SUPPLEMENTAL METHODS

Resequencing and genome assembly

Production of the zAr and z30 genomes was previously described in Coolon et al. (2012). To
construct the D. simulans tsimbazaza and D. sechellia droSecl genomes, gDNA sequence reads
from D. sechellia droSecl and D. simulans Tsimbazaza were aligned to the D. simulans and D.
sechellia genome assemblies respectively (Drosophila 12 Genomes Consortium 2007) using
BWA (Li and Durbin 2010) (version 0.5.6). Each read was aligned separately using default
parameters, and SAM format files were generated using the BWA sampe command. Alignment
files were converted to BAM format, and VCF files describing single nucleotide polymorphisms
(SNPs) and indels were created using the SAMtools package (Li et al. 2009) (version 0.1.7a;
modules view, sort, and pileup). SNP and indel calls were filtered using the samtools.pl varFilter
command (as described at http://samtools.sourceforge.net/cns0.shtml) to retain SNPs and indels
with phred scale quality scores of 20 or higher.

The public reference genomes of D. simulans and D. sechellia were originally sequenced
at a coverage depth of 3- and 5-fold, respectively. This low coverage left large genomic regions
unfinished. To close these gaps, we realigned gDNA sequences to the SNP and indel corrected
genomes. Unmapped read-pairs were assembled into contigs with Velvet (Zerbino and Birney
2008). Contigs whose ends both aligned to the genomes were considered “gap spanning”, and
extended 100 bp in each direction. Velvet assembled contigs (including gap-spanning) were
aligned to the D. melanogaster reference genome (dm3) using LASTZ (Harris 2007). Contigs
that aligned uniquely to D. melanogaster were retained as the “extra genome”, and comprised
12.6 and 1.6 Mb of sequence from D. simulans and D. sechellia, respectively. liftOver coordinate
files were assigned to extra-genome contigs using the axtChain, chainNet, and netChainSubset
utilities from the UCSC Genome Browser (Kent et al. 2002). gDNA sequence reads were then
remapped to identify SNPs and indels in the extra genome, and genome sequences were
rewritten accordingly.

Despite our initial inbreeding, SAMtools identified residual heterozygosity at some sites
in each genotype. This complicates allele-specific RNA-seq when one of the alleles segregating
in strain 1 matches the allele that is invariant in strain 2. For example, consider a site
polymorphic for A and C in zAz, but fixed for C in Tsimbazaza. RNA-seq reads originating from
the Tsimbazaza allele would align to genome sequences for both strains, whereas reads
originating from the zAr allele would be align only to the zAr genome. To eliminate the impact of
such sites on measures of allele-specific expression, we changed such sites to the polymorphic
genotype in both strains using a custom Perl script (snp_compare_filter.pl), effectively making
these sites uninformative for allele assignment and producing comparison and strain specific
genomes.

These comparison- and strain-specific genome sequences were produced using a custom
Perl script (snp_adder.pl). This script sequentially rewrites the corresponding genome with
corrected SNP calls and indels. The positions of insertions and deletions were recorded in custom
liftOver chain files during the rewriting process. These chain files allowed the conversion of
genomic features between strains and reference genomes using the UCSC Genome Browser
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liftOver tool (http://genome.ucsc.edu) (Kent et al. 2002). All genome and chain files are
available upon request.

Mapping sequencing reads to genes and alleles

We aligned each mate of the paired-end RNA-seq reads separately to the strain- or species-
specific genomes specific to each comparison using the MOSAIK aligner (version 1.0.1384,
http://bioinformatics.bc.edu/marthlab/Mosaik). For example, in the me/-mel comparison, reads
derived from zhr, z30, and the Fi hybrids from reciprocal crosses between zhr and z30 were each
aligned to both the zAr and z30 genomes that had been created specifically for the mel-mel
comparison. Aligning reads to both parental genomes prevents the biased mapping described in
prior RNA-seq studies of allele-specific expression (Degner et al. 2009; Stevenson et al. 2013).
The following command line options were used for these alignments: -hs 13 —-mm 0 —p24 —mph
100 —act 20. The 13 base hash size (~hs 13) option allowed >99% of ambiguous base containing
regions to be seeded for alignment by MOSAIK. Reads aligning uniquely with no mismatches to
one or both genomes were considered “mapped reads” and retained for analysis. After the initial
76 bp reads were aligned to both reference genomes, reads that did not map to either genome
were trimmed 13 bases from the 3’ end using a custom Perl script (fastq_trimmer.pl) and again
aligned using MOSAIK. This was repeated three times (sequence lengths 76bp, 63bp, 50bp,
37bp). Any sequences that did not uniquely align after the final iteration were discarded.

