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1. Recruitment and sample collection 
This study was performed on 922 European individuals, recruited through a survey company 
called Knowledge Networks Inc (KN), for the Depression Susceptibility Genes and Networks 
Project (NIMH Grant 5RC2MH089916). Through a process involving an online questionnaire 
(relevant sections of CIDI-SF), KN identified potential candidates for this study. From this pool, 
1,259 individuals actually went on to have their blood drawn, filled out consent forms, and were 
then telephone interviewed (SCID interview--- Structured Clinical Interview for DSM-IV 
covering depressive, bipolar, psychotic, alcohol, substance and anxiety disorders as well as 
family history of mood disorders). After excluding some of the eligible individuals for reported 
non-European ancestry or medical comorbidities, which were thought to be too unusual and 
significant for the gene expression analysis, and performing quality control described below, we 
actually analyzed 463 cases of Major Depressive Disorder and 459 controls (total of 922) 
individuals. The case/control aspect of this cohort does not have a noticeable impact on eQTL 
detection (Figure S6), so for this study we do not consider or analyze depression status. 

2. Quality control 

2.1 SNP array quality control 
Genotype data was filtered for genotype quality as follows. QC was carried out simultaneously 
for this dataset and a second dataset (Genetics of Recurrent Early-Onset Depression, phase 2, 
unpublished data) as they were genotyped by the same lab on the same platform a few months 
apart. Pairwise estimates of IBD were computed in PLINK (Purcell et al. 2007) , and any sample 
duplicates were excluded. Principal components analysis (PCA) was carried out for all 
individuals using every fifth autosomal SNP (to reduce the influence of LD among SNPs), and 
the principal component scores examined for relationship to geographical/ethnic origin based on 
self-report (Figure S1).  As shown in previous studies (Shi et al. 2009), PC1 was interpretable as 
a North-South gradient (Anglo-Saxon and Scandinavian to the North, Mediterranean and 
Ashkenazi Jewish to the South) and PC2 as East-West (from Russian/Slavic to Western 
European), with PC3 further separating Ashkenazi Jewish ancestry from other Mediterranean 
(Italian, Greek) ancestry.  Individuals were excluded who were obvious outliers (by visual 
inspection of the plot of PC1 vs. PC2, or because multiple smaller components were numerical 
outliers) and PCA was repeated to ensure that there were no outliers by visual inspection of plots 
(Figure S4). Additionally, samples were excluded for elevated rates of heterozygosity (over 
34.5% of SNPs) or if genotypes could not be called for more than 1.4% of SNPs. For SNPs, we 
evaluated QC metrics in each study, and retained SNPs with a missingness rate below 0.012, a 
10% Gencall score above 0.55, and a Hardy-Weinberg probability below 0.0001.  
 



We corrected for the sub-population structure observed from the genotype PCs, by regressing the 
expression of each gene against the top three genotype PCs (from normalized expression data, 
Section 4). However, we observed that removal of population signal does not significantly 
influence cis-eQTL discovery, and overall we lost only 11 genes from cis-eQTL results through 
this correction (Figure S5). 
 

2.2 RNA-sequencing quality control   
If pooled RNA-sequencing libraries did not produce at least 180M reads, sequencing or library 
preparation was repeated for all three individuals in the lane (Figure S2a).  For each individual 
with more than one sequencing run, runs with sufficient reads (> 20M), good mappability (> 
40%), and good reproducibility of quantified expression data with the other runs (r2 > 0.9), were 
merged. The first base of each read was trimmed to account for the stronger sequencing biases at 
the beginning cycles before mapping (Figure S2b).  Genotype calls were made from RNA-seq 
data based on loci with sufficient read depth, and compared to genotypes from the SNP array.  
Individuals with concordance below 0.85 were removed from the study as potentially mislabeled 
(Figure S3). Additional quality metrics were evaluated to ensure high RNA Integrity Numbers 
(RIN) (Figure S2c), low percentage of hemoglobin reads (Figure S2d), and a high proportion of 
mapped reads in each individual (Figure S4). The results of quality control analysis were also 
utilized in a data normalization step described in Section 4. 
 

3. Quantifying ASE and detecting mapping bias 
Allele-specific expression was quantified by measuring allelic ratio at genotyped, heterozygous 
loci, after filtering for loci with significant mapping bias evident through simulation. For each 
candidate SNP, we simulated 4 sets of 50bp reads containing all 50 reads covering the locus, for 
both reference and alternative allele using both strands.  We assigned base quality scores to the 
simulated reads based on the per-position distribution observed in our real data, and aligned 
reads with the same settings as our standard pipeline. Finally, we evaluated the alignments 
around each locus using samtools mpileup (Li et al. 2009), and compared the mapping rates 
between reference alleles and alternative alleles. As observed in past studies, there was an overall 
bias towards higher mapping rates for the reference allele, and any individual locus with 
evidence of mapping bias in either direction was removed from further analysis.  At the 
remaining loci, allelic ratio was then computed for each individual from reads over each allele 
using samtools mpileup (Li et al. 2009), and used in aseQTL detection. In addition, statistically 
significant ASE was called per-locus, per-individual, assuming a binomial distribution with 
binomial parameter p computed using each individual’s personal reference bias.  ASE calls per-
individual were restricted to loci with 30 or more reads, at least one read observed per allele, and 
a read fraction of at least 1e-3 for each allele.  



4. Correcting for potential confounders using HCP  
 
We and others have observed that major components of expression variability can often be 
attributed to technical factors that introduce unwanted, systematic variability in data (Leek and 
Storey 2007). Such unwanted, systematic variability leads to spurious correlations in the data 
(among genes or samples), and results in both false positive (Kang et al. 2008; Listgarten et al. 
2010) and false negative associations (Stegle et al. 2012). Importantly, several eQTL studies 
have demonstrated that removing such unwanted, systematic variability dramatically improves 
the power to detect cis-eQTLs, and also leads to more consistent discoveries among different 
datasets (Stegle et al. 2012). Consistent with these previous observations, we also observed 
variability in RNA-sequencing data that could be attributed to measurable technical factors 
(Figure S8c).  Therefore, we devised a method, called HCP (Hidden Covariates with 
Prior)(Mostafavi et al. 2013), for correcting for such systematic unwanted variability in RNA-seq 
data, capturing both known technical covariates and any major broad trend in the data even if it 
arises from an unobserved source.  As shown in Figure S8a, we observed a dramatic increase in 
the number of cis-eQTL and validated co-expression associations after correcting for 
confounding structure using HCP. 

4.1 The HCP model 
Intuitively, as described in details below, HCP can potentially correct for two types of 
confounding factors: known and latent (hidden) confounding factors that introduce unwanted 
variability. A key component of HCP is an informed assumption about variability patterns 
introduced by hidden factors:  given a set of potential confounding factors (or known covariates) 
(see Table S1 for the list of potential confounding factors in this study), HCP infers hidden 
factors that are informed by a prior based on the known factors.  However, the strength of this 
prior can be adjusted (through parameter tuning) to remove different amounts of systematic 
variability attributed to unobserved factors, as appropriate for different analyses.  For example, 
removing too much variability may impede the detection of trans-eQTLs that affect many genes, 
whereas aggressive normalization may improve detection of cis-eQTLs and other narrow effects.  
Therefore, as we describe below, we set HCP’s parameter for cis- and trans-eQTL detection in 
two different ways.   
 
