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1. Recruitment and sample collection

This study was performed on 922 European individuals, recruited through a survey company
called Knowledge Networks Inc (KN), for the Depression Susceptibility Genes and Networks
Project (NIMH Grant SRC2MHO089916). Through a process involving an online questionnaire
(relevant sections of CIDI-SF), KN identified potential candidates for this study. From this pool,
1,259 individuals actually went on to have their blood drawn, filled out consent forms, and were
then telephone interviewed (SCID interview--- Structured Clinical Interview for DSM-IV
covering depressive, bipolar, psychotic, alcohol, substance and anxiety disorders as well as
family history of mood disorders). After excluding some of the eligible individuals for reported
non-European ancestry or medical comorbidities, which were thought to be too unusual and
significant for the gene expression analysis, and performing quality control described below, we
actually analyzed 463 cases of Major Depressive Disorder and 459 controls (total of 922)
individuals. The case/control aspect of this cohort does not have a noticeable impact on eQTL
detection (Figure S6), so for this study we do not consider or analyze depression status.

2. Quality control

2.1 SNP array quality control

Genotype data was filtered for genotype quality as follows. QC was carried out simultaneously
for this dataset and a second dataset (Genetics of Recurrent Early-Onset Depression, phase 2,
unpublished data) as they were genotyped by the same lab on the same platform a few months
apart. Pairwise estimates of IBD were computed in PLINK (Purcell et al. 2007) , and any sample
duplicates were excluded. Principal components analysis (PCA) was carried out for all
individuals using every fifth autosomal SNP (to reduce the influence of LD among SNPs), and
the principal component scores examined for relationship to geographical/ethnic origin based on
self-report (Figure S1). As shown in previous studies (Shi et al. 2009), PC1 was interpretable as
a North-South gradient (Anglo-Saxon and Scandinavian to the North, Mediterranean and
Ashkenazi Jewish to the South) and PC2 as East-West (from Russian/Slavic to Western
European), with PC3 further separating Ashkenazi Jewish ancestry from other Mediterranean
(Italian, Greek) ancestry. Individuals were excluded who were obvious outliers (by visual
inspection of the plot of PC1 vs. PC2, or because multiple smaller components were numerical
outliers) and PCA was repeated to ensure that there were no outliers by visual inspection of plots
(Figure S4). Additionally, samples were excluded for elevated rates of heterozygosity (over
34.5% of SNPs) or if genotypes could not be called for more than 1.4% of SNPs. For SNPs, we
evaluated QC metrics in each study, and retained SNPs with a missingness rate below 0.012, a
10% Gencall score above 0.55, and a Hardy-Weinberg probability below 0.0001.



We corrected for the sub-population structure observed from the genotype PCs, by regressing the
expression of each gene against the top three genotype PCs (from normalized expression data,
Section 4). However, we observed that removal of population signal does not significantly
influence cis-eQTL discovery, and overall we lost only 11 genes from cis-eQTL results through
this correction (Figure S5).

2.2  RNA-sequencing quality control

If pooled RNA-sequencing libraries did not produce at least 180M reads, sequencing or library
preparation was repeated for all three individuals in the lane (Figure S2a). For each individual
with more than one sequencing run, runs with sufficient reads (> 20M), good mappability (>
40%), and good reproducibility of quantified expression data with the other runs (r* > 0.9), were
merged. The first base of each read was trimmed to account for the stronger sequencing biases at
the beginning cycles before mapping (Figure S2b). Genotype calls were made from RNA-seq
data based on loci with sufficient read depth, and compared to genotypes from the SNP array.
Individuals with concordance below 0.85 were removed from the study as potentially mislabeled
(Figure S3). Additional quality metrics were evaluated to ensure high RNA Integrity Numbers
(RIN) (Figure S2c), low percentage of hemoglobin reads (Figure S2d), and a high proportion of
mapped reads in each individual (Figure S4). The results of quality control analysis were also
utilized in a data normalization step described in Section 4.

3. Quantifying ASE and detecting mapping bias

Allele-specific expression was quantified by measuring allelic ratio at genotyped, heterozygous
loci, after filtering for loci with significant mapping bias evident through simulation. For each
candidate SNP, we simulated 4 sets of 50bp reads containing all 50 reads covering the locus, for
both reference and alternative allele using both strands. We assigned base quality scores to the
simulated reads based on the per-position distribution observed in our real data, and aligned
reads with the same settings as our standard pipeline. Finally, we evaluated the alignments
around each locus using samtools mpileup (Li et al. 2009), and compared the mapping rates
between reference alleles and alternative alleles. As observed in past studies, there was an overall
bias towards higher mapping rates for the reference allele, and any individual locus with
evidence of mapping bias in either direction was removed from further analysis. At the
remaining loci, allelic ratio was then computed for each individual from reads over each allele
using samtools mpileup (Li et al. 2009), and used in aseQTL detection. In addition, statistically
significant ASE was called per-locus, per-individual, assuming a binomial distribution with
binomial parameter p computed using each individual’s personal reference bias. ASE calls per-
individual were restricted to loci with 30 or more reads, at least one read observed per allele, and
a read fraction of at least 1e-3 for each allele.



4. Correcting for potential confounders using HCP

We and others have observed that major components of expression variability can often be
attributed to technical factors that introduce unwanted, systematic variability in data (Leek and
Storey 2007). Such unwanted, systematic variability leads to spurious correlations in the data
(among genes or samples), and results in both false positive (Kang et al. 2008; Listgarten et al.
2010) and false negative associations (Stegle et al. 2012). Importantly, several eQTL studies
have demonstrated that removing such unwanted, systematic variability dramatically improves
the power to detect cis-eQTLs, and also leads to more consistent discoveries among different
datasets (Stegle et al. 2012). Consistent with these previous observations, we also observed
variability in RNA-sequencing data that could be attributed to measurable technical factors
(Figure S8c). Therefore, we devised a method, called HCP (Hidden Covariates with
Prior)(Mostafavi et al. 2013), for correcting for such systematic unwanted variability in RNA-seq
data, capturing both known technical covariates and any major broad trend in the data even if it
arises from an unobserved source. As shown in Figure S8a, we observed a dramatic increase in
the number of cis-eQTL and validated co-expression associations after correcting for
confounding structure using HCP.

4.1 The HCP model

Intuitively, as described in details below, HCP can potentially correct for two types of
confounding factors: known and latent (hidden) confounding factors that introduce unwanted
variability. A key component of HCP is an informed assumption about variability patterns
introduced by hidden factors: given a set of potential confounding factors (or known covariates)
(see Table S1 for the list of potential confounding factors in this study), HCP infers hidden
factors that are informed by a prior based on the known factors. However, the strength of this
prior can be adjusted (through parameter tuning) to remove different amounts of systematic
variability attributed to unobserved factors, as appropriate for different analyses. For example,
removing too much variability may impede the detection of trans-eQTLs that affect many genes,
whereas aggressive normalization may improve detection of cis-eQTLs and other narrow effects.
Therefore, as we describe below, we set HCP’s parameter for cis- and trans-eQTL detection in
two different ways.