Using the chain files created in the genome assembly process, we converted the genome
coordinates from the zhr, z30, droSecl, and Tsimbazaza genomes to the sequenced D.
melanogaster dm3 coordinates using the liftOver utility from the UCSC Genome Browser (Kent
et al. 2002) (http://genome.ucsc.edu) and a custom Perl script (convert.pl). Sequence reads were
then filtered based on their alignment to a previously identified set of constitutively expressed
exons within the D. melanogaster genome (McManus et al. 2010) using the intersectBed module
of BEDTools (Quinlan and Hall 2010), with reads not aligning to these regions discarded.
Additionally, overlapping regions in the constitutive exon set were removed using intersectBed
module of BEDTools and custom scripts. Gap files were produced for each comparison and
combined using the mergeBed module of BEDTools to create one gap file used for all
comparisons. Sequences containing gaps in one or more genotypes were excluded. Reads were
assigned to alleles based on alignments to strain-specific genomes using a custom Perl script
(classify.pl). Because paired-end reads are derived from a single transcript, each set of paired-end
reads was treated as a single read count regardless of whether one or both reads were mapped
successfully.

Pyrosequencing

To evaluate the reproducibility of expression measurements derived from our RNA-seq data, we
used pyrosequencing (Qiagen) to independently measure differences in total and allelic
expression in the mel-mel and sim-sech comparisons. We focused our validation efforts on the
mel-mel and sim-sech comparisons because they contained fewer divergent sites than the mel-sim
comparison, making allele assignments more challenging. For the mel-mel comparison, we
analyzed new Fi hybrid and mixed parental cDNA libraries synthesized from the same RNA
samples used for Illumina sequencing, incorporating variation from technical replication. These
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mixed parental libraries were constructed by pooling equal amounts of RNA prior to cDNA
synthesis. For the sim-sech comparison, we used RNA extracted from 4 biological replicate
mixed parental (each containing 10 D. simulans and 10 D. sechellia flies) and F1 hybrid (each
containing 20 F; hybrid flies) samples to synthesize cDNA pools, incorporating variation from
both technical and biological replication.

Pyrosequencing assays were developed for 10 genes in the mel-mel comparison and 18
genes in the sim-sech comparison (Table S6). Custom dispensation orders were used for the
pyrosequencing reactions and custom formulas were developed for calculating relative allelic
abundance (Table S6). Both gDNA and cDNA were analyzed in mixed parental and F; hybrid
samples in each case. cDNA was always synthesized from total RNA using T(18)VN primers
and SuperScript II (Invitrogen) according to manufacturer recommendations. gDNA was
extracted from an independent pool of F flies for mel-mel and sequentially from the same
homogenate of flies as the RNA for each biological replicate of sim-sech using the protocol
described in Wittkopp (2011). For mel-mel, pyrosequencing reactions were performed in
triplicate for both the cDNA and gDNA samples. For sim-sech, single pyrosequencing reactions
were performed on the cDNA and gDNA samples from each biological replicate.

Relative allelic abundance observed in the gDNA samples was used to normalize
measurements from the corresponding cDNA samples, as described in (Wittkopp 2011).
Following normalization, the mean log-transformed ratio of relative allelic expression reported
by pyrosequencing for each gene was compared to the logz-transformed ratio of relative allelic
expression derived from the RNA-seq data using a type 2 regression in R.



SUPPLEMENTAL NOTE

When using binomial exact tests to identify significant differences in relative allelic expression
from RNA-seq data, p-values are not uniformly distributed when the null hypothesis (p = 0.5) is
true, violating an assumption of the widely-used false discovery rate (FDR) correction for
multiple testing (Skelly et al. 2011). To better understand the non-uniformity of p-values when
the null hypothesis (p = 0.05) is true, we repeated and extended the simulations reported in
Skelly et al. (2011). We followed the same simulation strategy except that we did not add a noise
parameter. Specifically, we simulated allele-specific read count data by (i) sampling total allele-
specific read counts (allele 1 + allele 2) for 4851 genes (the number of genes we examined for
allele-specific expression) from a lambda = 10 lambda = 100 lambda = 200
Poisson distribution with a mean
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representation of large, non-significant p-values from the null model in the observed p-value
distribution by replacing all p-values > 0.05 with an equal number of values drawn from a
uniform distribution (min = 0.05, max = 1). We did this for the dataset simulated assuming the
null hypothesis was true (top panels) as well as for the p-values observed in the mel-mel
comparison (bottom panels).

