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1 Comparison to Bashir et al. cost function

The cost function, C(P) differs from Bashir et al.| (2007)), B(P). Unlike C(P), B(P) penalizes for loss
of break region coverage independent from limiting too many primers in a design. More specifically,
B(P) applies a cost weight to the sum of too large primer spacings and limits the number of primers by
adding the cost wgﬁ. If % is greater than primer density parameter p, then B(P) = inf by setting
wg = inf, otherwise wg = 0. While B(P) works well for large regions requiring numerous primers, it
does not work well for smaller regions with sparser selection of primers.

Consider a one-sided case where the input is one region of length T in F' and R is an empty set.
For 1 <p <1+ £ and a primer set (P) with [£] primers, the cost of adding any compatible primer to
P without primer removal for B(N;(P)) is inf whereas for C(N;(P)) is definite. This becomes an issue
when requiring sparse primer selection. An extreme example with any primer density 1 < p < 1.5 where
T = 2d, the simulated annealing procedure using B would limit to only primer subsets of size 0, 1, and
2. However, setting p = 1.5 would have a definite cost for primer subsets of size P. Using B, how to set
p with sparse selection of primers in multiple regions is also not trivial. The reformulated cost function
C, has the additional property where C), (N;(P)) > C,, N;(P) for p; < p;, therefore changing p has a
reasonable effect on the new cost of primer subsets.

Also, under sparse primer selection, B does not necessarily evenly space primers. Consider again the
above one-sided case. Let N = % (number of primers desired) and N. = N — [£] (number of extra
primers than necessary to cover T') and suppose each position of 7" has a fully compatible candidate
primer. The ideal primer subset (Pr) would select a primer every % positions of T'. Consider a contrived
primer subset (Pc) where a primer is selected every d positions of 7' and ﬁ positions of 1", which
places primers to cover T' entirely and places all extra primers within the first covered segment of 7.
Note the cost B(Pr) equals the cost B(Pc) even though P; is clearly better. The cost C(Py) is zero
and less than cost C(P¢) if there are extra primers to be placed, N. > 0. This scenario is unlikely to
occur with a large region and low primer density, however may occur with sparse primer selection and
high primer density. Nonetheless, C' reports sensible costs for both situations.

It follows from above, low-cost solutions with unevenly spaced primers can be generated by setting a
primer density threshold for B(P) too high. For discontiguous target regions, in particular, some target
regions may receive more extra primers than should be placed in that region. Our cost function penalizes
for irregular primer spacing, thus each target region will receive the appropriate number of primers.



2 Figure for simulated annealing convergence
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Caption Designing AMBRE-68 Simulated annealing using different convergence rates, is used to select
good primer designs with lowest cost. The convergence rate that finds the lowest cost primer design will
depend on the input given to AmBre-design.

3 AmBre designs with breakpoint estimates from CGP

Figure B3]
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Caption Breakpoint estimates for A549, CEM, MCF7, and T98G from CGP. Last two rows are AMBRE-
16 and AMBRE-68 input target regions.



4 Figure for AMBRE-16 amplifications
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Caption PCR products of AMBRE-16 on cell-lines: A549 (lane 2), CEM (lane 3), Detroit562(lane 4),
HelLa(lane 5), MCF7 (lane 6), and T98G (lane 7). 4ul of 1kb GeneRuler in lane 1. Lanes are reactions
starting with 10ng cell-line genomic DNA. Hela cells (no CDKN2A deletion reported by CGP) and H,O
are negative controls. Arrow denotes weak Detroit562 band; another PCR had stronger amplification
and was used for subsequent sequencing.

5 Breakpoint sequences

AS49 bp1
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Caption Breakpoint sequences for A549, CEM, Detroit562, MCF7, and T98G with orthogonal valida-
tion chromatogram of MCF7 and T98G. AmBre-analyze captures both breakpoints and non-templated
insert sequence (highlighted in yellow).



6 PacBio coverage of refined amplicon sequences
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troit562, MCF7, and T98G amplicons is 0.40, 0.42, 0.42, 0.38, and 0.38, respectively.

Primer sequences for AMBRE-16 and AMBRE-68

AMBRE-16 primer sequences

A2-21815419-T-r0.

A2-21818824-T-r0.2-
A2-21826327-T-r0.2-
A2-21833470-T-r0.2-
A2-21861703-T-r0.2-
A2-21867239-T-r0.2-
A2-21879976-T-r0.2-
A2-21885329-T-r0.2-

A2-21891029-T-r0.

A2-21967542-T-r0.2-
A2-21987671-F-r0.2-
A2-21993806-F-r0.2-
A2-22001902-F-r0.2-
A2-22036684-F-r0.2-
A2-22121823-F-r0.2-
A2-22128237-F-r0.2-
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TTTCTCTCTTAGATTGGAATAATTGGTGGAAC
TACGTTGTCATTAGCTATAATCACCATGCAG
TTAATAAGCCTTCTAGTCTGGAAGATTCCAC
TCACTTCCTTCTGGTTATAGAGACAGAATTG
ATGGCAATAAGTGATTATCAGAACAATGCTC
GTTACTCTTGTCTTATTCTCAACAGCAGAGG
TTTCAGTCATGGAAAATCTAAGGATTATGTG
TCTTAAGAGGTTGGGCAGGATTACTATAACC
TAGGAACCGTAGTTTGAGAACAACTGTTCTAG
CCCCTAGAGTTTCTATTCATCATTTTAACCG
TATTATGTGACCCTTTGTATGAATTGGAAAAG
ACACACACAGTAGGAAAGGTGTATTTCAAGC
ACAAGGACTTGACTGGAAGATAGAAGACCTAG
AATGGACAGATGACTCCTAACTTTGACATTAG
AGTTATAGAATCAATCCAGGCATCCAAAAAC
GTAGCAACAGCAGTAGCAGTATAACAGCAAC