In particular, given a matrix of logarithm-transformed read counts, represented by Y of size n x g
where n is the number of individuals and g is the number of genes, HCP models hidden
confounding factors Z and their effect per gene as follows:

Y,i~N(ZxW,;, 1) )
Z ~N(FXU.y,011),U.; ~ N(0,0,1), W,;~ N(0, o51) (2),



where Y.; (column i of Y) is the log of expression values for gene i in all n individuals, Z is a
matrix of inferred hidden factors and has k columns (k being the number of hidden factors, and
Z. is the k" column of Z), W,; is a vector that represents the linear effect of hidden factors on
gene 7, and F is a matrix of known confounding factors. We estimate the unknown Z, W, and U
using maximum likelihood, and set the hyper-parameters &, g;, 05, and o3, using the procedure
described below.

The model hyper-parameters k, oy, d,, and o3, allow us to adjust the flexibility of HCP in
identifying broad versus narrower effects in the expression data, and we set these parameters by
optimizing two different criteria for cis- and trans-eQTL detection. In particular, one could set
these hyper-parameters to optimize the number of cis- or trans-eQTLs directly, however, such
optimization will likely lead to overfitting the data. Therefore, for cis-eQTL analysis, we set the
model hyper-parameters by optimizing the total number of cis-eQTLs for genes on only one
(training) chromosome (chromosome 18), and evaluate the model on a single test chromosome
(chromosome 14) (Figure S8a). For trans-eQTL analysis, the scarcity of significant associations
makes it difficult to directly tune parameters without risk of over-fitting. Thus, we optimize the
parameter settings to maximize the number of significant associations in expression profiles
among a set of transcription factors (TF) and their known targets (TF target information was
obtained from the ChEA database(Lachmann et al. 2010)) (Figure S8b).

4.2 Known covariates used in HCP

We provided HCP with a set of 35 observed covariates (Table S1). We found that the inferred
HCP factors summarize multiple correlated known confounding factors (Figure S7) with
significant contribution to variability in the RNA-sequencing data. Generally, we observed that
the top HCP factors largely correspond to technical factors specific to RNA-seq such as
sequencing depth, percent duplicated reads, and others obtained from the Picard metrics and to a
much lesser extent to biological factors such as time of blood drawn and estimates of cell type
frequencies (described below) (Figure S7).

Whole blood is a mixture of cell-types, and differences in cell-type frequencies in individuals
could potentially lead to unwanted expression variability. Therefore, we estimated blood cell
type frequencies and used these estimates as covariates in HCP. To estimate cell type frequencies,
we obtained cell type signatures for blood cell types as in (Abbas et al. 2009) (only 9 of the
original 17 cell types from (Abbas et al. 2009) were assigned a non-zero frequency in any of our
subjects (see Table S1 for the names of the 9 cell types)). We then estimate per-individual cell
type frequencies by using non-negative least squares regression, and regressing the observed
expression data that reflect a mixture of cells for a given individual onto the cell-type-specific
expression signatures. In particular, given the observed log (un-normalized) expression values
A; of size s x 1 for s genes in individual i (defined below), we estimated cell type frequencies in
individual i as follows:



A~N(XXC;, D), st. C; >0 3)

Where X is a matrix of size s x 9, s being the number of genes that are in the cell signatures: each
column k of X represents the expression levels of the s genes in cell type k. The vector C; then
represents the frequencies of each of the nine cell types in individual i.

For the computation of percent variance explained (PVE) using genotype or phenotype data
(Figure S12), we only correct the raw data for the known covariates and do not use the full HCP
model. To do so, we perform linear regression for each gene using all the 35 known covariates,
and use the residual of the regression.

5. Replication of eQTLs

5.1 Replication of cis-eQTLs

In order to examine overlap of our eQTLs with previous studies, we obtained two existing large
cis-eQTL datasets: (1) the MuTHER study (Grundberg et al. 2012) provides the complete list of
tested cis SNP-gene p-values (http://www.muther.ac.uk/), and (2) the Fehrmann study
(Fehrmann et al. 2011) provides a list of significant SNP-gene pairs at 0.05 FDR.

Given the differences in statistical power in different datasets, we compare our results using the
m, statistic (Storey and Tibshirani 2003), which estimates the total proportion of non-null
hypotheses, and provides a more robust alternative to simple overlap of statistically significant
results according to an arbitrary threshold. The Fehrmann et al. study (whole blood, 1469
European individuals) discovered 29,049 SNP-gene pairs (corresponding to 4,904 genes)
significant at FDR 0.05 that were also fested in our data. Because we do not have the entire SNP-
gene p-values for this study, we can only report 7, of their significant eQTLs as assessed in our
study. We estimate m,=0.88, which is a value slightly higher than previously reported eQTL
replication rates in microarray studies (Grundberg et al. 2012).

The MuTHER data consists of all tested SNP-gene p-values for adipose, LCL, and skin, obtained
from a cohort of Caucasian female twins. We identified MuTHER cis-eQTLs using the same
multiple testing correction procedure that was used in our study (0.05 FDR at gene level, applied
after a Bonferroni correction for number of SNPs tested per gene). Replication rates of MuTHER
eQTLs in our data are 7;=0.73, 0.74, and 0.66, for adipose, LCL, and skin, respectively, and we
observe a higher value, 71,=0.89, when only considering eQTLs that are shared among the three
tissues. The replication rates of our eQTLs into MuTHER are 7,=0.51, 0.58, 0.56, for adipose,



LCL, and skin, respectively. These replication rates are slightly lower than those reported by
(Grundberg et al. 2012) (ranging between 0.6-0.7) for replication of their eQTLs in the same
tissue. For a comparison, we also investigated the replication rate of (Fehrmann et al. 2011) in
MuTHER data, and observed slightly higher replication rates: 0.64, 0.73, 0.68, for adipose, LCL,
and fat, respectively. This may be expected given major differences in technologies (MuTHER
and Fehrmann use microarrays, whereas we are using RNA-sequencing), though, again, the
replication of Fehrmann et al. into our data at ,=0.88, using the same tissue, is ultimately the
highest of the measured rates.