Next, we applied the FDR correction to the list of p-values from each dataset. As shown in the
figure at right for the observed p-values, g-values

before (black) and after (red) the redistribution of Observed p-values
non-significant p-values are quite similar. The

largest difference in q-value was for p-values =
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the true FDR, it is expected to deviate similarly in

all comparisons because the same number of total

allele-specific read counts were considered in each case, resulting in the same null distribution.
Based on these results, we conclude that the non-uniformity of the BET null distribution does not
affect the comparisons of regulatory evolution across divergence times that we report.

00 02 04 06 08 1.0

g-value: 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7
non-uniform null 1081 1476 1756 2162 2508 2767 3071 3347 3651
nearly uniform null 1081 1476 1756 1987 2153 2311 2541 2748 3094
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SUPPLEMENTAL FIGURE LEGENDS

Figure S1: Methodological overview. This figure summarizes the biological samples analyzed
(blue circles), the production of the raw sequencing data (green boxes), the bioinformatic
methods (red boxes) used to convert the raw data into datasets 1 and 2 (blue ovals), and analyses
performed on each of these datasets to examine patterns of regulatory evolution (blue boxes).

Figure S2: Independent confirmation of relative allelic expression levels inferred from
RNA-seq data. Measures of total expression (A, B) and relative allelic expression (C) derived
from RNA-seq read counts in Dataset 1 (A) and Dataset 2 (B, C) were compared to measures of
total expression (A, B) and relative allelic expression (C) determined using pyrosequencing. For
the mel-mel comparisons (red), cDNA samples analyzed by pyrosequencing were derived from
the same RNAs used for Illumina sequencing (i.e., technical replicates). For the sim-sech
comparison (blue), RNA samples extracted from new pools of flies (i.e., biological replicates)
were analyzed by pyrosequencing. Coefficients of determination (R?) from type 2 regressions
were used to compare expression measurements based on RNA-seq and pyrosequencing.

Figure S3: Total expression levels were similar between reciprocal hybrids.

Total expression levels, plotted as log.(total read count) for each gene, were compared between
F, hybrids from reciprocal crosses for the mel-mel (A), sim-sech (B), and mel-sim (C)
comparisons. Hybrid genotypes are written as maternal genotype x paternal genotype.
Spearman’s p, which makes no assumptions about normality, was used to compare the strength
of the correlation in each case.

Figure S4: Most significant expression differences between reciprocal hybrids are small in
magnitude. Volcano plots are shown for the comparison of total expression between reciprocal
hybrids in the mel-mel (A), sim-sech (B), and mel-sim (C) comparisons. Statistical significance,
represented by logi(q-value), is plotted on the Y-axis and the expression difference, plotted as
log:(reads from hybrid 1/reads from in hybrid 2), is plotted on the X-axis. Hybrid genotypes are
written as maternal genotype x paternal genotype. The vertical red lines correspond a 1.25-fold
expression difference, whereas the horizontal red lines correspond to g-values with a false
discovery rate of 0.05. Insets show genes with the smallest g-values in more detail.

Figure S5 : Overall expression differences increase with divergence time. For each gene,
expression levels of individuals genes are compared between the zAr and z30 strains of D.
melanogaster (A), between D. simulans and D. sechellia (B), and between D. melanogaster (zhr)
and D. simulans (C). Expression levels are plotted as log.(read count). Spearman’s p, which
makes no assumptions about normality, was used to measure the overall expression similarity
between genotypes in each case.

Figure S6: Many small expression differences are statistically significant between
genotypes. Volcano plots are shown for the comparison of total expression between the z4r and
z30 strains of D. melanogaster (A), between D. simulans and D. sechellia (B), and between D.
melanogaster (zhr) and D. simulans (C). Statistical significance, represented by logi..(q-value), is



plotted on the Y-axis, and the expression difference, plotted as log,(reads from genotype 1/reads
from in genotype 2), is plotted on the X-axis. The vertical red lines correspond to a 1.25-fold
expression difference, whereas the horizontal red lines correspond to g-values with a false
discovery rate of 0.05. Insets show genes with the smallest g-values in more detail.