In particular, given a matrix of logarithm-transformed read counts, represented by Y of size n x g 
where n is the number of individuals and g is the number of genes, HCP models hidden 
confounding factors Z and their effect per gene as follows: 
 
!:,!~! !×!:,! , 1        (1) 
!:,!~! !×!:,! ,!!! ,!:,! !~!! 0,!!! ,!:,!~!! 0,!!!   (2), 
 



where !:,! (column i of Y) is the log of expression values for gene i  in all n individuals, Z is a 
matrix of inferred hidden factors and has k columns (k being the number of hidden factors, and 
!:,! is the kth

 column of Z), !:,! is a vector that represents the linear effect of hidden factors on 
gene i, and F is a matrix of known confounding factors. We estimate the unknown Z, W, and U 
using maximum likelihood, and set the hyper-parameters k, !!, !!, and !!, using the procedure 
described below. 
 
The model hyper-parameters k, !!, !!, and !!, allow us to adjust the flexibility of HCP in 
identifying broad versus narrower effects in the expression data, and we set these parameters by 
optimizing two different criteria for cis- and trans-eQTL detection. In particular, one could set 
these hyper-parameters to optimize the number of cis- or trans-eQTLs directly, however, such 
optimization will likely lead to overfitting the data. Therefore, for cis-eQTL analysis, we set the 
model hyper-parameters by optimizing the total number of cis-eQTLs for genes on only one 
(training) chromosome (chromosome 18), and evaluate the model on a single test chromosome 
(chromosome 14) (Figure S8a). For trans-eQTL analysis, the scarcity of significant associations 
makes it difficult to directly tune parameters without risk of over-fitting.  Thus, we optimize the 
parameter settings to maximize the number of significant associations in expression profiles 
among a set of transcription factors (TF) and their known targets (TF target information was 
obtained from the ChEA database(Lachmann et al. 2010)) (Figure S8b).  

4.2 Known covariates used in HCP  
We provided HCP with a set of 35 observed covariates (Table S1).  We found that the inferred 
HCP factors summarize multiple correlated known confounding factors (Figure S7) with 
significant contribution to variability in the RNA-sequencing data. Generally, we observed that 
the top HCP factors largely correspond to technical factors specific to RNA-seq such as 
sequencing depth, percent duplicated reads, and others obtained from the Picard metrics  and to a 
much lesser extent to biological factors such as time of blood drawn and estimates of cell type 
frequencies (described below) (Figure S7). 
 
Whole blood is a mixture of cell-types, and differences in cell-type frequencies in individuals 
could potentially lead to unwanted expression variability. Therefore, we estimated blood cell 
type frequencies and used these estimates as covariates in HCP. To estimate cell type frequencies, 
we obtained cell type signatures for blood cell types as in (Abbas et al. 2009) (only 9 of the 
original 17 cell types from (Abbas et al. 2009) were assigned a non-zero frequency in any of our 
subjects (see Table S1 for the names of the 9 cell types)). We then estimate per-individual cell 
type frequencies by using non-negative least squares regression, and regressing the observed 
expression data that reflect a mixture of cells for a given individual onto the cell-type-specific 
expression signatures.  In particular, given the observed log (un-normalized) expression values 
!! of size s x 1 for s genes in individual i (defined below), we estimated cell type frequencies in 
individual i as follows: 



 
!!~! !×!! , ! ,!s.t.!!!! ≥ 0     (3) 
 
Where X is a matrix of size s x 9, s being the number of genes that are in the cell signatures: each 
column k of X represents the expression levels of the s genes in cell type k.  The vector !! then 
represents the frequencies of each of the nine cell types in individual i. 
 
For the computation of percent variance explained (PVE) using genotype or phenotype data 
(Figure S12), we only correct the raw data for the known covariates and do not use the full HCP 
model. To do so, we perform linear regression for each gene using all the 35 known covariates, 
and use the residual of the regression.  
 

5.  Replication of eQTLs 
 

5.1 Replication of cis-eQTLs 
 
In order to examine overlap of our eQTLs with previous studies, we obtained two existing large 
cis-eQTL datasets: (1) the MuTHER study (Grundberg et al. 2012) provides the complete list of 
tested cis SNP-gene p-values (http://www.muther.ac.uk/),  and (2) the Fehrmann study 
(Fehrmann et al. 2011) provides a list of significant SNP-gene pairs at 0.05 FDR. 
 
Given the differences in statistical power in different datasets, we compare our results using the 
π1 statistic (Storey and Tibshirani 2003), which estimates the total proportion of non-null 
hypotheses, and provides a more robust alternative to simple overlap of statistically significant 
results according to an arbitrary threshold. The Fehrmann et al. study (whole blood, 1469 
European individuals) discovered 29,049 SNP-gene pairs (corresponding to 4,904 genes) 
significant at FDR 0.05 that were also tested in our data. Because we do not have the entire SNP-
gene p-values for this study, we can only report π1 of their significant eQTLs as assessed in our 
study.  We estimate π1=0.88, which is a value slightly higher than previously reported eQTL 
replication rates in microarray studies (Grundberg et al. 2012).  
 
The MuTHER data consists of all tested SNP-gene p-values for adipose, LCL, and skin, obtained 
from a cohort of Caucasian female twins. We identified MuTHER cis-eQTLs using the same 
multiple testing correction procedure that was used in our study (0.05 FDR at gene level, applied 
after a Bonferroni correction for number of SNPs tested per gene). Replication rates of MuTHER 
eQTLs in our data are π1=0.73, 0.74, and 0.66, for adipose, LCL, and skin, respectively, and we 
observe a higher value, π1=0.89, when only considering eQTLs that are shared among the three 
tissues. The replication rates of our eQTLs into MuTHER are π1=0.51, 0.58, 0.56, for adipose, 



LCL, and skin, respectively. These replication rates are slightly lower than those reported by 
(Grundberg et al. 2012) (ranging between 0.6-0.7) for replication of their eQTLs in the same 
tissue.  For a comparison, we also investigated the replication rate of (Fehrmann et al. 2011) in 
MuTHER data, and observed slightly higher replication rates: 0.64, 0.73, 0.68, for adipose, LCL, 
and fat, respectively.  This may be expected given major differences in technologies (MuTHER 
and Fehrmann use microarrays, whereas we are using RNA-sequencing), though, again, the 
replication of Fehrmann et al. into our data at π1=0.88, using the same tissue, is ultimately the 
highest of the measured rates.  
 