Additionally, to better understand the factors that affect replication rate of genes we investigated
(1) residual correlation of expression data with cell type proportions that may have been
insufficiently corrected by our normalization procedure and could lead to spurious associations,
(2) impact of effect size and number of individuals (summarized by regression coefficient), and
(3) average expression levels of genes. For this analysis, we assigned a reproducibility number
{0,1,2,3,4} to each eQTL, based on the number of “studies” in which the eQTL was reported as
significant (using a 0.05 FDR threshold reported in the original studies), where the four
investigated studies are the three tissues from Grundberg et al. (each counted as a separate study)
and eQTLs from Fehrmann et al. We only considered gene-SNP pairs that were tested in our
study and all three tissues in Grundberg et al., and considered the best SNP for each eQTL gene
(according to this criteria 8208 genes had an eQTL in our study). First, to ensure that failure of
replication is not influenced by residual correlations with cell type proportions, we estimated the
spearman correlation coefficient between our cell type estimates and compared this estimate to
reproducibility of eQTLs (Figure S11c). As shown, we did not observe a correlation between
strength of correlation with cell-type and reproducibility (p>0.1). In contrast, we observed a
significant correlation (p<le-20) between average expression levels and reproducibility (Figure
S11b), and between strength of the association (Spearman rho) and reproducibility (p<le-100)
(Figure S1la). Therefore, these results suggest that the slightly lower replication rate of our
eQTLs in MuTHER data, compared to rates previously reported by (Grundberg et al. 2012) are
likely due to differences in technology (better quantification of lowly expressed genes by RNA-
seq, and very high depth of current study compared to previous RNA-seq studies), statistical
power, and differences in tissues. Finally, we also investigated the relationship between
reproducibility and whether or not and eQTL SNP is exonic, looking for evidence that mapping
errors due to genetic variation within coding regions could drive spurious eQTLs in RNA-seq
data. We found that exonic eQTLs do not show any signs of lower reproducibility between our
data and microarray studies (in fact we observe a slightly higher replication rate, with only 3% of
non-replicated eQTLs being exonic, compared with 5% of replicated eQTLs, p < le-4). This
suggests mapping errors are not a major source of differences between RNA-seq and microarray
eQTLs.



5.2 Replication of trans-eQTLs

Here, we compared our frans-eQTLs to those of Fehrmann, as both datasets have a relatively
large number of samples, and involve the same tissue (whole blood), though with a major
difference in measurement technology (RNA-seq versus microarray) and in subject recruitment
criteria.

Fehrmann et al. reported 396 SNP-gene pairs (95 genes) with a frans-association that were also
tested in our data. 21 of these SNP-gene pairs were deemed genome-wide significant in our data,
corresponding to 11 genes with a shared trans-eQTLs in both studies (significantly more than
expected by chance, hypergeometric p < 1e-100). (Recall that this study identified 138 genes
with an associated trans-eQTL). The replication rate of Fehrmann et al trans-eQTLs in our study,
as measured by m,=0.74, is higher than the replication rate of previously reported trans-eQTLs
(Grundberg et al. 2012). To avoid multiple non-independent tests because of the LD structure,
we only considered the best SNP per eQTL gene reported in Fehrmann et al. To ensure that this
mt, estimate is not inflated due to spurious associations between random SNP-gene pairs in our
data, we also computed the m, statistic for 500 random sets of 95 SNP-gene pairs. Among these
random controls, we observe a median s, of 0.0, and 95% falling below ,=0.26, indicating the
replication of trans-eQTLs is significantly higher than would be expected by chance. (Similarly
we see no evidence of overall inflation in frans-eQTL associations, Figure S25). Unfortunately,
we could not estimate m, for replication rate of our frans-eQTLs in Fehrmann et al., as only their
significant (FDR 0.05) results were made publically available.

6. GWAS associated SNPs and cis-eQTLs

To determine whether certain disease categories were overrepresented in our GWAS eQTL hits,
we performed two tests. Here, we used the first definition of GWAS eQTL from Table S2. First,
we computed the enrichment of eQTLs for each disease category using a hypergeometric test
(Table S3). Second, we curated 8 broad categories of diseases, and computed the enrichment of
these broad categories compared to other diseases. In order to ensure that our enrichment our not
biased because of LD patterns, we only considered SNPs that are at least S0Kb in distance for
each disease.

In total, 232 diseases from the GWAS catalog (Hindorff et al. 2009) were associated with at least
one eQTL. As shown in Table S2, 3 diseases were significantly enriched in eQTLs at 0.1 FDR,
and 11 were significantly enriched at 0.2 FDR. Next, we considered 8 broad categories of
diseases: neurological disorders, body size, pigmentation, metabolic, autoimmune diseases,
cardiovascular traits, cancer, and blood chemistry. For each of these disease categories, we



identified relevant SNPs, and computed enrichment compared to that of other diseases. We
identified two nominally significantly enriched categories: autoimmune (p-value 0.03) and blood
chemistry (p-value 0.024), whereas the rest of these categories were not nominally significant
(p>0.05).

7. Effect size computation for eQTLs and ASE

For each candidate SNP, we subsampled 100 individuals to create a balanced dataset with no
more than 50 individuals represented by any single genotype (thus at 50 individuals will have
each allele). Within this sample, we estimated significance and effect size using linear
regression on the raw (non-normalized) expression data. For each gene, we identified the
strongest SNP according to these sampled estimates and, for eQTLs significant at FDR 0.05, we
recorded the effect size (expression fold change) and allele frequency for that SNP. We also
used subsampling to compute ASE effect size (defined here the average fold change between the
highly expressed allele and the less expressed allele). We sample two individuals who are
heterozygous at both the candidate regulatory variant and a coding locus in the corresponding
gene. Within each individual we subsampled reads to avoid biases based on read depth, drawing
30 reads at random from the reads observed for each individual and computing allelic fold
change from this sample. We then average the fold change observed in these two individuals as
an estimate of allelic effect of the regulatory variant.

8. Trans-eQTL detection and filtering

To account for the possibility of mapping errors introducing spurious trans-associations, we
applied a series of filters to our candidate trans-eQTLs. In particular, in the unfiltered data, we
did observe a moderate enrichment of known pseudogenes (12%, compared to 1% of overall
expressed genes, p<le-4), and specific associations between regions of sequence similarity
(enrichment p-value for eQTLs arising between regions of sequence similarity p<le-80). Such
associations may arise between a SNP impacting the expression of a nearby gene, but where
reads are incorrectly mapped to a distant gene similar in sequence. Such mapping errors are
possible even among uniquely mapped reads for regions of high sequence similarity due to
factors such as reference genome errors, polymorphisms, and sequencing errors. As a first step,
we simply removed all pseudogenes in our frans analysis, and removed associations occurring
between a gene in a known paralog family and any cis-regulatory SNP for another paralog in the
same family.



Then, we directly identify regions of the genome with potential for mapping errors. We
simulated 52 million 50bp reads covering known gene coding/UTR and pseudogene annotations
in sliding windows. These reads were then trimmed for the first base, combined with two
Illumina sequencing adaptors that are unmappable to human reference genome, and given a set
of sequencing quality scores sampled from a position dependent distribution drawn from our real
reads. The simulated reads were then aligned with TopHat (Trapnell et al. 2009) allowing up to
4 mismatches and multiple alignment. For each gene, we eliminated from consideration SNPs
within SMb of blocks where simulated reads from the gene mapped with these lenient parameters.