Figure S7: Expression differences between F, hybrids and parental species increase with
divergence time. For each gene, expression levels, plotted as log.(read counts), are compared
between F, hybrids (Y-axis) and each of the parental species (X-axis) for the mel-mel (A-D), sim-
sech (E-H) and mel-sim (I-L) comparisons. Hybrid genotypes are written as maternal genotype x
paternal genotype. Spearman’s p, which makes no assumptions about normality, was used to
compare overall expression differences in each case.

Figure S8: The proportion of genes showing misexpression in F, hybrids increased with
divergence time of the parental genotypes. Differences in total expression between the F,
hybrid and each parental species are compared in each panel. The difference in expression level
is plotted for each gene as log.(reads from hybrid) - log.(reads from parental genotype), with the
difference from parent 1 shown on the X-axis and the difference from parent 2 shown on the Y-
axis. Hybrid genotypes are written as maternal genotype x paternal genotype. The Y=X line
shown indicates an equal difference between expression in the F, hybrid and both parents. Each
gene was categorized as showing either conserved (light blue), additive (orange), underdominant
(red), overdominant (blue), or dominant with expression similar to parent 1 (purple) or parent 2
(green), as described in the Methods. The pie-chart insets show the proportion of genes in each
class. Interestingly, in the mel-mel comparison (A, D), dominant expression patterns resembled
the North American zAr strain (parent 1) more than twice as often as they resembled the African
z30 strain (parent 2). In the sim-sec and mel-sim F, hybrids, dominant regulatory alleles were
distributed more evenly between the two parental genotypes (B,E and C,F, respectively).

Figure S9: The frequency of large expression differences between F, hybrids and parental
species increases with divergence time. Volcano plots are shown for the comparison of
expression levels between F, hybrids and each parent in the mel-mel (A-D), sim-sech (E-H), and
mel-sim (I-L) comparisons. Statistical significance, represented by logi(q-value), is plotted on
the Y-axis and the expression difference, plotted as log,(reads from parental genotype/reads from
in hybrid genotype), is plotted on the X-axis. Hybrid genotypes are written as maternal genotype
x paternal genotype. The vertical red lines correspond to a 1.25-fold expression difference,
whereas the horizontal red lines correspond to g-values with a false discovery rate of 0.05. Insets
show genes with the smallest g-values in more detail.

Figure S10: Allele-specific sequence reads are accurately assigned to genotypes. Relative
expression levels inferred from in silico “mixed parental” samples after computational
assignment of reads to specific alleles (Y-axis) were compared to relative expression levels
determined using the separately sequenced samples (X-axis) for the mel-mel (A, D, G), sim-sech
(B, E, H), and mel-sim (C, F, I) comparisons. In panels A-C, both allele-specific and shared
reads from the mixed parental samples were included. In panels D-F, only allele-specific reads



from the mixed parental samples were included. In panels G-I, the allele-specific read counts in
Dataset 2 (i.e., after using hypergeometric sampling to equalize power among comparisons) were
used. Relative expression is plotted as log.(reads from genotype 1/reads from genotype 2) in all
cases. Coefficients of determination (R?) from linear models were used to compare relative
expression between true values and those determined for in silico mixed samples.

Figure S11: Relative allelic expression was similar between reciprocal hybrids. Measures of
relative allelic expression were compared for each gene between reciprocal hybrids for the mel-
mel (A), sim-sech (B), and mel-sim (C) comparisons. Coefficients of determination (R?) from
linear models were used to compare relative allelic expression between reciprocal hybrids. The
nine genes identified as having a statistically significant difference in relative allelic expression
between reciprocal hybrids are shown in red. Logz(reads from allele 1/reads from allele 2) is
plotted for each hybrid genotype. D-I, Allelic expression levels, plotted as logz(allele-specific
read counts) for each gene, are compared for each allele in reciprocal hybrids for all three
comparisons. Spearman’s p, which makes no assumptions about normality, was used to compare
overall expression differences in each case. Genotypes of reciprocal hybrids are written as
maternal genotype x paternal genotype.

Figure S12: Evolution of cis- and frans-regulation. A, Overall differences (1 - p) in total
expression between genotypes (blue) and allele-specific expression in F, hybrids (red) are shown
for each comparison. Relative allelic expression provides a readout of relative cis-regulatory
activity. Data used to calculate Spearman’s p are summarized in Figure S13. B, For each
comparison, the proportion of genes with evidence of significant differences in total expression
(blue), cis-regulation (red), and frans-regulation (green) are shown. Data used to determine these
proportions is shown in Figure S16. C, The proportion of genes with evidence of significant cis-
and trans-regulatory changes (red) is compared to the proportion of genes with evidence of cis-
or trans-regulatory changes (blue). D, For genes with evidence of both cis- and trans-regulatory
changes, the frequency of genes with cis- and trans-regulatory changes affecting gene expression
in the same (“cis+trans”, red) and opposite (“cisXtrans”, blue) directions are compared. E, The
relative frequencies of genes with cis- and trans-regulatory changes in opposite directions that do
(blue) and do not (red) show evidence of misexpression in F, hybrids are compared. Error bars in
panel A show the 95% quantiles from 10,000 bootstrap replicates. Comparable analyses for
reciprocal hybrids are shown in Figure 3.

