03 6 4.75E-02
GBM2

Binom  Binom FDR Q- Hyper Hyper FDR Q-
Term Name Rank Val Rank Val
breast carcinoma 5 2.46E-04 9 4.31E-04
glandular and epithelial neoplasm 6 3.65E-04 1 2.71E-04
hemorrhagic disease 7 5.86E-04 28 7.48E-04
ductal, lobular, and medullary neoplasm 8 6.38E-04 8 3.50E-04
blood coagulation disease 9 6.07E-04 31 8.94E-04
lymphoma 10 6.87E-04 2 2.37E-04
multiple myeloma 11 9.40E-04 26 7.23E-04
hematologic cancer 12 8.85E-04 5 2.25E-04
pancreas adenocarcinoma 13 1.06E-03 24 7.46E-04
plasmacytoma 15 1.05E-03 29 7.29E-04
vascular hemostatic disease 16 1.13E-03 40 1.22E-03
mature B-cell lymphocytic neoplasm 17 1.14E-03 32 8.94E-04
fibrous tissue neoplasm 18 1.22E-03 48 2.21E-03
malignant neoplasm of lymphatic and
hemopoietic tissue 20 1.13E-03 7 3.13E-04



Table S5. PCR primers used in this study.

amplicon
Primer 5'-3' sequence experiment (bp) reference
GGGTTTGTTGGGTGTTTAGG bisulfite sequencing 329
AATAAATCCCCATACTCCCTACTCT
GGTTGTAAGGTTGTATAGGAATAGA bisulfite sequencing 367
AAATAAAAAAAACCTTAAATTCCC
TAGGGTAGGAAGTTTTAGGTATTGA bisulfite sequencing 540
TTTTCCTAACTACCTCACCCAACTA
GGTTTTTTATTTTTAAGTATGAATATT bisulfite sequencing 527
ATTACAAAACTCTTTCAACTTTACC
GATACGCGTCACGCACTGCCATCTATCTT cloning for prom assay 1388
AGTAAGCTTCAAGCCCTGTTTAGCAGCTT
CTAGCTAGCGCTGGCAAAAACCACGTC cloning for prom assay 586
AGTAAGCTTACTGGGGAAGCCCAGAGTAT
GATACGCGTCCAGGTGGTACCTGTGGAAG cloning for prom assay 1199
TGCTAGATCTTGACAGAAGCCCAGAAGTGA
GATACGCGTTGTCAGGCTTCCCAGAAGTT cloning for prom assay 695
TGCTAGATCTATGGGGGAAAATAGGACCTG
Concin et al. 2004 Cancer
CAAACGGCCCGCATGTTCCC gRT-PCR 231 Research
TTGAACTGGGCCGTGGCGAG
ACACTCATCAGCCAGTGCAG gRT-PCR 102
GTGGCATGTCCTTCTCGTTT
ATGGGGAAGGTGAAGGTCG gRT-PCR 108
GGGGTCATTGATGGCAACAAT
5' RACE 1st strand
GTAGGACGTGGCTCTTGA synthesis N.A.
TCCTCACGCAGACGGTGCTC 5' RACE 1st PCR primer N.A.
(use with reverse primer from Invitrogen GeneRacer
Kit
) 5' RACE 2nd PCR primer
GACACGGGGACACCGCATA (GSP3) N.A.
(use with reverse primer from Invitrogen GeneRacer
Kit)
GGCGCAAAGTAGCTAGCCAGA gRT-PCR (GLI3) 122
TTGCTGAGCCCCTGGACATTC
CGGCCTTACACCCTATTTGA gRT-PCR (SIGLEC11) 177
TTTCCCGTTTTGTTCTCTGG
GTGGCATGTCCTTCTCGTTT RT-PCR (TERT) 1884

GCTGCTGGTGTCTGCTCTC



S1A,B,C. PDGFRA amplification in GBMS5
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S1D,E,F. MDM2 amplification in GBM1
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S1G,H,I. CDK4 amplification in GBM1
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S1J,K,L. EGFR amplification in GBM2
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SIM,N,O. PTEN deletion
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S1P,Q,R. CDKN2A/B deletion
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S1. Normalization of methylation sequencing data by array-CGH-derived copy number estimates. A,
PDGFRA amplification in GBMS5. Shown here are 1) Agilent CGH array probes locations; 2) estimated copy
number by array-CGH, with the locations of changepoints between segments refined by seqCBS on MeDIP-seq
(see methods); 3) MeDIP-seq read density with no CNA normalization; 4) MeDIP-seq read density with CNV
normalization (CBS) and refinement of segment ends (seqCBS) and 5) ChIP-seq input read density for GBMs