Finally, real associations should affect expression of an entire transcript, evident by reads
distributed smoothly across an entire gene or set of exons, whereas mapping errors among
uniquely aligned reads are likely confined to a small number of positions within a gene. Thus,
we developed a method for evaluating the “smoothness” of an eQTL association signal across
the expressed exons of a gene. An example of a suspicious association identified by this method
is shown in Figure S20a, S20b. In particular, we computed the effect size a, of each eQTL at
the gene level using linear regression, in addition to estimates of the effect size a; based on
reads covering each individual exonic position i within the gene. Covering reads were identified
using samtools mpileup(Li et al. 2009). We removed any association where the final effect size
at the gene level was not well represented across positions (where a; > 4X median (a;)). We
note that the frans associations filtered by paralog and cross-mapping steps were very likely to
also fail this test. Figures S20c and S20d summarize the number of associations that were
eliminated by each of our filters.

9. Intra-chromosomal analysis

To evaluate the enrichment of eQTL sharing in gene-dense regions, we estimated the number of
other genes within 1Mb of the transcription start site of each gene, and compared this estimate of
density between 1) genes with a shared regulatory variant and 2) genes with only non-shared
variants, and found density to be significantly higher among the first group (p<le-74). We
downloaded normalized Hi-C contact estimates along with a discretization of each chromosome
into topological domains based on measurements in human fibroblasts (Dixon et al. 2012). We
evaluated sharing of regulatory variants by pairs of genes in this analysis by identifying SNPs
nominally associated with both genes using a stringent p-value threshold of 1e-7, not necessarily
requiring that they share their best SNP. This is a more inclusive definition of sharing than using
the results of stepwise regression, but the stepwise method suffers from arbitrary and
independent selection of SNP for each gene particularly among SNPs in strongly linked, highly
associated regions. Using this definition, we record for every pair of genes located on the same
chromosome whether they share any strong candidate regulatory variant. We then evaluated
whether membership in the same topological domain is predictive of sharing of regulatory
variants, by computing the conditional odds multiplier after controlling for linear distance
between the TSS of the two genes.



10. Learning trans-eQTL regulatory network structure

We used a series of likelihood ratio tests to distinguish between three types of regulatory
network structures involving a SNP acting in cis- to nearby genes and trans- to a distant gene.
We performed this analysis considering only the best frans-eQTL for each gene. In particular, we
first identified 74 trans acting SNPs that had a local effect on any cis-gene (1Mb distance
threshold) using a p-value threshold of 0.05. For each of these 74 cases, we classified the
regulatory network structure consisting of the trans-eQTL SNP, nearby effected cis-genes, and
the target trans-gene as (1) full mediation, (2) partial mediation, or (3) independent. We perform
all analysis on ranked data, to ensure consistency with Spearman’s rank correlation used to
obtain frans-eQTLs.

We first identified full mediation of the effects of a SNP through the expression of its cis-genes
by comparing the likelihood of the model p(t|s,c)~N(t|u+ sa+cB) to that
of p(t|c)~N(t|u + cB), where t is a vector representing the expression level of the target (trans)
gene, ¢ is a vector or matrix consisting of the expression levels of the cis-gene(s) (only
considering those with a correlation p-value of 0.05 with £), s is a vector representing genotype €
{0,1,2} at the trans-eQTL SNP, and u, @, § are parameters that are estimated using maximum
likelihood for each model separately. We classified instances as full mediation whereby the full
model p(t|s, ¢), does not provide a significantly better fit compared to p(t|c) (again using a p-
value threshold of 0.05).

For the remaining trans-eQTLs, we identified partial mediation by comparing
p(t|s,c)~N(t|u + sa + cpB) to that of p(t|s)~N(t|u + sB), and identifying instances where
p(t|s, c) provides a significantly better fit compared to p(t|s). Instances that are not classified
as either full or partial mediation are classified as independent effects. Finally, we also identified
instances where the predicted directionality of trans-SNP to target effect (based on the mediated
relationships) is not consistent with the observed directionality (we call such instances
paradoxical effects) (see Figure S23). In particular, for each trans-eQTL s, we identify all cis
genes {c,,...,c,} using a threshold of 0.05. Among these cis-genes, we identify the gene that has
the highest correlation with the target gene t, say c,. Then the predicted sign of correlation
between s and t can be obtained as sign( corr(c,t)) x sign(corr(s,c,)), and compared to
sig(corr(s,t)).

11. Comparison of LRVM to other models

We compared the performance of LRVM to two reduced models that explore the impact of
modeling assumptions made in our method. In the first, we predict associations a directly from



features F using a logistic function. In the second, we incorporate a correction for minor allele
frequency by including raw features F along with corrected features m x F into a logistic function
to predict associations a. Neither baseline model includes inference of the latent variables d,
which are only necessary in LRVM to model the effects of linkage disequilibrium. The results
of this comparison are shown in Figure S28 and S29.

Additionally, to assess the impact of SNP position on LRVM, we evaluate different sets of
genomic features. We trained LRVM-DO using only positional features (including whether a
SNP falls in a particular intronic, exonic or UTR location), LRVM-ND using only non-positional
genomic annotation features, and of course the full LRVM model. We compare each of these to
predictions made based on positional features alone, not in the LRVM framework, and thus not
accounting for MAF or LD. Results are shown in Figure S31.

In all evaluations of LRVM and baseline predictive models, we constructed our training set (used
to estimate model parameters), from all odd numbered chromosomes, and our test set, used for
evaluation only, from even numbered chromosomes. This split was chosen in order to reduce the
potential for the training set to contain SNPs or genes highly informative of the test set (such as
containing SNPs in LD between the two), while still having a similar distribution of regulatory
effects in the two sets.

Methods related to LRVM include the Bayesian hierarchical model (BHM) presented in
(Gaffney et al. 2012), (Lee et al. 2009), or even the simple scores provided by RegulomeDB
(Boyle et al. 2012), with Gaffney being the most similar. Both BHM and LRVM assume a
logistic function over genomic annotations as the backbone of predicting regulatory potential of
each SNP. However, BHM primarily compares candidate SNPs in a competitive model within
each eQTL region, and without access to the expression and genotype information for the
relevant region, does not attempt to ultimately predict eQTL status for unseen variants or genes.
Further, because BHM is competitive, it will identify the single best SNP in a region, and unlike
LRVM, BHM does not attempt to predict cases where there are multiple, independent eQTN in
the same region, which have been observed to be common (Stranger et al. 2012). Thus, the two
models are motivated differently and will have different potential applications. LRVM is unique
in its ability to train on association statistics rather than raw expression and genotype data (often
not made publically available), and its ability to make eQTL predictions on genes and variants
not included in the training data. We expect this to provide compelling use cases beyond existing
methods, including training tissue- or population-specific models even for eQTL studies without
full publicly released data, and prioritizing non-coding variants identified in disease studies, even
if those variants weren’t available during model training.



Supplementary Table S1. Known covariates used in HCP. Table lists all the known covariates
(technical and biological) that were used as input the HCP method. 17 of these are technical factors
(colored in yellow) directly obtained from Picard QC metrics. There are two technical factors relating to
sample preparation obtained from the technicians (colored in orange), four other technical factors that we
estimated from the quantified reads (colored in purple), nine factors are the inferred cell type frequencies
(see Supplementary Materials), and one factor representing the time of the day that the individual’s blood
was drawn. individual-specific exon length, and individual-specific GC are estimated as the proportion
of read variance in each individual (mapped to exons) that can be explained by GC compositions of the
exons or the length of the exons, respectively---these factors are estimated per individual, by correlating
mapped reads to exons with a vector of exon GC composition or exon lengths.