00

BLASR remapping to consensus amplicon templates. The GC content for A549, CEM, De-



9 primer sequences used
from AMBRE-68 design

chr9-21817993-T TACTCATCACGGGTTAACAATTTCTTCTCTC
chr9-218256345-T GATGTCTTTCTTGACGTAAAATTTCATTTCC
chr9-21831236-T AATCCTGATGATTGTAGGAAATCAGTACACC
chr9-21861845-T TTTATTTAAAGTGTATGTTTCCTGCGTCCTC
chr9-21960424-T CACTTTCTGACTGCACTTTCTTGAAGTATTC
chr9-21991669-F CCACGTTAGTTCATCACTATCAACTACCATG
chr9-21991669-F CCACGTTAGTTCATCACTATCAACTACCATG
chr9-21996284-F GTAAGAGTGATCGCTAAATCTCACTTTTTCC
chr9-22124303-F TACATTTTGTCTACCCATCCCTTTCTTAATG

MCF7 and T98G validation primer sequences

Primer sequences used for MCF7 validation
forward CAAGAGGCCCTGGTGTGT
reverse GGGGTTAGTGGACTCGAGAC

Primer sequences used for T98G validation
forward CCAGCAAGGCAAAGAACTGA
reverse TTAGCCACTGTGACCGGTAA

7 DNA helix stability around breakpoints
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Caption Using code from BreakSeq pipeline, DNA flexibility for the 6 breaks around proposed non-
homologous end joining DNA breaks showed no significant deviation.

8 RUNXI-RUNXITI translocation Sanger confirmation

Subsampled positive PCRs from Kasumi-1 were sent to GENEWIZ for sequencing after Qiagen PCR
clean-up. Each sample sequenced with a forward primer upstream and a reverse primer downstream of
the expected Kasumi-1 breakpoint. Samples A,B and C are shortest to longest amplicons from Der8.
Similarly, samples D,E and F are amplicons from Der21.
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A-al-1_kas_T_A08.abl 422 2e-122
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Primer sequences for Kasumi-1 breakpoints

Der8 primer

sequences for 3.5Kbp

d2.1-6-T AGTACACTAGAGCACCATAAGAATACAATCC
d2.1-9-F CAATACTCTCGCTACTCAAAGCTTGTTTC
Der8 primer sequences for 6.8Kbp

d2.1-6-T AGTACACTAGAGCACCATAAGAATACAATCC
d2.1-10-F CCAGTAGGAAGACAGTCATGTGAAGATG
Der8 primer sequences for 10.1Kbp

d2.1-5-T CAAGCCAAAATACCACAATCATCCTAAGAC
d2.1-10-F CCAGTAGGAAGACAGTCATGTGAAGATG
Der8 primer sequences validation

kas-al.1-T TGGCGAGAATCAAACCAAACATTG
kas-al.1-F TTTTCTGATCGAGACTTTCTGGCC

Der21 primer sequences for 2.7Kbp

d1.1-9-T TTTGCCCTTCTATAATAGACAGTCTTCGAG
dl.1-13-F CTTCCTCAGGACTTGTTTGCTTTAATGATTC
Der21 primer sequences for 6.1Kbp

d1.1-8-T AAGAGCAAAGAGTGACACATCTTTTCATC
d1.1-13-F CTTCCTCAGGACTTGTTTGCTTTAATGATTC
Der21 primer sequences for 8.5Kbp

d1.1-8-T AAGAGCAAAGAGTGACACATCTTTTCATC
d1.1-14-F CAGTCTTACTTTGTTGTCTTTTATCTTCAGTCC
Der21 primer sequences validation

kas-a2.2-T TTCCACGCATTTAGTTTTTCCCCA
kas-a2.2-F CTGCCTTGCTAACTTTCACAGGAT



9 Amplification in complex gDNA samples with AMBRE-68 on A549-HEK and MCF7-
HEK

Figure 9]
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Caption Successful A549 (red arrow) and MCF7 (green arrow) CDKN2A deletion amplification with heterogeneity ratios
1:1,1:10,1:100,1 : 1000 (lanes 3-6 for A549 and lanes 10-13 for MCF7) and 16 primers starting with 400ng of gDNA.
Lane 1 contains 1kb Plus Gene Ruler DNA ladder. Lanes 2 and 9 are A549 and MCF7 positive control reactions starting
with 20ng of homogenous gDNA. Lanes 7,14 are negative control reactions with wild-type DNA and lanes 8,15 are water
negative control reactions with corresponding 16 primer mixes.

10 Ampilification in complex gDNA samples with longer PCR products and lower
multiplexing
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Caption A549 and Detroit562 with 6 primers and heterogeneity ratios.

Starting with a total 250ng of DNA material, we demonstrate amplification of a 7.6kbp CDKN2A deletion sequence
from A549 and a 9.7kbp deletion sequence from Detroit562 with 6 primers and tumor to wildtype DNA mixtures of 1:1,1:10,
and 1:100 (Fig. [L0).

Standard protocol for NEB Crimson LongAmp Taq is used for 25ul PCR reactions with the following changes. Each
primer has final concentration 1.1 M. Each reaction contains =~ 250ng of DNA, with the following tumor to normal DNA
ratios: 125ng : 125ng, 25ng : 250ng, 2.5ng : 250ng, 0.25ng : 250ng. Normal DNA is derived from HEK cells.
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