Figure S13: Differences in cis-regulatory activity increase with divergence time more
rapidly than differences in total expression. For each of the 4851 genes in Dataset 2, total
expression levels, plotted as logx(read count), are compared between the zAr and z30 strains of D.
melanogaster (A), between D. simulans and D. sechellia (B), and between D. melanogaster (zhr)
and D. simulans (C). Levels of allele-specific expression, plotted as logz(allele-specific read
count), are compared between allele 1 (X-axis) and allele 2 (Y-axis) for each F; hybrid from the
mel-mel (D,G), sim-sech (E,H) and mel-sim (F,I) comparisons. Hybrid genotypes are written as
maternal genotype x paternal genotype. Spearman’s p, which makes no assumptions about
normality, was used to measure the overall expression similarity between genotypes in each case.



Figure S14: Differences between gene sets used to analyze total and allele-specific
expression data. Box-plots summarize the distributions of total expression differences (A) and
sequence divergence (B) for the 7587 genes in Dataset 1 and the 4851 genes in Dataset 2 for the
mel-mel (MM), sim-sech (SS), and mel-sim (MS) comparisons. The notched box-plots show the
full range of values as well as the 25, 50, and 75th percentiles.

Figure S15: Evolutionary trajectories for expression divergence of individual genes. The
line-plots show differences in total expression (A) and cis-regulatory activity (B) derived from
Dataset 2 for individual genes in the mel-mel, sim-sech, and mel-sim comparisons plotted
according to divergence time. As described in the main text, genes were classified into nine
groups depending on whether they showed increased, decreased, or similar allele-specific
expression differences between mel-mel and sim-sech and between sim-sech and mel-sim. The
red line in each plot shows the median difference in cis-regulatory activity for genes in that class
for each comparison. The pie-chart shows the relative frequency of genes in each class.

Figure S16: The relative contributions of cis- and frans-regulatory changes to expression
divergence change with divergence time. For each gene, relative expression between parental
genotypes, plotted as log.(reads from parent 1/ reads from parent 2) on the X-axis, is compared to
relative allele-specific expression in F, hybrids, plotted as log,(reads from allele 1/ reads from
allele 2) on the Y-axis. Hybrid genotypes are written as maternal genotype x paternal genotype.
Each gene was categorized as showing either conserved cis- and trans-regulation (yellow,
“conserved”), only cis-regulatory differences (black, “all cis”), only trans-regulatory differences
(red, “all trans”), cis- and trans-regulatory differences with no expression difference between
parental genotypes (orange, “compensatory’), or cis- and trans-regulatory differences with
effects on expression in the same (blue, “cis + trans”) or opposite (green, “cis X trans”)
directions, as described in the Methods and Table S5. Genes with results from significance tests
inconsistent with any of these categories (see Methods) were classified as “ambiguous” (grey).
The pie-chart insets show the proportion of genes in each class, for each comparison. The slopes
reported in each panel are from a linear regression model fitted to the corresponding dataset. A
larger slope indicates a larger contribution of cis-regulatory divergence to total expression
divergence.

Figure S17: Effects of cis-regulatory divergence. A, The percentage of total regulatory
divergence attributable to cis-regulatory divergence (%cis) is shown for the mel-mel, sim-sech,
and mel-sim comparisons. B-D, %cis is compared among sets of genes with different levels of
total expression differences, reported as the absolute value of the log.(reads from genotype 1/
reads from genotype 2) ratio, for the mel-mel (B), sim-sech (C), and mel-sim (D), comparisons.
E, %cis is compared for sets of genes showing additive (“A”) and non-additive (“NA”, dominant
or misexpression) inheritance for each comparison. In all panels, notched box-plots show the full
range of values as well as the 25, 50, and 75th percentiles, with the width of the box-plots
proportion to the number of genes in each class. Analyses comparable to panels A and H using
reciprocal hybrids are shown in Figure 4.
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SUPPLEMENTAL TABLES

Table S1: Summary of sequencing depth for RNA-seq and gDNA.
Table S2: Number of genes suitable for quantifying total expression in each genotype.