1,2 and 5. The amplified region is reflected by much higher read density in the non-CNA normalized MeDIP-
seq (2™ track from the bottom). The amplification is also evident in the ChIP-seq input read density (3™ track
from the bottom). At the left and right boundaries of this amplicon, seqCBS on MeDIP-seq identified change

points at the exact location where ChIP-seq input read density changes abruptly (Fig. S1B,C). D-R, The same

data are shown for CDK4, MDM2, EGFR, PTEN, and CDKN2A/B.
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and hypomethylation differentially methylated regions (DMRs) at Q<le-13 (left axis) and Q<Ie-5 (right axis).



S3

Methylation change of DMR(q=1e-5)
based on infinium data
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S3. Delta beta values (GBM-normal brain) from Infinium 27K arrays, plotted for CpG sites within
individual hyper- and hypomethylated DMRs (q<107) for each of five GBMs.
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S4. Validation of BCL2L11 hypermethylation by bisulfite PCR, cloning and sequencing. A. Browser shot
of hypermethylated region within BCL2L11 5’ CpG island. B. Bisulfite sequencing results. Each row is a clone,
each column is a CpG site. Blue indicates unmethylated, red indicates methylated. White, no data.
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SS5. Validation of hypomethylation at repeats. A,C Browser views of hypomethylated MER52A and LTR1B
repeats. B,D, Bisulfite sequencing results.
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S6. Methylation patterns at common genetically altered GBM oncogene promoters. A, Human Epigenome
Browser geneset view of oncogene promoters (McLendon et al. 2008). Different gene promoters are juxtaposed
adjacent to one another in this geneset view. For CGI promoters, the entire CGI is shown (promoters on the
left). For non-CGI promoters, -2000 to +1000 relative to the TSS is shown. B, Infinium 27K methylation data
from 292 TCGA GBMs, showing percent methylation for individual CpG sites located in GBM oncogene
promoters. GBM Methylation data was downloaded from the TCGA website. Beta values for oncogene
promoter CpG sites were extracted and plotted at small colored points. Normal brain data were plotted as black
triangles. Colored boxes at bottom group CpG sites at a particular gene promoter; filled boxes indicate CpG
island promoters and unfilled non-CGI promoters.
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S7. Spatial enrichments of recurring hypomethylated DMRs for DNase hypersensitivity. The genomic
regions for all recurring hypomethylated DMRs (q<10-13) were expanded to create 10.5 kb windows centered
on the middle of each DMR. Digital DNasel hypersensitivity clusters in 125 cell types from ENCODE were
downloaded from the UCSC Genome Browser. The averaged signal from all ENCODE cell lines for DNase
hypersensitivity was calculated for each 10.5 kb window. Enrichment in 10 bp bins was then plotted across each
10.5 kb window (red line). As a positive control, enrichment for the set of brain-specific hypomethylated DMRs
(hypomethylated in brain relative to breast, blood and ES cells) (Zhang et al. 2013) is plotted in blue. Signal for
randomly chosen windows was plotted as a negative control (green line). Using the criterion that DMRs have
over 50% length overlapping to ENCODE DHS, in 558 hypomethylated DMRs (q<le-13), 136 DMRs
(24.37%) contain DHS and this is a statistically significant enrichment using a hypergeometric test, p-value =
1.2X10-8.
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S8. Chrom-HMM chromatin-state defined gene body promoters with confirmed promoter activity by
reporter assay. Browser images for the two gene body loci tested by luciferase and shown in Figure 3B-D
(other than SIGLEC11 which is shown in Figure 3E). A, Confirmed gene body promoter within 7TNXB, showing
GBM hypomethylation by MeDIP-/MRE-seq and overlapping promoter state by ChromHMM. The 5’ end of a
human mRNA (T17866) is shown at the bottom. B, Confirmed gene body promoter within PAX7.
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S9. Quality control analysis of H3K4me3 ChIP-seq by CHANCE. A, The IP strengths of ChIP-seq
experiments for GBMs 1, 2, and two replicates of GBMS5 (5-1 and 5-2) were assessed by Signal Extraction
Scaling (SES) (Diaz et al. 2012b) using the software CHANCE (Diaz et al. 2012a), which estimates the
background and signal portions of the IP by determining the largest subset of the genome where the distribution
of cumulative tag density in the IP sample matches that of the Input sample. All samples were comprised of 29-
37% signal reads. These percentages represent a statistically significant IP/Input differential enrichment as
measured by a divergence test with a g-value (positive false discovery rate) of 0.000712. B, Using CHANCE,