1 Sequencing Depth

2 Number of Coding Bases

3 Number of UTR Bases

4 Number of PF Aligned Bases
5 Number of BF Bases

6 Percent Coding Bases

7 Percent MRNA Bases

8 Percent Usable Bases

9 Percent UTR Bases

10 Cell Frequency: Mono

11 Cell Frequency: DC

12 RNA Yield

13 Cell Frequency: Neutro

14 individual-Specific Exon Length
15 Median SPRime Biase

16 Median 5Prime to 3Prime Bias
17 Cell Frequency: NK Cells

18 Cell Frequency: Th Cells

19 Cell Frequency: Platelet Cells
20 Cell Frequency: NK_act Cells
21 Cell Frequency: DC_act Cells
22 Cell Frequency: B Cells

23 Time of Day Blood Drawn

24 Percent Hemoglobin

25 individual-Specific GC

26 Percent Duplicated Reads

27 Median 3Prime Bias

28 Median CV Coverage

29 Cell Frequency: Tc Cells

30 Globin Flag (Technician)

31 Number of Intergenic Bases
32 Number of Intronic Bases

33 Percent Intergenic Bases

34 Percent Intronic Bases

35 Cell Frequency: Tc_act Cells




Supplementary Table S2: Disease and trait-associated variants among eQTL hits. We evaluate the
presence of regulatory associations for 1,445 trait- and disease-associated variants (Hindorff et al. 2009)
in three ways. In the first method (““Any association”) we simply require that the (Bonferroni corrected)
p-value observed for the trait-associated variant pass the global eQTL threshold (FDR 0.05). In the
second method we look for nominal p-values below le-7, corresponding to the threshold used to identify
trait associations. In the third method, we require the SNP both pass the global eQTL threshold, and be
within two orders of magnitude of the best QTL SNP for the corresponding gene. The final column (any
QTL) indicates the union among all QTL types, which do have some overlap.

cis-eQTL sQTL trans-eQTL any QTL
Any association 790 218 9 818
Association p <= le-7 655 159 9 680
Association near best 184 54 9 224
per gene

Supplementary Table S3. Individual traits with eQTL enrichment in GWAS hits. The table shows
the p-values and g-values for enrichment of eQTLs in GWAS traits. The table only shows disease with an
enrichment g-value < 0.2.

disease name p-value q-value
Plasma levels of liver enzymes 0.0005 0.0584
Ulcerative colitis 0.0003 0.0584
Primary biliary cirrhosis 0.0009 0.077
Hematological and biochemical traits 0.002 0.1117
Psoriasis 0.0027 0.1117
Triglycerides 0.0023 0.1117
Chronic kidney disease 0.0077 0.1755
Crohns disease 0.0057 0.1755
LDL cholesterol 0.0068 0.1755
Plasma levels of liver enzymes (gamma-glutamyl transferase) 0.0068 0.1755
Systolic blood pressure 0.0076 0.1755




Supplementary Table S4. Genes and pathways correlated with demographic factors. The table
provides the top twenty genes associated with age and sex in this cohort. We have also performed a
functional enrichment analysis among the top 100, and 500, 1000 associated genes for age and sex
separately using MSigDB (c2.cp.v3.1) annotations. In particular, we find two immune related pathways to
be significantly enriched (0.05 FDR) in top 500 and 1000 sex-associated genes:
REACTOME_CYTOKINE_SIGNALING_IN_IMMUNE_SYSTEM
REACTOME_INTERFERON_SIGNALING.

We also find four enriched pathways (0.05 FDR) among the top 1000 age-associated genes:
KEGG_ECM_RECEPTOR_INTERACTION

REACTOME_SIGNALING_BY_GPCR

REACTOME_GPCR_DOWNSTREAM_SIGNALING
KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION.

Sex Age
Gene Q-value Gene Q-value
OPLAH 1.20E-55 CD248 2.20E-71
Clorf93 5.90E-42 NRCAM 7.90E-49
MMELI 3.70E-33 FBLN2 4.20E-45
CD274 7.70E-30 REG4 8 40E-45
GPR109B 5.30E-26 ROBOI1 6.90E-43
GPR109A 1.20E-24 CACHDI1 3.50E-38
NOS3 1.80E-23 ACCN2 5.50E-38
ADAMTSL2 3.00E-23 TSHZ2 1.60E-37
ULK1 6.40E-22 WNTI10A 1.60E-37
DDX43 4.50E-21 PHLDA3 8.80E-37
GPR171 5.70E-21 SHANK1 2.50E-35
ADM 2.80E-20 FOXJ1 2.00E-33
C2orf55 1.10E-19 ZNF496 1.90E-32
NSDI1 2.00E-19 SLC4A10 1.50E-30
MAN2A2 2.50E-19 AP3M2 3 40E-29
MPO 4.00E-19 ISM1 1.10E-28
GALNT3 4.00E-19 PTK7 1.10E-28
CHSTI10 4 .80E-19 TTC24 2.60E-28
PER3 5.80E-19 CRTAM 1.00E-27
PDCDI1LG?2 6.70E-19 DDB2 1.50E-27
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ANCGROUP Frequency |[Cumulative Frequency |Percent Cumulative Percent
Anglo-Saxon 104 104 11.05 11.05
Ashkenazi 20 124 2.13 13.18
Eastern Eur 31 155 3.29 16.47
Mediterranean 19 174 2.02 18.49
Northern Eur 14 188 1.49 19.98
Native Amer 28 216 2.98 22.95
None 662 878 70.35 93.3
Western Eur 63 941 6.7 100