Additionally, to better understand the factors that affect replication rate of genes we investigated 
(1) residual correlation of expression data with cell type proportions that may have been 
insufficiently corrected by our normalization procedure and could lead to spurious associations, 
(2) impact of effect size and number of individuals (summarized by regression coefficient), and 
(3) average expression levels of genes. For this analysis, we assigned a reproducibility number 
{0,1,2,3,4} to each eQTL, based on the number of “studies” in which the eQTL was reported as 
significant (using a 0.05 FDR threshold reported in the original studies), where the four 
investigated studies are the three tissues from Grundberg et al. (each counted as a separate study) 
and eQTLs from Fehrmann et al.  We only considered gene-SNP pairs that were tested in our 
study and all three tissues in Grundberg et al., and considered the best SNP for each eQTL gene 
(according to this criteria 8208 genes had an eQTL in our study).  First, to ensure that failure of 
replication is not influenced by residual correlations with cell type proportions, we estimated the 
spearman correlation coefficient between our cell type estimates and compared this estimate to 
reproducibility of eQTLs (Figure S11c). As shown, we did not observe a correlation between 
strength of correlation with cell-type and reproducibility (p>0.1).  In contrast, we observed a 
significant correlation (p<1e-20) between average expression levels and reproducibility (Figure 
S11b), and between strength of the association (Spearman rho) and reproducibility (p<1e-100) 
(Figure S11a). Therefore, these results suggest that the slightly lower replication rate of our 
eQTLs in MuTHER data, compared to rates previously reported by (Grundberg et al. 2012) are 
likely due to differences in technology (better quantification of lowly expressed genes by RNA-
seq, and very high depth of current study compared to previous RNA-seq studies), statistical 
power, and differences in tissues.  Finally, we also investigated the relationship between 
reproducibility and whether or not and eQTL SNP is exonic, looking for evidence that mapping 
errors due to genetic variation within coding regions could drive spurious eQTLs in RNA-seq 
data.  We found that exonic eQTLs do not show any signs of lower reproducibility between our 
data and microarray studies (in fact we observe a slightly higher replication rate, with only 3% of 
non-replicated eQTLs being exonic, compared with 5% of replicated eQTLs, p < 1e-4).  This 
suggests mapping errors are not a major source of differences between RNA-seq and microarray 
eQTLs. 
 



5.2 Replication of trans-eQTLs 
 
Here, we compared our trans-eQTLs to those of Fehrmann, as both datasets have a relatively 
large number of samples, and involve the same tissue (whole blood), though with a major 
difference in measurement technology (RNA-seq versus microarray) and in subject recruitment 
criteria.  
 
Fehrmann et al. reported 396 SNP-gene pairs (95 genes) with a trans-association that were also 
tested in our data.  21 of these SNP-gene pairs were deemed genome-wide significant in our data, 
corresponding to 11 genes with a shared trans-eQTLs in both studies (significantly more than 
expected by chance, hypergeometric p < 1e-100). (Recall that this study identified 138 genes 
with an associated trans-eQTL). The replication rate of Fehrmann et al trans-eQTLs in our study, 
as measured by π1=0.74, is higher than the replication rate of previously reported trans-eQTLs 
(Grundberg et al. 2012). To avoid multiple non-independent tests because of the LD structure, 
we only considered the best SNP per eQTL gene reported in Fehrmann et al. To ensure that this 
π1 estimate is not inflated due to spurious associations between random SNP-gene pairs in our 
data, we also computed the π1 statistic for 500 random sets of 95 SNP-gene pairs.  Among these 
random controls, we observe a median π1 of 0.0, and 95% falling below π1=0.26, indicating the 
replication of trans-eQTLs is significantly higher than would be expected by chance.  (Similarly 
we see no evidence of overall inflation in trans-eQTL associations, Figure S25).  Unfortunately, 
we could not estimate π1 for replication rate of our trans-eQTLs in Fehrmann et al., as only their 
significant (FDR 0.05) results were made publically available.  
 

6.  GWAS associated SNPs and cis-eQTLs 
 
To determine whether certain disease categories were overrepresented in our GWAS eQTL hits, 
we performed two tests. Here, we used the first definition of GWAS eQTL from Table S2. First, 
we computed the enrichment of eQTLs for each disease category using a hypergeometric test 
(Table S3). Second, we curated 8 broad categories of diseases, and computed the enrichment of 
these broad categories compared to other diseases.  In order to ensure that our enrichment our not 
biased because of LD patterns, we only considered SNPs that are at least 50Kb in distance for 
each disease.  
 
In total, 232 diseases from the GWAS catalog (Hindorff et al. 2009) were associated with at least 
one eQTL. As shown in Table S2, 3 diseases were significantly enriched in eQTLs at 0.1 FDR, 
and 11 were significantly enriched at 0.2 FDR.  Next, we considered 8 broad categories of 
diseases: neurological disorders, body size, pigmentation, metabolic, autoimmune diseases, 
cardiovascular traits, cancer, and blood chemistry. For each of these disease categories, we 



identified relevant SNPs, and computed enrichment compared to that of other diseases. We 
identified two nominally significantly enriched categories: autoimmune (p-value 0.03) and blood 
chemistry (p-value 0.024), whereas the rest of these categories were not nominally significant 
(p>0.05).  
 

7. Effect size computation for eQTLs and ASE 
 
For each candidate SNP, we subsampled 100 individuals to create a balanced dataset with no 
more than 50 individuals represented by any single genotype (thus at 50 individuals will have 
each allele).  Within this sample, we estimated significance and effect size using linear 
regression on the raw (non-normalized) expression data.  For each gene, we identified the 
strongest SNP according to these sampled estimates and, for eQTLs significant at FDR 0.05, we 
recorded the effect size (expression fold change) and allele frequency for that SNP.  We also 
used subsampling to compute ASE effect size (defined here the average fold change between the 
highly expressed allele and the less expressed allele).  We sample two individuals who are 
heterozygous at both the candidate regulatory variant and a coding locus in the corresponding 
gene. Within each individual we subsampled reads to avoid biases based on read depth, drawing 
30 reads at random from the reads observed for each individual and computing allelic fold 
change from this sample.  We then average the fold change observed in these two individuals as 
an estimate of allelic effect of the regulatory variant. 

 

8. Trans-eQTL detection and filtering  
To account for the possibility of mapping errors introducing spurious trans-associations, we 
applied a series of filters to our candidate trans-eQTLs.  In particular, in the unfiltered data, we 
did observe a moderate enrichment of known pseudogenes (12%, compared to 1% of overall 
expressed genes, p<1e-4), and specific associations between regions of sequence similarity 
(enrichment p-value for eQTLs arising between regions of sequence similarity p<1e-80).  Such 
associations may arise between a SNP impacting the expression of a nearby gene, but where 
reads are incorrectly mapped to a distant gene similar in sequence.  Such mapping errors are 
possible even among uniquely mapped reads for regions of high sequence similarity due to 
factors such as reference genome errors, polymorphisms, and sequencing errors.  As a first step, 
we simply removed all pseudogenes in our trans analysis, and removed associations occurring 
between a gene in a known paralog family and any cis-regulatory SNP for another paralog in the 
same family.  
 



Then, we directly identify regions of the genome with potential for mapping errors.  We 
simulated 52 million 50bp reads covering known gene coding/UTR and pseudogene annotations 
in sliding windows. These reads were then trimmed for the first base, combined with two 
Illumina sequencing adaptors that are unmappable to human reference genome, and given a set 
of sequencing quality scores sampled from a position dependent distribution drawn from our real 
reads.  The simulated reads were then aligned with TopHat (Trapnell et al. 2009) allowing up to 
4 mismatches and multiple alignment.  For each gene, we eliminated from consideration SNPs 
within 5Mb of blocks where simulated reads from the gene mapped with these lenient parameters.   
 
Finally, real associations should affect expression of an entire transcript, evident by reads 
distributed smoothly across an entire gene or set of exons, whereas mapping errors among 
uniquely aligned reads are likely confined to a small number of positions within a gene.  Thus, 
we developed a method for evaluating the “smoothness” of an eQTL association signal across 
the expressed exons of a gene.  An example of a suspicious association identified by this method 
is shown in Figure S20a, S20b.  In particular, we computed the effect size !! of each eQTL at 
the gene level using linear regression, in addition to estimates of the effect size  !! based on 
reads covering each individual exonic position i within the gene.  Covering reads were identified 
using samtools mpileup(Li et al. 2009).  We removed any association where the final effect size 
at the gene level was not well represented across positions (where !! > 4×!median (!!)).  We 
note that the trans associations filtered by paralog and cross-mapping steps were very likely to 
also fail this test. Figures S20c and S20d summarize the number of associations that were 
eliminated by each of our filters.  
 