Table S3: Number of genes suitable for quantifying allele-specific expression in each
genotype.

Table S4: Accuracy of mapping maternally inherited mitochondrial alleles in interspecific
F1 hybrids.

Table SS: Criteria for assigning genes to regulatory evolution classes.

Table S6: Pyrosequencing assays for quantification of allelic expression ratios.
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Quantify cis-regulatory divergence
by comparing the relative frequency of
allele-specific reads in each F1 hybrid using
Spearman's rho (Fig. 3A) and
binomial exact tests (Fig. 3B)

Assess patterns of cis- and trans-
regulatory evolution using the results
of binomial and Fisher's exact tests,

respectively (Fig. 3E-G)
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Table S1. Summary of sequencing depth for RNA-seq and gDNA.
cDNA gDNA
Single genotypes
D. melanogaster (zhr) 16464075 27051150%*
D. melanogaster (z30) 21806797 25863911
D. simulans (sim) 18006673 31859837
D. sechellia (sech) 15817452 27706737
F1 hybrids
zhrxz30 31432754
z30Xzhr 31439998
simXsech 19787136
sechXsim 20059660
zhrXsim 23929242
simXzhr 25875801

*This dataset was supplemented with an additional 15692412 single end reads from D. melanogaster zhr gDNA.




Table S2. Number of genes suitable for quantifying total expression in each genotype.

Dataset

Parental genotypes Comparison |# mapped reads |# after downsampling |# genes > 20 reads
D. melanogaster zhr mel-mel 12915170 12704991 8949
D. melanogaster z30 mel-mel 18231082 12704991 9191
D. simulans Tsimbazaza sim-sech 14811651 12704991 9257
D. sechellia droSec1 sim-sech 12704991 12704991 8981
D. melanogaster zhr mel-sim 12905538 12704991 8947
D. simulans Tsimbazaza mel-sim 14818358 12704991 9259
F; hybrids

D. melanogaster zhr X D. melanogaster z30 mel-mel 25957434 12704991 9204
D. melanogaster z30 X D. melanogaster zhr mel-mel 26515174 12704991 8978
D. simulans Tsimbazaza X D. sechellia droSec1 sim-sech 17169600 12704991 8477
D. sechellia droSecl X D. simulans Tsimbazaza sim-sech 17517914 12704991 8484
D. melanogaster zhr X D. simulans Tsimbazaza mel-sim 19484335 12704991 9307
D. simulans Tsimbazaza X D. melanogaster zhr  |mel-sim 20936819 12704991 9215
All samples 7587




Table S3. Number of genes suitable for quantifying allele-specific expression in each genotype.

# with <10% mapping

# in all three per

# in all

Comparison # (A1+A2) =2 20 . . # "imprinted" Final number
to wrong allele comparison comparisons
mel-mel
parents vs hybrid 1 6126
parents vs hybrid 2 6003
hybrid 1 vs hybrid 2 5954 9
parents 12433 5921 4860 4851
sim-sech
parents vs hybrid 1 7274
parents vs hybrid 2 7279
hybrid 1 vs hybrid 2 7159 0
parents 12325 7149 4860 4851
mel-sim
parents vs hybrid 1 8602
parents vs hybrid 2 8526
hybrid 1 vs hybrid 2 8592 0
parents 13281 8439 4860 4851




Table S4. Accuracy of mapping maternally inherited mitochondrial alleles in interspecific F1 hybrids.

|
Hybrid cross # correct |Total # |% correct
D. simulans Tsimbazaza X D. sechellia droSec1 4879 4905 99.47
D. sechellia droSecl X D. simulans Tsimbazaza 9304 9357 99.43
D. melanogaster zhr X D. simulans Tsimbazaza 34791 34833 99.88
D. simulans Tsimbazaza X D. melanogaster zhr 18257 18290 99.82




Table S5. Criteria for assigning genes to regulatory evolution classes.