Figure S1. Ancestry and Principal Components of genotype data. The plot shows Principal
Component (PC) 1 and 2 scores for 941 individuals with genotype data, of which 279 reported that
3 or 4 of their grandparents were of the same ethnic background, as shown in the table above; the
predominant ancestry of these individuals is indicated in the legend, while the other 662 are labeled
“None” (no known predominant ancestry). (a) PC1 reflects a North (here, more negative) to South
gradient with Anglo-Saxons and Northern Europeans (Scandinavians) at the North end and
Ashkenazi Jews at the South end, with Mediterranean (Italians, Greeks) in between. PC2 reflects
West to East (non-Jewish Slavic/Russian). Note that, consistent with our previous observations in
similar samples, individuals with self-reported predominantly Native American ancestry had PC
scores in the main cluster of Western European ancestries, probably reflecting a reporting bias (i.e.,
over-estimation of the proportion of Native American ancestry in the family). (b) The plot shows
that PC3 separated Ashkenazi from Mediterranean ancestry. PCs 1-3 were used to correct expression
data for population structure. We note that the top genotype PCs had a very small impact on
expression variability (Figure S5), and correcting for these PCs only resulted in losing 11
associations.
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Figure S2. RNA-sequencing quality control. (a) The distribution of the number of sequenced
reads is plotted in log scale. The distribution is skewed to the right because of the extra
sequencing runs for poorly sequenced individuals. (b) Boxplot of base quality scores along the
sequencing reads (from base 2 to base 50). Average score at each position is marked in red. The
base quality reaches its maximum at base 14 and begins to decrease slowly after base 25. (¢)
RNA Integrity Numbers (RIN) for post-GLOBINclear™ (Invitrogen), RNA. We recorded the
RINSs for 12 samples from each 96 well plate containing RNAs. (d) Using the GLOBINclear™
(Invitrogen) protocol, hemoglobin RNA was removed from each sample before sequencing. A
histogram of the percent reads coming from hemoglobin transcripts demonstrates the
effectiveness of the GLOBINclear™ procedure amongst our individuals (median percent
hemoglobin read is 0.7%) .
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Figure S3. Concordance between SNP array and RNA-seq called genotypes. SNP genotypes
were called using RNA-seq reads in deep covered regions and compared with the SNP array data.
Low concordance (<85%, shown as a red line) suggests a potential labeling error, and such
individuals were removed from this study. Most individuals show high estimates of concordance.
We removed 6 subjects at the cutoff of 85% concordance.
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Figure S4. Mappability and distribution of mapped bases. (a) For each individual, we computed
the fraction of mapped reads in coding regions (black), UTRs (red), introns (green) or intergenic
regions (blue). This figure shows the distribution of fraction of mapped reads in each of these
regions. As expected, majority of the mapped bases are within the coding regions or UTRs, while
~10% of the bases are within introns or intergenic regions. (b) Histogram of proportion of mappable
reads in each individual. (c¢) Histogram of proportion of uniquely mapped reads (among the reads
that were mapped) in each individual. As shown, in the majority of the individuals, at least 80% of
the mapped reads were mapped uniquely.
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Figure S5. Correlation of genotype Principal Components and expression levels.
Genotype principal components are not strongly associated with gene expression. In this
figure, we show the number of genes correlated with each PC at two nominal
significance thresholds, demonstrating very few genes with any correlation to one of
these PCs. We also find that removal of population signal does not affect cis-eQTL
discovery. We regress each gene against PCs 1-3, and remove the predicted component
before eQTL discovery, but find that fewer than .2% of specific SNP to gene associations
are changed, and overall we lose 11 genes from cis-eQTL results through this correction.
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Figure S6. Evaluation of case control status on eQTL detection. To ensure that the cohort
structure in this study does not introduce any bias in eQTL detection we computed cis-eQTL
associations using the controls only (459 individuals), and compared it to cis-eQTLs detected using
a random sub-samples of 459 individuals from the complete study (thus the sub-sample includes
both cases and controls). Figure (a) shows the log p-values for all cis-SNPs on chromosome 18,
computed using controls only (x-axis) or a sub-sample from the complete study that only includes
459 individuals. The variability in p-values shown in (a) is no more than the variability in two
randomly chosen sub-samples of size 459 shown in (b).
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Figure S7. Correlation of HCP factors with known covariates. Figure shows the correlation
coefficient (Spearman) between 35 known factors (x-axis) and 50 inferred HCP factors (y-axis).
As shown, HCP factors summarizes multiple correlated known covariates, with technical
covariates sequencing depth and other covariates that correspond to proportion of mapped reads
with various annotations being particularly strong (Table S1 describes each of the 35 known
covariates used to infer the HCP factors---ordering of the rows in this figure correspond to the
covariate numbers in Table S1).
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Figure S8. Removing the effects of confounding factors using HCP. (a) We optimized HCP’s
parameters for detecting cis-eQTL by using one chromosome for training (chromosome 18) and 1
chromosome for testing (chromosome 14). Figure shows the number of cis-eQTLs detected on test
chromosome 14 using (i) raw data, (ii) ridge regression where we remove the effects of the 35 known
covariates (see Table S1), and (iii) HCP. (b) We optimized HCP’s parameters for trans-eQTL detection
by optimizing the number of transcription factors and targets with significant expression correlation
(FDR 5% using permutation p-values). Figure shows the number of such co-expressions detected
using (i) raw data, (ii) ridge regression, and (iii) HCP. (c) Figure shows number of genes that are
significantly correlated with the 35 known covariates at FDR 5% on RPKM data and HCP-normalized
data. The technical covariates are ordered as in Supplementary Table S1.
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Figure S9. Bonferroni corrected versus permutation eQTL p-values. Comparison of cis-
eQTL p-values (shown in log scale) obtained through Bonferroni correction per-gene (for the
number of SNPs), and through permutation analysis using 10,000, for all genes. Each dot on
the figure represents a gene. Bonferroni is somewhat conservative for large p-values (small
log p-values), but more precise for very significant p-values since permutation p-value
precision is limited by the number of permutations. No gene is called significant by
Bonferroni which would not also be called significant according to permutation.
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Figure S10. Sample size and number of detected QTLs. (a) Figure shows the number of cis-eQTLs
and sQTLs detected with increasing sample size (number of individuals). For each sample size, we
randomly selected the appropriate number of individuals from our study. As shown in this figure, as
sample sizes increase above 500 individuals we begin to see some plateau effect in the number of
discoveries. (b) Figure shows the number of trait and disease cis-eQTLs, where we define trait and
disease SNPs as those reported in the CPGWAS (Hindorff et al. 2009), and trans-eQTLs detected with
increasing sample size. With the size of the current study, we see a plateau effect in the number of
detected GWAS cis-eQTLs. On the other, this figure shows that we haven’t yet reached the plateau in
detecting trans-eQTLs, and the number of frans-eQTLs detected will likely increase as sample sizes
increase above 1000 individuals.
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Figure S11. Replication of eQTLs in independent cohorts. We investigated the
relationship between replication rate and (a) the strength of eQTLs (magnitude of Spearman
rho), (b) mean expression levels, and (c) impact of cell type proportions (see Supplementary
Material). For each associated gene, we only consider the best SNP per gene. We
investigated replication rates in four datasets: MuTHER (Grundberg et al. 2012) ) data
which consists of three tissues (adipose, LCL, skin), and (Fehrmann et al. 2011) data
(whole-blood). As shown, (a) more strongly associated eQTLs in this study, are significantly
more likely to be replicated (p < 1e-100) , and (b) genes with higher expression levels are
more likely to be replication (p < 1e-20), whereas (c) residual correlation between genes and
cell type proportions do not impact the replication rate (p > 0.1).