9. Intra-chromosomal analysis  

To evaluate the enrichment of eQTL sharing in gene-dense regions, we estimated the number of 
other genes within 1Mb of the transcription start site of each gene, and compared this estimate of 
density between 1) genes with a shared regulatory variant and 2) genes with only non-shared 
variants, and found density to be significantly higher among the first group (p<1e-74). We 
downloaded normalized Hi-C contact estimates along with a discretization of each chromosome 
into topological domains based on measurements in human fibroblasts (Dixon et al. 2012).  We 
evaluated sharing of regulatory variants by pairs of genes in this analysis by identifying SNPs 
nominally associated with both genes using a stringent p-value threshold of 1e-7, not necessarily 
requiring that they share their best SNP.  This is a more inclusive definition of sharing than using 
the results of stepwise regression, but the stepwise method suffers from arbitrary and 
independent selection of SNP for each gene particularly among SNPs in strongly linked, highly 
associated regions.  Using this definition, we record for every pair of genes located on the same 
chromosome whether they share any strong candidate regulatory variant.  We then evaluated 
whether membership in the same topological domain is predictive of sharing of regulatory 
variants, by computing the conditional odds multiplier after controlling for linear distance 
between the TSS of the two genes.   



 

10. Learning trans-eQTL regulatory network structure  
We used a series of likelihood ratio tests to distinguish between three types of regulatory 
network structures involving a SNP acting in cis- to nearby genes and trans- to a distant gene.  
We performed this analysis considering only the best trans-eQTL for each gene. In particular, we 
first identified 74 trans acting SNPs that had a local effect on any cis-gene (1Mb distance 
threshold) using a p-value threshold of 0.05. For each of these 74 cases, we classified the 
regulatory network structure consisting of the trans-eQTL SNP, nearby effected cis-genes, and 
the target trans-gene as (1) full mediation,  (2) partial mediation, or (3) independent. We perform 
all analysis on ranked data, to ensure consistency with Spearman’s rank correlation used to 
obtain trans-eQTLs.   
 
We first identified full mediation of the effects of a SNP through the expression of its cis-genes 
by comparing the likelihood of the model ! ! !, ! ~!(!|! + !! + !!)  to that 
of!! ! ! ~!(!|! + !!), where t is a vector representing the expression level of the target (trans) 
gene, c is a vector or matrix consisting of the expression levels of the cis-gene(s) (only 
considering those with a correlation p-value of 0.05 with t), s is a vector representing genotype ∈ 
{0,1,2} at the trans-eQTL SNP, and !,!,! are parameters that are estimated using maximum 
likelihood for each model separately. We classified instances as full mediation whereby the full 
model ! ! !, ! , does not provide a significantly better fit compared to ! ! !  (again using a p-
value threshold of 0.05).  
 
For the remaining trans-eQTLs, we identified partial mediation by comparing 
! ! !, ! ~!(!|! + !! + !!) to that of ! ! ! ~!(!|! + !!), and identifying instances where 
! ! !, !  provides a significantly better fit compared to ! ! ! . Instances that are not classified 
as either full or partial mediation are classified as independent effects. Finally, we also identified 
instances where the predicted directionality of trans-SNP to target effect (based on the mediated 
relationships) is not consistent with the observed directionality (we call such instances 
paradoxical effects) (see Figure S23). In particular, for each trans-eQTL s, we identify all cis 
genes {c1,…,ck} using a threshold of 0.05. Among these cis-genes, we identify the gene that has 
the highest correlation with the target gene t, say cb. Then the predicted sign of correlation 
between s and t can be obtained as sign( corr(cb,t)) x sign(corr(s,cb)), and compared to 
sig(corr(s,t)). 

11. Comparison of LRVM to other models  

We compared the performance of LRVM to two reduced models that explore the impact of 
modeling assumptions made in our method.  In the first, we predict associations a directly from 



features F using a logistic function.  In the second, we incorporate a correction for minor allele 
frequency by including raw features F along with corrected features m x F into a logistic function 
to predict associations a.  Neither baseline model includes inference of the latent variables d, 
which are only necessary in LRVM to model the effects of linkage disequilibrium.  The results 
of this comparison are shown in Figure S28 and S29.  
 
Additionally, to assess the impact of SNP position on LRVM, we evaluate different sets of 
genomic features.  We trained LRVM-DO using only positional features (including whether a 
SNP falls in a particular intronic, exonic or UTR location), LRVM-ND using only non-positional 
genomic annotation features, and of course the full LRVM model.  We compare each of these to 
predictions made based on positional features alone, not in the LRVM framework, and thus not 
accounting for MAF or LD.  Results are shown in Figure S31. 
 
In all evaluations of LRVM and baseline predictive models, we constructed our training set (used 
to estimate model parameters), from all odd numbered chromosomes, and our test set, used for 
evaluation only, from even numbered chromosomes.  This split was chosen in order to reduce the 
potential for the training set to contain SNPs or genes highly informative of the test set (such as 
containing SNPs in LD between the two), while still having a similar distribution of regulatory 
effects in the two sets. 
 
Methods related to LRVM include the Bayesian hierarchical model (BHM) presented in 
(Gaffney et al. 2012), (Lee et al. 2009), or even the simple scores provided by RegulomeDB 
(Boyle et al. 2012), with Gaffney being the most similar.  Both BHM and LRVM assume a 
logistic function over genomic annotations as the backbone of predicting regulatory potential of 
each SNP.  However, BHM primarily compares candidate SNPs in a competitive model within 
each eQTL region, and without access to the expression and genotype information for the 
relevant region, does not attempt to ultimately predict eQTL status for unseen variants or genes.  
Further, because BHM is competitive, it will identify the single best SNP in a region, and unlike 
LRVM, BHM does not attempt to predict cases where there are multiple, independent eQTN in 
the same region, which have been observed to be common (Stranger et al. 2012).  Thus, the two 
models are motivated differently and will have different potential applications.  LRVM is unique 
in its ability to train on association statistics rather than raw expression and genotype data (often 
not made publically available), and its ability to make eQTL predictions on genes and variants 
not included in the training data. We expect this to provide compelling use cases beyond existing 
methods, including training tissue- or population-specific models even for eQTL studies without 
full publicly released data, and prioritizing non-coding variants identified in disease studies, even 
if those variants weren’t available during model training.  
  