Classification |Fisher exact test' [Binomial exact test’ |Fisher exact test |Additional criteria
conserved P1=P2 Al =A2 P1/P2=A1/A2 [N/A

all cis P1#P2 Al #A2 P1/P2=A1/A2 |N/A

all trans P1#P2 Al=A2 P1/P2 #A1/A2 |N/A

cisttrans P1£P2 Al £A2 P1/P2 #A1/A2  |log2(P1/P2)/log2(A1/A2) > 1
cisXtrans P1#£P2 Al £A2 P1/P2 #A1/A2  |log2(P1/P2)/log2(A1/A2) <1
compensatory (P1=P2 Al #A2 P1/P2 £#A1/A2 |N/A

ambiguous P1#P2 Al=A2 P1/P2=A1/A2 [N/A

ambiguous P1=P2 Al #A2 P1/P2=A1/A2 [N/A

ambiguous P1=P2 Al=A2 P1/P2 #A1/A2 |N/A

'Compares expression between parental genotype 1 (P1) and parental genotype 2 (P2).

“Compares expression between allele 1 (A1) and allele 2 (A2) in F, hybrids.




Table S6:

assays for quantification of allelic expression ratios

mel-mel

Gene Biotin'[Forward primer Reverse primer Pyro primer Sequence to analyze” Disp ion’  [Fomula (zhr/z30)"
CGI12819 |F GAGCAATGACGACTCAAGTGAGA |GGCCGCTTCGCTCAATTTA GCATTGGATGAGCAG KTACTTTG GTTTTTGGGC TTCTCTGT cTGTcACTG (G1+T2)/T1
CG17530 R AACTTTTCTCAAGGGACAGGATTA |ATCCGCAATGGTCAGTTGA CAGGATTACATTGCTGG SAATCAAC TGACCATTGC GGATTTCA tCGtATCACT  |C1/G1
CG18444 |F ACTGCGCTGCAGGGAGAT TTGGATGGCCGCATTGTC ATGGCCGCATTGTCG GYGGCTCT GCTACCACCA TCAGCAGCT |aGCTaGCTCTG |CI/T1
CG6253 |F ACCGCTTCAAGCTGCGTTATG TGGTGCGCTTCTTCAGTGTG CAGCTTGTTGCGCTG RCGCTTGG CATAACGCAG CTTGAAGC |cAGICGCTGC  |(A1*0.86)/G1
CG6906  |R TCCCAGATTGACCGCAAAG TCGCCCAGTGGAAGTGGAT AAAGGCAAGAGCGTTA AYATGACC AATCCACTTC CACTGGGCG |gATCgATGAC |T1/C1
CG7269 |F IAGGGGTGCCCACCACAAT AAAGGACGAGGAGACCCTCAAG [GAGCGGCACCCCGCA YATTGTGG TGGGCACCCC TGGCCGAA  |gCTgATGTGT  |T1/C1
CG7874 |F GTGGCCAGAGGTTCGAGC CTTCAGCTCCCGCTTGAT CTCCTGTCCGGGCAC RATCTGCG TCCAGTCATA GCGCCAGC  |cAGACTCTGC  |(A1*0.86)/(G1+(A2*0.86))
CG9089 |R GCGTGGCCATTGGACTTAG CCAACGATACCTCCAAAGGATCT |CCATTGGACTTAGCCTT YGAGGGAG ATCCTTTGGA GGTATCGT  |aCTaGAGAGAT |C1/T1
CG9497 |R CCTTTTCCTGCGGTGCCT CGAGAAGATCGGCAAGTACATG |GTTCCAAGTTGGCCC KCTGATTT TGCATGTACT TGCCGATC aTGaCTGA T1/G1
CG9916 |[F GAAACCCAACATGTCTATTGAAAA |[TCGAATCTTATGGATCGCAGTC GGTTCTCTTTAAGAAGGTG |YGATGCAA AAGCAACAGC AACATTGC  |gCTaGATGC T1/Cl
sim-sec