I PVE by SNPs

10° [ ] PVE by age and gender
2 102
=
)
B
g 10!
E
=}
Z
10°
0O 10 20 30 40 50 60 70 80
Variance explained
10%)
10°
g
S 10°
2
B
g
£ 10 ‘
=]
’ ‘
10°M ||

10 20 30 40 50 60 70 80 90

Variance explained

Figure S12. Variance in expression explained by genotype and demographic factors.
Histograms of of percent total expression variance explained by genotype (dark blue) and both age
and sex (light blue). We use stepwise linear regression to find all independently associated cis-
SNPs (Bonferroni corrected threshold of 0.05), using expression data normalized only for known
technical covariates rather than our full HCP procedure (Supplementary Materials). The proportion
of variance explained for genes whose expression is not significantly associated with any of the
corresponding factors is set to zero. (a) Figure shows variance explained for total gene expression.
There are 9,263 genes whose expression has a significant genotype predictor in this analysis and
8,704 genes whose expression has a significant demographic predictor. (b) Figure shows the
proportion of variance in isoform ratios. There was a significant genotypic predictor of isoform
ratios for 3,168 isoforms, but there was a significant phenotypic (age or sex) predictor for only
1,443.
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Figure S13. Cis-eQTL allele-specific expression effects. Distribution of aseQTL association
statistics for SNP-gene pairs identified as cis-eQTLs. Only the top SNP was considered for
each cis-eQTL, and we test for association with allelic imbalance at all candidate exonic loci
in the gene, correcting for the number of tests using permutation analysis. We observe strong
enrichment for low aseQTL p-values among cis-eQTL SNPs.
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Figure S14. eQTL and ASE effect size. Figure shows a scatter plot of effect sizes computed for
eQTLs and effect size computed for ASE for the corresponding SNP-gene. We used a sampling
approach to compute effect sizes (see Supplementary Materials). The two estimates of variant

impact are highly correlated (Spearman p < le-21).
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Figure S15. cis-eQTLs and allelic imbalance. Across all cis-eQTLs, allelic imbalance within the
eQTL gene is much greater among eQTL SNP heterozygotes than homozygotes, evaluated only
within heterozygous individuals at a coding locus within the gene.
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Figure S16. Factors affecting validation of cis-eQTLs through ASE. Many factors affect
the validation of cis-eQTLs through aseQTL analysis. Of the 10,914 cis-eQTLs reported,
4,983 met a threshold of at least 10 compound heterozygous individuals (heterozygous at
both the eQTL SNP and at some exonic locus within the gene), and were thus tested for
ASE effects. Unsurprisingly, the strength of the cis association is the primary contributor (p
< le-148) to validation through ASE. We do not observe a trend with respect to expression
correlation with cell type markers. Other than cis effect, we identify two primary trends
shown here, both related to statistical power. (a) Figure shows the rate of cis-eQTL
validation broken down by buckets representing the number of heterozygous individuals
available for aseQTL testing (the lower bound for the bucket is shown on the x-axis), with a
strong relationship observed (p < 1e-78). (b) Figure shows rate of validation broken down
by average read depth over the ASE locus, demonstrating that loci with greater read depth
(and thus more accurate estimates of allelic expression) have higher validation rates (p <
1e-92). (c) Figure shows validation rate among the most highly powered eQTLs. Here, we
restrict to SNPs with at least 200 heterozygous individuals, for different read depth
thresholds. Overall, this analysis suggests that the validation rate of cis-eQTLs, given
sufficient power, is between 50-70% (with no threshold on minimum effect size).
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Figure S17. Co-expression of genes with a shared regulatory variant. Gene pairs with
an identified shared cis-eQTLs are co-expressed to a higher degree than random gene pairs
drawn from the same proximity distribution as the co-regulated genes (p < 1e-87). We also
observe that the eQTL direction of effect agrees in 961 out of 1225 co-regulated pairs, and
that 44.15% of the variance explained by the SNP is shared between co-regulated genes
(estimated through partial correlation, likely an underestimate due to other factors affecting
expression level of each gene).
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Figure S18. Example eQTL module, detail. a) The expression of four genes, ADCY7, BRD7,
NDK]I, and CYLD are all significantly associated with the SNP rs//644386. Box plots show
expression levels of each gene grouped by genotype of rs11644386, annotated with significance
of each association. b) Heatmap showing association results for each SNP in this genomic region
with the genes depicted. This heatmap, with each colored rectangle depicting strength of
association between one gene (on the x-axis) and one SNP (y-axis), is based on raw association
statistics rather than the stepwise procedure, to illustrate the clear pattern of association sharing
among these genes. The regulatory mechanisms that affect NKDI and NOD?2, evident from the
association with rs8047222, appear to be distinct from the mechanisms that regulate ADCY7,
BRD7,NKDI, and CYLD. We note that the intermediate gene SNX20, which is not significantly
associated with either SNP, is transcribed in the opposite direction from NKD1 and NOD?2.
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Figure S19. Co-regulation in topological domains. Enrichment of shared regulatory
variants among genes within the same topological domain. Using all pairs of genes, we
compute the log odds multiplier on a gene pair sharing some eQTL variant given that the
TSS of both genes fall in the same topological domain as defined by regions of chromatin
interaction, first controlling for linear proximity between the two TSSs (Supplementary
Materials). As shown, topological domains are significantly predictive of shared eQTLs. a)
Figure demonstrates enrichment according to topological domains derived Hi-C assays in
two cell types: embryonic stem cells (ES cells) and adult fibroblasts. Both show significant
enrichment. b) Enrichment of shared regulatory variants among genes within the same
topological broken down by chromosome. The strength of enrichment varies significantly
by chromosome, but the pattern between chromosomes is shown to be highly consistent
between the two cell types topological domains were derived from.
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Filtering trans-sQTLs

4000

filtering step # of isoforms # unique genes | # of SNPs
Inter-chromosomal 9 6 1164
removed pseudo genes 7 4 10
removed cross-mapped regions 5 3 8
paralog filter 5 3 8
Smoothness filter 5 3 8