Supplementary Table S1. Known covariates used in HCP.  Table lists all the known covariates 
(technical and biological) that were used as input the HCP method.  17 of these are technical factors 
(colored in yellow) directly obtained from Picard QC metrics. There are two technical factors relating to 
sample preparation obtained from the technicians (colored in orange), four other technical factors that we 
estimated from the quantified reads (colored in purple), nine factors are the inferred cell type frequencies 
(see Supplementary Materials), and one factor representing the time of the day that the individual’s blood 
was drawn.  individual-specific exon length, and  individual-specific GC are estimated as the proportion 
of read variance in each  individual (mapped to exons) that can be explained by GC compositions of the 
exons or the length of the exons, respectively---these factors are estimated per  individual, by correlating 
mapped reads to exons with a vector of exon GC composition or exon lengths.    
1 Sequencing Depth 
2 Number of Coding Bases 
3 Number of UTR Bases 
4 Number of PF Aligned Bases 
5 Number of BF Bases 
6 Percent Coding Bases 
7 Percent MRNA Bases 
8 Percent Usable Bases 
9 Percent UTR Bases 
10 Cell Frequency: Mono 
11 Cell Frequency: DC 
12 RNA Yield 
13 Cell Frequency: Neutro 
14  individual-Specific Exon Length 
15 Median 5PRime Biase 

16 Median 5Prime to 3Prime Bias 
17 Cell Frequency: NK Cells 
18 Cell Frequency: Th Cells 
19 Cell Frequency: Platelet Cells 
20 Cell Frequency: NK_act Cells 
21 Cell Frequency: DC_act Cells 
22 Cell Frequency: B Cells 
23 Time of Day Blood Drawn 
24 Percent Hemoglobin 
25  individual-Specific GC 
26 Percent Duplicated Reads 
27 Median 3Prime Bias 
28 Median CV Coverage 
29 Cell Frequency: Tc Cells 
30 Globin Flag (Technician) 
31 Number of Intergenic Bases 
32 Number of Intronic Bases 
33 Percent Intergenic Bases 
34 Percent Intronic Bases 
35 Cell Frequency: Tc_act Cells 



Supplementary Table S2: Disease and trait-associated variants among eQTL hits. We evaluate the 
presence of regulatory associations for 1,445 trait- and disease-associated variants (Hindorff et al. 2009) 
in three ways.  In the first method (“Any association”) we simply require that the (Bonferroni corrected) 
p-value observed for the trait-associated variant pass the global eQTL threshold (FDR 0.05).  In the 
second method we look for nominal p-values below 1e-7, corresponding to the threshold used to identify 
trait associations.  In the third method, we require the SNP both pass the global eQTL threshold, and be 
within two orders of magnitude of the best QTL SNP for the corresponding gene.  The final column (any 
QTL) indicates the union among all QTL types, which do have some overlap. 

 cis-eQTL sQTL trans-eQTL   any QTL 

Any association 790 218 9   818 

Association p <= 1e-7 655 159 9   680 

Association near best 
per gene 

184 54 9   224 

 
 
 
 
 
 
 
Supplementary Table S3. Individual traits with eQTL enrichment in GWAS hits. The table shows 
the p-values and q-values for enrichment of eQTLs in GWAS traits. The table only shows disease with an 
enrichment q-value < 0.2. 

disease name p-value q-value 
    Plasma levels of liver enzymes 0.0005 0.0584 
    Ulcerative colitis 0.0003 0.0584 
    Primary biliary cirrhosis 0.0009 0.077 
    Hematological and biochemical traits 0.002 0.1117 
    Psoriasis 0.0027 0.1117 
    Triglycerides 0.0023 0.1117 
    Chronic kidney disease 0.0077 0.1755 
    Crohns disease 0.0057 0.1755 
    LDL cholesterol 0.0068 0.1755 
    Plasma levels of liver enzymes (gamma-glutamyl transferase)  0.0068 0.1755 
    Systolic blood pressure 0.0076 0.1755 

 
 
 
 
 
 
 



 
 
 
 
Supplementary Table S4. Genes and pathways correlated with demographic factors. The table 
provides the top twenty genes associated with age and sex in this cohort.  We have also performed a 
functional enrichment analysis among the top 100, and 500, 1000 associated genes for age and sex 
separately using MSigDB (c2.cp.v3.1) annotations. In particular, we find two immune related pathways to 
be significantly enriched (0.05 FDR) in top 500 and 1000 sex-associated genes: 
REACTOME_CYTOKINE_SIGNALING_IN_IMMUNE_SYSTEM 
REACTOME_INTERFERON_SIGNALING.  
We also find four enriched pathways (0.05 FDR) among the top 1000 age-associated genes: 
KEGG_ECM_RECEPTOR_INTERACTION 
REACTOME_SIGNALING_BY_GPCR 
REACTOME_GPCR_DOWNSTREAM_SIGNALING 
KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION. 
 

 

 
 
 
  

Sex Age 
Gene Q-value Gene Q-value 

    OPLAH 1.20E-55     CD248 2.20E-71 
    C1orf93 5.90E-42     NRCAM 7.90E-49 
    MMEL1 3.70E-33     FBLN2 4.20E-45 
    CD274 7.70E-30     REG4 8.40E-45 
    GPR109B 5.30E-26     ROBO1 6.90E-43 
    GPR109A 1.20E-24     CACHD1 3.50E-38 
    NOS3 1.80E-23     ACCN2 5.50E-38 
    ADAMTSL2 3.00E-23     TSHZ2 1.60E-37 
    ULK1 6.40E-22     WNT10A 1.60E-37 
    DDX43 4.50E-21     PHLDA3 8.80E-37 
    GPR171 5.70E-21     SHANK1 2.50E-35 
    ADM 2.80E-20     FOXJ1 2.00E-33 
    C2orf55 1.10E-19     ZNF496 1.90E-32 
    NSD1 2.00E-19     SLC4A10 1.50E-30 
    MAN2A2 2.50E-19     AP3M2 3.40E-29 
    MPO 4.00E-19     ISM1 1.10E-28 
    GALNT3 4.00E-19     PTK7 1.10E-28 
    CHST10 4.80E-19     TTC24 2.60E-28 
    PER3 5.80E-19     CRTAM 1.00E-27 
    PDCD1LG2 6.70E-19     DDB2 1.50E-27 
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Figure S1.   Ancestry and Principal Components of genotype data. The plot shows Principal 
Component (PC) 1 and 2 scores for 941  individuals with genotype data, of which 279 reported that 
3 or 4 of their grandparents were of the same ethnic background, as shown in the table above; the 
predominant ancestry of these  individuals is indicated in the legend, while the other 662 are labeled 
“None” (no known predominant ancestry).  (a) PC1 reflects a North (here, more negative) to South 
gradient  with  Anglo-Saxons  and  Northern  Europeans  (Scandinavians)  at  the  North  end  and 
Ashkenazi Jews at the South end, with Mediterranean (Italians, Greeks) in between. PC2 reflects 
West to East (non-Jewish Slavic/Russian).  Note that, consistent with our previous observations in 
similar samples,  individuals with self-reported predominantly Native American ancestry had PC 
scores in the main cluster of Western European ancestries, probably reflecting a reporting bias (i.e., 
over-estimation of the proportion of Native American ancestry in the family). (b) The plot shows 
that PC3 separated Ashkenazi from Mediterranean ancestry. PCs 1-3 were used to correct expression 
data  for  population  structure.  We note  that  the  top  genotype  PCs  had  a  very  small  impact  on 
expression  variability  (Figure  S5),  and  correcting  for  these  PCs  only  resulted  in  losing  11 
associations.!
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ANCGROUP) Frequency) Cumula5ve)Frequency) Percent) Cumula5ve)Percent)
Anglo:Saxon) 104) 104) 11.05) 11.05)
Ashkenazi) 20) 124) 2.13) 13.18)
Eastern)Eur) 31) 155) 3.29) 16.47)
Mediterranean) 19) 174) 2.02) 18.49)
Northern)Eur) 14) 188) 1.49) 19.98)
Na5ve)Amer) 28) 216) 2.98) 22.95)
None) 662) 878) 70.35) 93.3)
Western)Eur) 63) 941) 6.7) 100)

(a)! (b)!

