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Supplemental Figure S1: The distribution of chromatin modifications across Nematostella
genes. Genes were aligned relative to their annotated transcription start (left plots) and end
(right plots) sites. The x-axis in each plot represents the position within the gene relative to
transcription start sites and 3’ ends. The y-axis in each plot represents the relative enrichment
for RNA-seq reads and several histone modifications (H3K4me3,H3K4me2,H3K27ac,H3K36me3)
in Nematostella polyps. Red line = non-expressed genes (FPKM < 1.5). Orange line = Lowly
expressed genes. Green line = Medium expressed genes. Dark green line = Highly expressed
genes. Expressed genes = FPKM > 2. To define lowly, medium and highly expressed genes, all
expressed genes were sorted based on FPKM values and seperated into three groups contain-
ing roughly equal numbers of genes.
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Supplemental Figure S2: The distribution of GRO-seq reads across human and fly
genes. The distribution of genome-wide nuclear run-on sequencing (GRO-seq) reads (y-axis)
is shown around human (A) (Core et al., 2008) and Drosophila (B) (Kharchenko et al., 2012)
genes. Genes were aligned relative to their annotated transcription start sites. The x-axis in
each plot represents the position within the gene relative to transcription start sites. The y-axis
in each plot represents the number of GRO-seq reads. Note the enrichment of nascent tran-
scripts upstream of TSSs in human, but not in Drosophila, correlating well with the distribution
of H3K4me3 shown in Figure 1.
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Supplemental Figure S3: DNA methylation correlates with H3K36me3 but not
H3K4me3. Pearson correlation coefficients between chromatin modifications, p300, RNA
Polymerase Il and CpG methylation (Zemach et al., 2010). Correlation coefficients between all
experiments (combined biological replicates) are shown. Underlying colors indicate the
similarity between the different datasets. Histone modifications show high correlations
between developmental stages. H3K36me3 is the only chromatin mark which correlates with
DNA methylation.
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Supplemental Figure S4: The p300 antibodies recognize endogenous Nematostella p300
protein. A-B) A fragment of the p300 protein (predicted molecular weight 15kDa) containing a
6xHis tag is recognized by the affinity purified p300 antibody raised against this peptide in
rabbit #1 (A) and #2 (B). C-D) The affinity purified p300 antibody from rabbit #1 (C) and #2 (D)
recognizes different isoforms of the p300 protein (predicted molecular weight 250kDa) in
Nematostella vectensis whole embryo extracts. The p300 protein is not recognized when the
antibody is incubated with the p300 peptide first. P300 antibodies from both rabbits were used
for p300 ChiIP-seq, where each biological replicate was performed with antibody from one

rabbit.
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Supplemental Figure S5: Enhancer related chromatin modifications are associated with distal p300
peaks, while promoter related chromatin modifciations are more often associated with TSSs. A) Distribu-
tion of chromatin marks, RNA Polymerase Il and p300 across distal p300 peaks and genes. Gastrula p300 peaks
which do not overlap with TSSs were aligned relative to their peak summit (left plots) and genes relative to their
annotated transcription start (middle plots) and end (right plots). The x-axis in each plot represents the position
within the gene relative to peak summits, transcription start sites and 3’ ends. The y-axis in each plot represents
the relative enrichment for epigenomic variables such as several histone modifications in the gastrula stage.
Red line = non-expressed genes (FPKM < 1.5). Orange line = Lowly expressed genes (=log2(FPKM) > 1 and <
2.3). Green line = Medium expressed genes (=log2(FPKM) > 2.3 and < 3.8). Dark green line = Highly expressed
genes (=log2(FPKM) > 3.8). Expressed genes = FPKM > 2. The expressed genes were divided into three bins of
equal number of genes according to their FPKM values to define the low, middle, and highly expressed genes.
To define lowly, medium and highly expressed genes, all expressed genes were sorted based on gastrula stage
FPKM values and seperated into three groups containing roughly equal numbers of genes. B) We determined
the overlap of histone modification peaks in Nematostella, Drosophila, yeast, and zebrafish with TSSs. The
percentage of peaks overlapping TSSs is shown on the y-axis (median of the results from several different devel-
opmental stages analyzed (Nematostella: 2-3 stages, Drosophila: 3 stages, zebrafish:3 stages, yeast: 1 sample.)).
While the number of peaks overlapping a TSS varies greatly between all species, the relationship between the
different histone modifications is highly similar.
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Supplemental Figure S6: Definition of chromatin states using ChromHMM. A) A six state hidden
Markov model (Ernst and Kellis 2012) was trained on all chromatin modifications in gastrula and

planula together, resulting in the depicted emission parameters (frequency with which a given mark is

found at genomic positions corresponding to the chromatin state, where darker blue color indicates
higher frequency on a scale of 0-1) of each modification (x-axis) in the six states (y-axis). B) Transition
parameters (frequency with which a given state changes into another state at the neighboring loca-
tion on the chromosome, where darker blue color indicates higher frequency on a scale of 0-1)
between states of the hidden Markov model. C-D) Enrichment (y-axis) of each chromatin state in
planulae (C) or gastrulae (D) in 200bp windows around aligned TSSs of all genes (x-axis).