Figure S20. Filtering for accurate identification of frans-eQTLs. Figure (a) shows
broad coverage of reads across exons of the gene and consistent association supported at
each position, whereas in Figure (b) reads are only found covering a small number of
positions along the gene, though at great depth. The association shown in Figure (b) is
driven purely from few positions, and thus is filtered by our method. (c) and (d) Tables
show the number of candidate trans-eQTLs and trans-sQTLs filtered at each stage.
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Figure S21. Trans-eQTL SNPs’ effects on proximal genes. Trans-eQTL SNPs also have
effects on expression and isoform ratio of proximal genes. The first histogram shows the
distribution of cis-eQTL p-values for all trans-eQTL SNPs, considering all genes within
IMb of each SNP. The second histogram shows the distribution of sQTL p-values,
evaluated similarly.
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Figure S22. Enrichment for low p-values for association of rs2759386 with distal isoform
ratios. Figure shows the observed quantiles of log p-values of SNP rs2759386 with all isoform
ratios (y-axis) (a total of 12080 isoform ratio, corresponding to 4421 unique genes), compared to
the expectation (x-axis) (each dot represents the log p-value for the association of this SNP with
one isoform). rs2759386 is a cis-eQTL for the splicing factor QKI, and it is more correlated with
a large number of isoform ratios compared to the expectation.
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Figure S23. Example of a paradoxical frans-eQTL relationship. SNP rs/1848309 is a trans-
eQTL for the gene RELB, and a cis-eQTL for the gene NFKBIA. The expression of NFKBIA and
RELB are significantly correlated (p<le-18), however the direction of the correlation is the opposite
of that predicted based on the relationship between rs/1848309 and RELB (positive correlation),
and the relationship between rs11848309 and NFKBIA (negative correlation). Potential mechanisms
could include cis-SNP effecting protein function of NFKBIA and autoregulatory feedback.
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Figure S24. Potential confounding factors in tfrans-eQTL detection. (a) Figure shows the
log p-values for discovered trans-eQTLs. X-axis shows p-values obtained from the HCP model,
which corrects for cell-type proportions and technical covariates. Y-axis shows p-values
obtained from HCP data that has been further adjusted (linear regression) for intake of
antidepressant. As shown, the medication intake does not effect trans-eQTL p-values. (b) Figure
shows the log p-values for discovered frans-eQTLs using quantile normalized data (y-axis) and
HCP'"ns data (x-axis). Quantile normalization was applied to raw data to account for variable
sequencing depth. As shown in the figure, HCP normalized data identifies many more trans-
eQTLs compared to the quantile normalized data (the red lines mark the Bonferroni threshold).
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Figure S25. Relationship between population structure and frans-eQTL detection. (a) In
the raw data (before any population correction), we observe no overall inflation of associations
among cross-chromosomal SNP-gene pairs (top histogram), and after correcting for six
population PCs, little to no change in distribution. This is consistent with Figure S5, which
suggests that very few genes’ expression levels are affected by population structure. Our final
analysis is based on removal of 3 population PCs. (b) Figure shows the log p-values for our
reported 138 trans-eQTLs before (y-axis) and after (x-axis) adjusting for population structure
(regressing out three genotype PCs). As discussed in Supplementary Materials, we discovered
trans-eQTLs on data adjusted for population structure, but this suggests that correction had very
little effect. This figure shows that the population structure here does not result in a high
inflation of trans-associations.
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Figure S26. eQTLs and selection pressure. (a) transcription factors (TFs) with cis-eQTL are less
correlated (by co-expression) to their known targets. Boxplot shows that TFs that have at least one
cis-eQTL tend to have a lower expression correlation with their targets, compared to those TFs that
have no cis-eQTLs. (b) Depletion of cis-eQTLs appears to hold among conserved genes (here in
yeast) across all levels of gene expression, and thus is not explained simply by expression level of
conserved genes. Although sub-dividing genes into expression-level buckets does result in
statistical significance for every bucket, depletion is observed across expression levels. (c) The
fraction of genes with an eQTL for non-conserved (red) genes is compared to the fraction among
conserved genes (blue) for six species. While no significant result is observed for more recently
diverged species (chimp, mouse, chicken), analysis for the three more distant species (zebrafish, c.
elegans, yeast) all show a significant depletion of eQTLs among conserved genes. We show 95%
confidence intervals for each estimate.
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Figure S27. Genomic position of QTLs. (a) Comparison of cis-eQTLs (blue) and sQTLs (red)
according to the location of the single strongest SNP for each gene, in order to highlight the
differences between the two regulatory mechanisms. Each bar represents the fraction of these SNPs
that fall into the labeled genomic region (thus, the bars for each QTL type sum to 1.0). We find that
sQTLs are much more concentrated within gene boundaries compared to cis-eQTLs, which have a
much stronger enrichment among upstream regions. (Using our logistic model that accounts for SNP
position, we explored the enrichment of (b) eQTLs and (c) sQTLs in TF binding sites (ENOCDE
ChIP-seq data) and open chromatin regions (ENCODE DNAase I hypersensitivity data), with
increasing distance from TSS. As shown on these figures, we observed that with increasing distance
from TSS the enrichment declines, indicating that farther ChIP-seq and DNAase sites are not as
predictive of QTLs as those that are closer to the TSS. Figures shows results from a single ChIP-Seq
and a single DN Aase assay with the highest enrichment score. We only show results for up to 100kb
for sQTLs as there is no enrichment beyond 100kb.
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Figure S28. Latent Regulatory Variant Model (LRVM) and application to cis-eQTL prediction. (a)
Schematic diagram of Bayesian network model of eQTL association. (b) ROC curve demonstrating the
performance of LRVM on predicting eQTL associations. We compare 1) LRVM (AUC 0.6383) 2) logistic
regression incorporating a multiplicative term for minor allele frequency (AUC 0.5971) and 3) plain
logistic regression (AUC 0.5553).
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Figure S29. Application of LRVM to splicing QTLs. (a) ROC curve demonstrating the performance
of LRVM on predicting sQTL associations. We compare 1) LRVM (AUC 0.6442) 2) logistic regression
incorporating a multiplicative term for minor allele frequency (AUC 0.5965) and 3) plain logistic
regression (AUC 0.5514). (b) LRVM scores are shown for candidate sQTLs (isoform/SNP pairs) which
were not included in training LRVM. Each sQTL was scored by LRVM for predicted likelihood of
association, and twenty quantiles were computed for the resulting scores. Then, enrichment of
(observed) sQTL associations was computed for each quantile. Here, we use conditional odds to
estimate enrichment, first correcting for SNP position in the same procedure used for genomic
annotation enrichment analysis (Supplementary Materials) — although LRVM does incorporate position
features, we highlight here the information captured by LRVM scores beyond SNP position.
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Figure S30. LRVM sQTL prediction for GWAS SNPs. LRVM assigns higher sQTL regulatory
scores to trait and disease SNPs compared to background SNPs. Predicted splicing (sQTL) impact
of traits and disease SNPs according to LRVM, for trait and disease variants not available during
model training. We compute the score of each SNP for each of its proximal genes. Known trait-
or disease-associated SNPs score more highly that expected at random (p < le-7).
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Figure S31. Effect of distance from TSS on LRVM. We explored the effects of SNP
location on LRVM performance. Figure 5 demonstrates that SNP position (distance from
TSS and within-gene location) are strong predictors of eQTL SNPs, and similarly we see
that position is one of the strongest features used by LRVM. Here, we compare a purely
distance-based prediction (left-most bar) and three versions of LRVM. In order from left to
right: 1) Dist — a logistic model using only distance features without LRVM latent variable
modeling, 2) LRVM-ND — LRVM with features only based on genomic annotations with no
distance features, 3) LRVM-DO — LRVM using only distance features, and 4) the full
LRVM model. Overall we find that the modeling refinements made by LRVM (accounting
for MAF and LD) are the most significant contributors to its accuracy, with ‘Dist’ alone
performing much worse than any of the LRVM models. Second, both distance and genomic
annotations contribute to LRVM accuracy. Given significant correlation between SNP
position and regulatory elements (TF binding sites are themselves enriched near the TSS),
there is overlap in the information provided by these two signals, which cannot be causally
disambiguated without interventional study, but we find ultimately both do contribute.
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