(c)!



Figure S2. RNA-sequencing quality control.  (a) The distribution of the number of sequenced 
reads  is  plotted  in  log  scale.  The  distribution  is  skewed  to  the  right  because  of  the  extra 
sequencing runs for poorly sequenced  individuals. (b) Boxplot of base quality scores along the 
sequencing reads (from base 2 to base 50). Average score at each position is marked in red. The 
base quality reaches its maximum at base 14 and begins to decrease slowly after base 25. (c) 
RNA Integrity Numbers (RIN) for post-GLOBINclearTM (Invitrogen),  RNA. We recorded the 
RINs for 12 samples from each 96 well plate containing RNAs. (d) Using the GLOBINclearTM 
(Invitrogen) protocol, hemoglobin RNA was removed from each sample before sequencing.  A 
histogram  of  the  percent  reads  coming  from  hemoglobin  transcripts  demonstrates  the 
effectiveness  of  the  GLOBINclearTM  procedure  amongst  our   individuals  (median  percent 
hemoglobin read is 0.7%)  .!
 !
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Figure S3. Concordance between SNP array and RNA-seq called genotypes. SNP genotypes 
were called using RNA-seq reads in deep covered regions and compared with the SNP array data. 
Low concordance  (<85%,  shown as  a  red  line)  suggests  a  potential  labeling  error,  and  such 
individuals were removed from this study.  Most  individuals show high estimates of concordance. 
We removed 6 subjects at the cutoff of 85% concordance.!



!
Figure S4. Mappability and distribution of mapped bases. (a)  For each individual, we computed 
the fraction of mapped reads in coding regions (black), UTRs (red), introns (green) or intergenic 
regions (blue).  This figure shows the distribution of fraction of mapped reads in each of these 
regions. As expected, majority of the mapped bases are within the coding regions or UTRs, while 
~10% of the bases are within introns or intergenic regions. (b) Histogram of proportion of mappable 
reads in each individual. (c) Histogram of proportion of uniquely mapped reads (among the reads 
that were mapped) in each individual. As shown, in the majority of the  individuals, at least 80% of 
the mapped reads were mapped uniquely. !
!
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Figure S5.   Correlation of genotype Principal Components and expression levels. 
Genotype principal components are not strongly associated with gene expression.  In this 
figure,  we  show  the  number  of  genes  correlated  with  each  PC  at  two  nominal  
significance thresholds,  demonstrating very few genes  with  any correlation to  one of 
these PCs.   We also find that  removal  of  population signal  does not  affect  cis-eQTL 
discovery.  We regress each gene against PCs 1-3, and remove the predicted component 
before eQTL discovery, but find that fewer than .2% of specific SNP to gene associations 
are changed, and overall we lose 11 genes from cis-eQTL results through this correction. !
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Figure  S6.  Evaluation  of  case  control  status  on  eQTL detection.  To ensure  that  the  cohort 
structure  in  this  study  does  not  introduce  any  bias  in  eQTL detection  we  computed  cis-eQTL 
associations using the controls only (459 individuals), and compared it to cis-eQTLs detected using 
a random sub-samples of 459 individuals from the complete study (thus the sub-sample includes 
both cases and controls).  Figure (a) shows the log p-values for all cis-SNPs on chromosome 18, 
computed using controls only (x-axis) or a sub-sample from the complete study that only includes 
459 individuals.  The variability in p-values shown in (a) is  no more than the variability in two 
randomly chosen sub-samples of size 459 shown in (b). !
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Figure S7. Correlation of HCP factors with known covariates. Figure shows the correlation 
coefficient (Spearman) between 35 known factors (x-axis) and 50 inferred HCP factors (y-axis). 
As  shown,  HCP factors  summarizes  multiple  correlated  known  covariates,  with  technical 
covariates sequencing depth and other covariates that correspond to proportion of mapped reads 
with various annotations being particularly strong (Table S1 describes each of the 35 known 
covariates used to infer the HCP factors---ordering of the rows in this figure correspond to the 
covariate numbers in Table S1).!
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Figure S8.  Removing the effects  of  confounding factors  using HCP. (a)  We optimized HCP’s 
parameters for detecting cis-eQTL by using one chromosome for training (chromosome 18) and 1 
chromosome for testing (chromosome 14). Figure shows the number of cis-eQTLs detected on test 
chromosome 14 using (i) raw data, (ii) ridge regression where we remove the effects of the 35 known 
covariates (see Table S1), and (iii) HCP. (b) We optimized HCP’s parameters for trans-eQTL detection 
by optimizing the number of transcription factors and targets with significant expression correlation 
(FDR 5% using permutation p-values).  Figure shows the number of such co-expressions detected 
using (i) raw data, (ii) ridge regression, and (iii) HCP.  (c) Figure shows number of genes that are 
significantly correlated with the 35 known covariates at FDR 5% on RPKM data and HCP-normalized 
data.  The technical covariates are ordered as in Supplementary Table S1.!
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Figure S9.  Bonferroni corrected versus permutation eQTL p-values. Comparison of cis-
eQTL p-values (shown in log scale) obtained through Bonferroni correction per-gene (for the 
number of SNPs), and through permutation analysis using 10,000, for all genes. Each dot on 
the figure represents a gene.  Bonferroni is somewhat conservative for large p-values (small 
log  p-values),  but  more  precise  for  very  significant  p-values  since  permutation  p-value 
precision  is  limited  by  the  number  of  permutations.   No  gene  is  called  significant  by 
Bonferroni which would not also be called significant according to permutation.!
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Figure S10. Sample size and number of detected QTLs. (a) Figure shows the number of cis-eQTLs 
and sQTLs detected with increasing sample size (number of individuals).  For each sample size, we 
randomly selected the appropriate number of individuals from our study. As shown in this figure, as 
sample sizes increase above 500 individuals we begin to see some plateau effect  in the number of 
discoveries.  (b) Figure shows the number of trait  and disease cis-eQTLs, where we define trait  and 
disease SNPs as those reported in the CPGWAS (Hindorff et al. 2009), and trans-eQTLs detected with 
increasing sample size. With the size of the current study, we see a plateau effect in the number of 
detected GWAS cis-eQTLs.  On the other, this figure shows that we haven’t yet reached the plateau in 
detecting trans-eQTLs, and the number of trans-eQTLs detected will likely increase as sample sizes 
increase above 1000 individuals.!
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Figure  S11.  Replication  of  eQTLs  in  independent  cohorts.  We  investigated  the 
relationship between replication rate and (a) the strength of eQTLs (magnitude of Spearman 
rho), (b) mean expression levels, and (c) impact of cell type proportions (see Supplementary 
Material).  For  each  associated  gene,  we  only  consider  the  best  SNP  per  gene.  We 
investigated replication rates  in  four  datasets:  MuTHER (Grundberg et  al.  2012)  )  data 
which  consists  of  three  tissues  (adipose,  LCL,  skin),  and  (Fehrmann  et  al.  2011)  data 
(whole-blood). As shown, (a) more strongly associated eQTLs in this study, are significantly 
more likely to be replicated (p < 1e-100) , and  (b) genes with higher expression levels are 
more likely to be replication (p < 1e-20), whereas (c) residual correlation between genes and 
cell type proportions do not impact the replication rate (p > 0.1). !
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Figure  S12.  Variance  in  expression  explained  by  genotype  and  demographic  factors. 
Histograms of of percent total expression variance explained by genotype (dark blue) and both age 
and sex (light blue).  We use stepwise linear regression to find all independently associated cis-
SNPs (Bonferroni corrected threshold of 0.05), using expression data normalized only for known 
technical covariates rather than our full HCP procedure (Supplementary Materials). The proportion 
of variance explained for genes whose expression is not significantly associated with any of the 
corresponding factors is set to zero. (a) Figure shows variance explained for total gene expression. 
There are 9,263 genes whose expression has a significant genotype predictor in this analysis and 
8,704 genes whose expression has  a  significant  demographic  predictor.   (b)  Figure shows the 
proportion of variance in isoform ratios.  There was a significant genotypic predictor of isoform 
ratios for 3,168 isoforms, but there was a significant phenotypic (age or sex) predictor for only 
1,443.!
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Figure S13. Cis-eQTL allele-specific expression effects.  Distribution of aseQTL association 
statistics for SNP-gene pairs identified as cis-eQTLs.  Only the top SNP was considered for 
each cis-eQTL, and we test for association with allelic imbalance at all candidate exonic loci 
in the gene, correcting for the number of tests using permutation analysis.  We observe strong 
enrichment for low aseQTL p-values among cis-eQTL SNPs.!