state
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Supplemental Figure S7: Dynamics of chromatin modifciations and p300 peaks. A-B) We determined the
overlap of p300 and H3K27ac peaks in gastrula (A) and planula(B) stage embryos. C) Overlap of p300 peaks in
gastrula and planula. D-G) We devided all Nematostella (D-E) or Drosophila (F-G) genes into non-expressed
genes (FPKM <1.5) and expressed genes (FPKM > 2). To define lowly, medium and highly expressed genes, all
expressed genes were sorted based on FPKM values and seperated into three groups containing roughly equal
numbers of genes. Expression values from gastrula (D) planula (E), 0-4h embryos (F) and L3 larva (G) were used.
The y-axis shows the number of genes in each expression category that are (green) or are not (orange) associ-
ated with (= +/- 3kb around TSS) any H3K4me1 (top) or H3K27ac (bottom) peaks. H3K27ac is enriched around
expressed genes. Drosophila modEncode data have been downloaded from http://www.modencode.org.
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Supplemental Figure S8: Dynamics of enhancer modifiations between gastrula, planula, and adult female
polyps. A-C) Pairwise correlations between H3K27ac (log2(bound/Input) in all predicted enhancer regions in
gastrula and planula (A), gastrula and adult female polyp (B) or planula and adult female polyp (C). D-E) Pairwise
correlation between H3K4me2 (log2(bound/Input) in all predicted enhancer regions in gastrula and planula (D),
gastrula and adult female polyp (E) or planula and adult female polyp (F). The intensity of the blue color indicates
the density of datapoints. Red points correspond to enhancers that are significantly (adj. p-value < 0.0001, >
2-fold change) different between the two stages. P-values were calculated using EdgeR (Robinson et al. 2010).
Enhancer modifications correlate very well between the two embryonic stages, but show higher dynamics when
compred to adult polyps. G) GO terms enriched among genes associated with enhancers that show higher
H3K27ac in adults compared to planulae (positive log10 p-values) or higher H3K27ac in planulae compared to
adults (negative log10 p-values).



Schwaiger Supplemental Figure S9

log2(RNA Pol Il/Input)

p=1.1e-6
p<2.2e-16 p<2.2e-16
I | B) p=2.5e-3 p=1.5e-3
Al | S 1 T
: P o~ 4
R [ A
o Lo s
: ' ! ' 4
' ' ' [a
Lo 1 g
' ' ©
— : S o o
N I 3 ‘ | L%
Coorm S
' ' ' ~ §
: : ! i ' H
- > : : :
b H Voo H B ; ; ;
P Do 7 ‘ : :
, j . ' © N . ! .
P P 2 1 1 |
I i S ! ! ‘
I ' ' ' o= = : ' '
oS 2 ? 1 1
i T - 3
T T T T T I : : :
SRS & O
GLRCAN S RN
S GO ° RN
O ™ S > &S O O
P F A
@,&;« qq,s‘ o & I &
&