Gene Biotin |[Forward primer Reverse primer Pyro primer quence to analyze Disp Fomula (sim/sec)
CGl644 |F ITTCTGCGAACCCATTGTGTC ATCCGGCTCTGATCAAGCG AGACGACTGATCCCAC TTGYGACACA ATGGGTTCGC AGAACCTTaTTTGCTaGAC |C1/T4
CG2233 R IAAGGGACCGGGAAAATTGT AACACCCTCTTCGCCAGACT AAAGGCGGGAAACTC GWGGAGTCTG GCGAAGAGGG TGTTCCTcGATcGAGTC |T1/A1
CG3209 |F TGTGCGATGTGTGGTACCTG CACTCCTTCTTTGGCTTCATGC  |CGATGACGCTCTTCAC KCGGTTCGCG AAGTCGATCG CCGACT  |aGTaCGTCGC |G1/T1
CG4703 |F CTCGTTCGCCGGTGGTAA GAAATCTCAAGGGGATGTGC CCCTGTATCTGGGACC RCTTCTCTCC TTTGGAAACG ATGCCC  |tAGICTCTCT _ |G1/A1
CG4783 |F GGCACGAAAAACCAGAAATC ATCCGAAAGTTTGGAGCTCA GTCGTACAATCCCACATA  |IMGATTTCTGG TTTTTCGTGC CAACTG  |gACtGATCTG  |C1/Al
CG4797 R CACTCATTTTGGCCGGCTATA CGCGACTACTTGGTTACATAAAGGTTTGGCCGGCTATAATG TASTTCAAGT TGTTTAGTTC AAGTTGTT |cTACGaTCAG |G1/C2
CG5269 |F CAATCAAAAGTTCCAGCCTACA TAATCGTTCGACAATAGGGATAGG|CCAATGAGCCCTTGG GYGCCAATAG TCTTATGTAG GCTGGAA [tGCTaGCATA  |T2/C1
CG6201 R GTATTCCGCTTGGGTCGTACTG CACACAATGCCGCACTTCT GCTGGATCGCCCAGG GYGGCGCTAA TCCCCTCGTG ATCGATC |cGCTaGCGCT |T1/C2
CG7702 |R IACTGCTGATCTTGCCGATGT TTTCCGTTTTCGGCTTCA AAGAAACACGCGCGA RTGCTGAAGC CGAAAACGGA AACGTT [tAGcTGCTGA  |A1/Gl
CG7923 R ITGTCGACGGAGCTGAGCAAT AGCCACACTCCATATAGCGAAGATACCGATGGCAGGAAA MTGRAGCTGG TATGGTTCAA TATAGT  tACgTGAGCT |A1/C1
CG9009 |F GTCGGGCTTTTGGAGATTGAA TTCGCCCAAATGCGAGAT TGCCAGCGCCGCTTT YGCCGTTCGT CTGCAGACCAAGTTCA  |aCTaGCGTCG |T1/CI
CG9673 R CGTATCCGGCTTCCCATT TGCATCCTACAAGCAGCAGAAG |GCGATCGGCTCAGCGT RTTGTAGTTG GCCTTCTGCT GCTTGT  [tAGcTGTAGT  |G1/Al
CG10877 |F IAAAACTTTCCACACACATCATACA |TGGTTCTTTTTTGTTGCTACTTGT |TGTGGGTCAACTAATCTG |[TMGCCAGTAC ACA cTACtGCAGT _ |A1/C2
CG10916 |R AGCTCAGTATCCATAGGGACGTAG |GTCATTTGTGGGTGCAGTTTCT | TGGAAGGTACCGGCG SAGAAGTCRC AGAAACTGCA CCCACA |aCGtAGAGTC |C1/G1
CG11391 |R GTAGAGACTGGCGATTGTTTTGTG |TTGGCCTACGGTTGCTTG GTTGACGGCGTGAAA YGGAGTTCCG TTGAACAAGC AACCGT |aCTaGAGTCG  |T1/C1
CG11407 R I TCCGATGGACAGATGTGG TGATCGCAAGATCTGGAGC CAGATGTGGGTCAAAGTAG |YATTCCAATT GGTCTCCGCT CCAGAT gCTgATCATG |T1/C1
CG15883 |R IAAATTACGAGGCGATAGTTCCG GACACGTGCGACTATCCATACCT |GCCCTTAAAATAACACTG |KAGAATCAGG TATGGATAGT CGCACG  |[aGTcAGATCA |T1/Gl
CG17186 |F IATGCGGAGGAAACACGATAC ATTCATTCGGCATCAACTGG TTTGCACAACCTCAAT TTGYGCCTGG CTTTTTGCTT GCATCTTGAcTTTGCTaGCT |T4/C2

"Indicates whether the Forward (F) or Reverse (R) primer was biotinylated.

“Sequence

*Order of

Tootid

ly following the 3' end of the Pyro primer. Sites used to differentiate the two alleles are indicated with IUPAC ambiguity codes.

reaction. Lo

s added to Pyrc

used to calculate relative allelic expression.

rea

bases are not expected to be incorporated and serve as controls. Peak heights resulting from incorporation of the bases in bold were

“Describes the way in which peak heights from individual bases were used to calculate relative allelic expression. Each base is indicated by XN, corresponding to the Nth occurance of the X base. A

correction factor of 0.86 was used for peaks produced by incorporation of A, as r

ded by the

manufacturer.