Figure S14. eQTL and ASE effect size. Figure shows a scatter plot of effect sizes computed for 
eQTLs and effect size computed for ASE for the corresponding SNP-gene. We used a sampling 
approach to  compute effect  sizes  (see Supplementary Materials).  The two estimates  of  variant 
impact are highly correlated (Spearman p < 1e-21).!
!
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Figure S15.  cis-eQTLs and allelic imbalance.  Across all cis-eQTLs, allelic imbalance within the 
eQTL gene is much greater among eQTL SNP heterozygotes than homozygotes, evaluated only 
within heterozygous individuals at a coding locus within the gene.!
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Figure S16. Factors affecting validation of cis-eQTLs through ASE.  Many factors affect 
the validation of cis-eQTLs through aseQTL analysis.  Of the 10,914 cis-eQTLs reported, 
4,983 met a threshold of at least 10 compound heterozygous individuals (heterozygous at 
both the eQTL SNP and at some exonic locus within the gene), and were thus tested for 
ASE effects.  Unsurprisingly, the strength of the cis association is the primary contributor (p 
< 1e-148) to validation through ASE.  We do not observe a trend with respect to expression 
correlation with cell type markers.  Other than cis effect, we identify two primary trends 
shown  here,  both  related  to  statistical  power.   (a)  Figure  shows  the  rate  of  cis-eQTL 
validation broken down by buckets representing the number of heterozygous individuals 
available for aseQTL testing (the lower bound for the bucket is shown on the x-axis), with a 
strong relationship observed (p < 1e-78). (b) Figure shows rate of validation broken down 
by average read depth over the ASE locus, demonstrating that loci with greater read depth 
(and thus more accurate estimates of allelic expression) have higher validation rates (p < 
1e-92).   (c) Figure shows validation rate among the most highly powered eQTLs.  Here, we 
restrict  to  SNPs  with  at  least  200  heterozygous  individuals,  for  different  read  depth 
thresholds.   Overall,  this  analysis  suggests  that  the  validation  rate  of  cis-eQTLs,  given 
sufficient power, is between 50-70% (with no threshold on minimum effect size).!
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Figure S17. Co-expression of genes with a shared regulatory variant.  Gene pairs with 
an identified shared cis-eQTLs are co-expressed to a higher degree than random gene pairs 
drawn from the same proximity distribution as the co-regulated genes (p < 1e-87).  We also 
observe that the eQTL direction of effect agrees in 961 out of 1225 co-regulated pairs, and 
that 44.15% of the variance explained by the SNP is shared between co-regulated genes 
(estimated through partial correlation, likely an underestimate due to other factors affecting 
expression level of each gene).!
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Figure S18. Example eQTL module, detail. a) The expression of four genes, ADCY7, BRD7, 
NDK1,  and CYLD  are all significantly associated with the SNP rs11644386.   Box plots show 
expression levels of each gene grouped by genotype of rs11644386, annotated with significance 
of each association.  b) Heatmap showing association results for each SNP in this genomic region 
with  the  genes  depicted.   This  heatmap,  with  each  colored  rectangle  depicting  strength  of 
association between one gene (on the x-axis) and one SNP (y-axis), is based on raw association 
statistics rather than the stepwise procedure, to illustrate the clear pattern of association sharing 
among these genes.  The regulatory mechanisms that affect NKD1 and NOD2, evident from the 
association with rs8047222,  appear to be distinct from the mechanisms that regulate ADCY7, 
BRD7, NKD1, and CYLD.  We note that the intermediate gene SNX20, which is not significantly 
associated with either SNP, is transcribed in the opposite direction from NKD1 and NOD2. !
 !
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Figure  S19.  Co-regulation  in  topological  domains.  Enrichment  of  shared  regulatory 
variants among genes within the same topological domain. Using all  pairs of genes, we 
compute the log odds multiplier on a gene pair sharing some eQTL variant given that the 
TSS of both genes fall in the same topological domain as defined by regions of chromatin 
interaction,  first  controlling  for  linear  proximity  between the  two TSSs  (Supplementary 
Materials). As shown, topological domains are significantly predictive of shared eQTLs. a) 
Figure demonstrates enrichment according to topological domains derived Hi-C assays in 
two cell types: embryonic stem cells (ES cells) and adult fibroblasts. Both show significant 
enrichment.   b)  Enrichment of  shared regulatory variants  among genes within the same 
topological broken down by chromosome. The strength of enrichment varies significantly 
by chromosome, but the pattern between chromosomes is shown to be highly consistent 
between the two cell types topological domains were derived from. !
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Figure S20.  Filtering for accurate identification of  trans-eQTLs.  Figure (a)  shows 
broad coverage of reads across exons of the gene and consistent association supported at 
each position, whereas in Figure (b) reads are only found covering a small number of 
positions along the gene, though at great depth.  The association shown in Figure (b) is 
driven purely from few positions, and thus is filtered by our method.  (c) and (d) Tables 
show the number of candidate trans-eQTLs and trans-sQTLs filtered at each stage.!
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Figure S21.  Trans-eQTL SNPs’ effects on proximal genes. Trans-eQTL SNPs also have 
effects on expression and isoform ratio of proximal genes.  The first histogram shows the 
distribution of cis-eQTL p-values for all trans-eQTL SNPs, considering all genes within 
1Mb  of  each  SNP.   The  second  histogram  shows  the  distribution  of  sQTL p-values, 
evaluated similarly.!
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Figure S22.  Enrichment for low p-values for association of rs2759386 with distal isoform 
ratios. Figure shows the observed quantiles of log p-values of SNP rs2759386 with all isoform 
ratios (y-axis) (a total of 12080 isoform ratio, corresponding to 4421 unique genes), compared to 
the expectation (x-axis) (each dot represents the log p-value for the association of this SNP with 
one isoform). rs2759386 is a cis-eQTL for the splicing factor QKI, and it is more correlated with 
a large number of isoform ratios compared to the expectation.!
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Figure S23. Example of a paradoxical trans-eQTL relationship.  SNP rs11848309  is a trans-
eQTL for the gene RELB, and a cis-eQTL for the gene NFKBIA. The expression of NFKBIA and 
RELB are significantly correlated (p<1e-18), however the direction of the correlation is the opposite 
of that predicted based on the relationship between rs11848309  and RELB (positive correlation), 
and the relationship between rs11848309 and NFKBIA (negative correlation).  Potential mechanisms 
could include cis-SNP effecting protein function of NFKBIA and autoregulatory feedback.!
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Figure S24.  Potential confounding factors in trans-eQTL detection.  (a) Figure shows the 
log p-values for discovered trans-eQTLs. X-axis shows p-values obtained from the HCP model, 
which  corrects  for  cell-type  proportions  and  technical  covariates.  Y-axis  shows  p-values 