Supplemental Figure S9: Correlation of predicted enhancers with transcriptional activity. A)
Enrichment of RNA Polymerase Il (RNA Pol I, y-axis, calculated as number of reads divided by
number of input reads) in TSSs of active genes (FPKM > 10), predicted enhancers in gastrulae and
planulae (blue boxes) and regions of the same number and length as the predicted enhancers at
random places in the genome, excluding TSSs (“shuffled enhancers’, grey boxes). B) Boxplot
showing the distribution of gene expression differences between gastrula and planula stage
embryos (y-axis) for genes with gastrula specific enhancers (left), planula specific enhancers (right)
and all remaining genes containing enhancers (middle). Genes with gastrula specific enhancers
are expressed at higher levels in gastrula compared to the remaining enhancer proximal genes
(p-value = 1.8e-4), genes with planula specific enhancers show higher expression levels in planula
compared to all other enhancer neighboring genes (p-value = 1.1e-3), and also the gastrula and
planula specific distributions differ significantly (p-value = 1.02e-06). Expression levels of genes in
gastrula and planula have been quantile normalized, accordingly, a value of 0 means there was no
change in gene expression of a given gene relative to all other genes. All p-values were calculated
using the Wilcoxon rank sum test.
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Supplemental Figure S10: GO terms enriched among Nematotella genes associated with enhanc-
ers. A) Gene ontology (GO) terms enriched among genes in proximity to predicted enhancers. GO
terms are separated into two categories: Top: molecular function, bottom: biological process. The
p-value of the GO term enrichment is indicated on the x-axis. B) The number of genes associated with
1,2,3,4, and 5 or more predicted enhancers in Nematostella is plotted for predicted enhancers (blue)
and regions of the same number and length as the predicted enhancers at random places in the
genome (“shuffled enhancers’, grey). Predicted enhancers are clustered around genes more often than
expected by chance based on shuffled regions of the same number and length as the predicted
enhancers (p-value < 2.2e-16).
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Supplemental Figure S11: Developmental regulatory genes are associated with multiple
enhancers in Nematostella. The number of genes associated with 1,2,3,4,and 5 or more
predicted enhancers in Nematostella (A), Drosophila (B) and zebrafish (C) is plotted for genes
associated with different GO categories. The counts of genes with a given number of predicted
enhancers have been normalized to the counts of genes associated with a given number of
shuffled predicted enhancers (enrichment, y-axis). Error bars show the standard deviations of
five different shuffling rounds. The following GO terms were used: axon guidance (75 genes in
Nematostella, 607 genes in Drosophila, 22 genes in zebrafish), development (516 genes in
Nematostella, 293 genes in Drosophila, 447 genes in zebrafish), DNA packaging (231 genes in
Nematostella, 343 genes in Drosophila, 127 genes in zebrafish), RNA metabolic process packag-
ing (31 genes in Nematostella, 67 genes in Drosophila, 17 genes in zebrafish), signal transduc-
tion packaging (430 genes in Nematostella, 637 genes in Drosophila, 921 genes in zebrafish),
transcriptional regulation (783 genes in Nematostella, 1343 genes in Drosophila, 732 genes in
zebrafish), transport (326 genes in Nematostella, 506 genes in Drosophila, 761 genes in
zebrafish). In Nematostella, GO terms for transcriptional regulation, development, and signal
transduction are strongly enriched among genes with multiple enhancers. In Drosophila, genes
with multiple enhancers are associated with GO terms for transcriptional regulation and axon
guidance. In zebrafish we could observe a weak enrichment of several GO categories, including
transcriptional regulation. This only rather small enrichment is very likely due to the less strin-
gent enhancer prediction method and the fact that it is more difficult to associate an enhancer
with the correct target gene in the larger zebrafish genome.
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Supplemental Figure S12: Comparison of the genomic of predicted enhancers between Nematostella,
Drosophila, and zebrafish. A-C) Distribution of predicted enhancer regions across genomic annotations.
Green=exonic regions, yellow=non first introns, orange=first introns, blue=promoter regions (TSS-1kb),
red=remaining intergenic regions. The y-axis indicates the fraction of nucleotides covered by each annota-
tion in the genome (left bar), shuffled predicted enhancer regions (middle bar), and predicted enhancer
regions (right bar) in Nematostella (A), Drosophila (B, (Négre et al. 2012)) and zebrafish (C, (Bogdanovic et al.
2012)) embryos. Shuffling of predicted enhancers was performed by restricting the shuffled regions to lie on
the same chromosome as the original regions. In Nematostella, shuffled regions were not allowed to fall into
regions where no Input reads could be mapped to, thereby excluding genome sequence possibly represent-
ing bacterial contamination. D) Density plot showing the distances of predicted enhancers to the closest
transcription start site (TSS). The distance to the TSS (x-axis) is negative if a region is located upstream of the
TSS, and positive if it is downstream of the TSS relative to the orientation of transcription from that TSS.
Blue=Nematostella, Brown=Drosophila, Black=zebrafish predicted enhancers. Dashed lines indicate the
distribution of predicted enhancers shuffled to a random position on the same chromosome.
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Supplemental Figure S13: A distal enhancer element
driving reporter gene expression in neurons. A) Genomic
region showing predicted enhancers (black bars), gene
models, distribution of p300, RNA Pol Il and several histone
i modifications in planulae. x-axis=position on the scaffold.
— i_: o] y-axis=number of reads. The enhancer region that was
' tested in vivo is marked with a yellow background. The

NvSoxB2 and NvNpff1 genes are indicated. B) mOrange2
signal of primary polyps injected with a construct where
the predicted enhancer region was placed upstream (top)
or downstream (bottom) of the Nvhsp70a minimal
i_) promoter driving mOrange2. The white scale bars represent

REEE oo - 100um. The predicted enhancers more than 5kb upstream
of the NvSoxB2 gene drive reporter gene expression in all
developmental stages. In primary polyps, the fluorescent
signal is clearly specific to neurons, as fluorescent lines
representing the axons are visible between fluorescent cell
bodies. This suggests that Nematostella enhancers can
activate gene expression across large genomic distances.
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