GBM data were compared to called peaks for all ENCODE (Meyer et al. 2013) peak data for H3K4me3 in
human, see [2] supplemental file 2 for a full list of datasets used. CHANCE constructs the union of all
ENCODE H3K4me3 called peaks and then measures the percentage of reads in the IP which map to a union
peak versus background and compares that to Input. Expressed as an odds ratio, this comparison estimates the
enrichment in loci of known H3K4me3 modification as documented by ENCODE. On the x-axis the log2 odds
ratios of samples SF4948 (log2 odds = 2.4649), SF4060 (log2 odds = 2.7728), SF7996-1 (log2 odds = 1.054)
and SF7996-2 (log2 odds = 2.6461), are marked in red while the log2 odds ratios of the ENCODE data are
marked in blue. All samples show considerable enrichment in known peaks as demonstrated by positive log2
odds ratio.
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S10. Number of ChromHMM elements that intersect H3K4me3 peaks. For GBMs 1,2 and 5, the number of
peaks overlapping with ChromHMM promoters, enhancers, or other elements defined in ENCODE cell lines are
shown.
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S11. DNA hypo/K4me3 loci in GBM. A, Number and overlap of DNA hypo/K4me3 loci in GBMs 1,2 and 5.
B, Gene expression change (GBM-NB) for the gene nearest each DNA hypo/K4me3 locus, which, taking into
account the direction of transcription for each gene, can be located upstream (5), within the gene body, or

downstream (3°). Statistically significant gene expression changes were found for genes with gene body DNA

hypo/K4me3 in GBM1 and GBMS (starred).
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S12. Recurrent hypomethylated gene body promoters with H3K4me3 peaks. WashU Epigenome Browser
(Zhou and Wang 2012) shot of 11 of the 22 gene body promoters we identified with both recurrent
hypomethylated DMRs and H3K4me3 peaks. Different promoters are juxtaposed together in this image using
the genomic juxtaposition function.
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S13. Recurrent GLI3 gene body promoter hypomethylation in TCGA GBMs. A, Browser view of two
isoforms of GLI3. Bottom shows zoomed in on Delta GLI3 gene body promoter with Illumina Infinium 450K
CpG probes and the hypomethylated DMRs identified by M&M. B, Infinium 450K methylation data from 126
TCGA GBMs for two CpG sites (-923 and +11 relative to the gene body transcription start site).
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S14. Infinium HumanMethylation27 array probe locations (A) and percent methylation (B) at the S CGI

of TP73. TCGA GBMs, gray points. GBM3, black squares. Normal brains, black triangles.
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S15. Delta TERT transcript initiating from the gene body A, Exon-joining RT-PCR to detect delta TERT
alternate transcript initiating in the hypomethylated gene body. RT-PCR was performed with primers designed
to amplify a 1884 bp product specifically from the delta TERT transcript, with the forward primer in the portion
of delta TERT exon 1 that is intronic in full-length TERT, and the reverse primer in the shared 3’ UTR. A
product of approximately 1900 bp was detected in several GBM cDNAs (red arrows), and the bands were gel-
purified, TOPO TA cloned, and sequenced in both directions. B, Sequencing results shown schematically on the
UCSC browser. The sequencing indicated a transcript with an exon splicing pattern exactly matching that of the
delta TERT transcript annotated by UCSC genes database, with exons 7 and 8 (based on full-length TERT



numbering) spliced out. C, Domain structure of full-length and putative Delta TERT protein. Amino acids
shared with full-length TERT are shown. The three invariant aspartic acid residues that are essential for reverse
transcriptase catalytic activity in the RT domain are shown at the top. D712 is not present in Delta TERT, along
with most the RT domain, suggesting a complete lack of reverse transcriptase activity.
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