obtained  from  HCP data  that  has  been  further  adjusted  (linear  regression)  for  intake  of 
antidepressant. As shown, the medication intake does not effect trans-eQTL p-values. (b) Figure 
shows the log p-values for discovered trans-eQTLs using quantile normalized data (y-axis) and 
HCPtrans data (x-axis). Quantile normalization was applied to raw data to account for variable 
sequencing depth. As shown in the figure, HCP normalized data identifies many more trans-
eQTLs compared to the quantile normalized data (the red lines mark the Bonferroni threshold).!
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Figure S25. Relationship between population structure and trans-eQTL detection. (a) In 
the raw data (before any population correction), we observe no overall inflation of associations 
among  cross-chromosomal  SNP-gene  pairs  (top  histogram),  and  after  correcting  for  six 
population PCs, little to no change in distribution.  This is consistent with Figure S5, which 
suggests that very few genes’ expression levels are affected by population structure.  Our final 
analysis is based on removal of 3 population PCs.  (b) Figure shows the log p-values for our 
reported 138 trans-eQTLs before (y-axis) and after (x-axis) adjusting for population structure 
(regressing out three genotype PCs). As discussed in Supplementary Materials, we discovered 
trans-eQTLs on data adjusted for population structure, but this suggests that correction had very 
little  effect.  This  figure  shows  that  the  population  structure  here  does  not  result  in  a  high 
inflation of trans-associations.!
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Figure S26. eQTLs and selection pressure.  (a) transcription factors (TFs) with cis-eQTL are less 
correlated (by co-expression) to their known targets. Boxplot shows that TFs that have at least one 
cis-eQTL tend to have a lower expression correlation with their targets, compared to those TFs that 
have no cis-eQTLs. (b) Depletion of cis-eQTLs appears to hold among conserved genes (here in 
yeast) across all levels of gene expression, and thus is not explained simply by expression level of 
conserved  genes.   Although  sub-dividing  genes  into  expression-level  buckets  does  result  in 
statistical significance for every bucket,  depletion is observed across expression levels.  (c) The 
fraction of genes with an eQTL for non-conserved (red) genes is compared to the fraction among 
conserved genes (blue) for six species.  While no significant result is observed for more recently 
diverged species (chimp, mouse, chicken), analysis for the three more distant species (zebrafish, c. 
elegans, yeast) all show a significant depletion of eQTLs among conserved genes.  We show 95% 
confidence intervals for each estimate.!
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Figure S27.  Genomic position of  QTLs.  (a)  Comparison of  cis-eQTLs (blue)  and sQTLs (red) 
according  to  the  location  of  the  single  strongest  SNP for  each  gene,  in  order  to  highlight  the 
differences between the two regulatory mechanisms. Each bar represents the fraction of these SNPs 
that fall into the labeled genomic region (thus, the bars for each QTL type sum to 1.0). We find that 
sQTLs are much more concentrated within gene boundaries compared to cis-eQTLs, which have a 
much stronger enrichment among upstream regions. (Using our logistic model that accounts for SNP 
position, we explored the enrichment of (b) eQTLs and (c) sQTLs in TF binding sites (ENOCDE 
ChIP-seq  data)  and  open  chromatin  regions  (ENCODE  DNAase  I  hypersensitivity  data),  with 
increasing distance from TSS. As shown on these figures, we observed that with increasing distance 
from TSS the enrichment declines,  indicating that  farther ChIP-seq and DNAase sites are not as 
predictive of QTLs as those that are closer to the TSS. Figures shows results from a single ChIP-Seq 
and a single DNAase assay with the highest enrichment score. We only show results for up to 100kb 
for sQTLs as there is no enrichment beyond 100kb.!
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Figure S28. Latent Regulatory Variant Model (LRVM) and application to cis-eQTL prediction. (a) 
Schematic diagram of Bayesian network model of eQTL association.  (b) ROC curve demonstrating the 
performance of LRVM on predicting eQTL associations.  We compare 1) LRVM (AUC 0.6383) 2) logistic 
regression incorporating a  multiplicative  term for  minor  allele  frequency (AUC 0.5971)  and 3)  plain 
logistic regression (AUC 0.5553).!
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Figure S29. Application of LRVM to splicing QTLs. (a) ROC curve demonstrating the performance 
of LRVM on predicting sQTL associations.  We compare 1) LRVM (AUC 0.6442) 2) logistic regression 
incorporating a  multiplicative  term for  minor  allele  frequency (AUC 0.5965)  and 3)  plain  logistic 
regression (AUC 0.5514). (b) LRVM scores are shown for candidate sQTLs (isoform/SNP pairs) which 
were not included in training LRVM.  Each sQTL was scored by LRVM for predicted likelihood of 
association,  and  twenty  quantiles  were  computed  for  the  resulting  scores.   Then,  enrichment  of 
(observed)  sQTL associations  was  computed for  each quantile.   Here,  we use  conditional  odds  to 
estimate  enrichment,  first  correcting  for  SNP position  in  the  same  procedure  used  for  genomic 
annotation enrichment analysis (Supplementary Materials) – although LRVM does incorporate position 
features, we highlight here the information captured by LRVM scores beyond SNP position. !
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Figure S30. LRVM sQTL prediction for GWAS SNPs. LRVM assigns higher sQTL regulatory 
scores to trait and disease SNPs compared to background SNPs. Predicted splicing (sQTL) impact 
of traits and disease SNPs according to LRVM, for trait and disease variants not available during 
model training.  We compute the score of each SNP for each of its proximal genes.  Known trait- 
or disease-associated SNPs score more highly that expected at random (p < 1e-7).!
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Figure S31. Effect of distance from TSS on LRVM.   We explored the effects of SNP 
location on LRVM performance.  Figure 5 demonstrates that SNP position (distance from 
TSS and within-gene location) are strong predictors of eQTL SNPs, and similarly we see 
that position is one of the strongest features used by LRVM.  Here, we compare a purely 
distance-based prediction (left-most bar) and three versions of LRVM.  In order from left to 
right: 1) Dist – a logistic model using only distance features without LRVM latent variable 
modeling, 2) LRVM-ND – LRVM with features only based on genomic annotations with no 
distance  features,  3)  LRVM-DO –  LRVM using  only  distance  features,  and  4)  the  full 
LRVM model.  Overall we find that the modeling refinements made by LRVM (accounting 
for MAF and LD) are the most significant contributors to its accuracy, with ‘Dist’ alone 
performing much worse than any of the LRVM models. Second, both distance and genomic 
annotations  contribute  to  LRVM accuracy.   Given  significant  correlation  between  SNP 
position and regulatory elements (TF binding sites are themselves enriched near the TSS), 
there is overlap in the information provided by these two signals, which cannot be causally 
disambiguated without interventional study, but we find ultimately both do contribute.!
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