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Supplementary methods

Data collection, mapping and annotation
The general features of the DNA methylomes used for different cell lines of FB, iPS and ES are
described in Table 1. The raw data (fastq files) of each methylome were downloaded from the

European Nucleotide Archive (ENA) (http://www.ebi.ac.uk/ena/home) and processed using the

following procedure:
1. The bisulfite reads were trimmed with BRAT-BW (Harris et al., 2012), fastqc and cutadapt
(Martin, 2011) by:
* Adapters.
* Base call quality (keeping only nucleotide with base call quality >20).
* Length (keeping only the reads with length > 20bp).
* Number N, of internal of bisulfite reads (keeping only the reads with N, < 2).
2. The trimmed reads were aligned with BRAT-BW to the human genome version 19 (hgl9)
obtained from the UCSC Human Genome Browser

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes/).

3. The aligned reads with duplicates which are PCR byproducts were removed. The PCR
duplicates were detected with BRAT-BW by searching for reads with the same length that map
to the same /ocus in the hgl9 reference genome.

4. For the deduplicated reads we calculated using BRAT-BW the methylation calls as the number
of C/T or G/A at each CpG position in the reference genome.

5. From the methylation calls we calculated the methylation ratios for each CpG locus (MR(CpG))
like in (Laurent et al., 2010), as the number of reads with a CpG in such /ocus divided by the
number of reads covering the /locus.

6. To obtain high quality sequenced CpGs we choose only those CpGs whose cytosine coverage is
> 10 in both DNA strands simultaneously.

We used the RefSeq “Genes track™ to annotate the hgl9 genes. We used an extended concept of
promoter, defining the promoter of each gene as the region within 29 Kb upstream and 1 Kb

downstream from the Transcription Start Site (TSS).


http://www.ebi.ac.uk/ena/home
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes/
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Supplementary information

Generation of “conserved” DNA methylome for each cell type

The methylomes of different cell lines from the same cell type are grouped. Then all the CpGs are
aligned based on the cytosine genomic positions. Thus, we define a CpG site as conserved when the
methylation ratios across all the cell lines are low fluctuating. We assess the methylation ratios
fluctuation using the Kolmogorov—Smirnov test for goodness of fit with the null hypothesis that the
CpG methylation ratios follow a uniform distribution in the range [0,1] at a significance level a=0.001.
The alternative hypothesis is that the CpG methylation ratios are constant. E.g., when the alternative
hypothesis is true, the CpG is conserved. The Kolmogorov—Smirnov test tests were performed with the

function KStest of the stats package of scipy.

Analysis of sequence and methylation similarity between the two DNA strands
We define the methylation dissimilarity MetDis(CpG;) of the methylation in each CpG locus i (i marks
the cytosine position) of the two DNA strands as the absolute difference between the methylation ratios
of the cytosines at the positive MR(CpG") and negative MR(CpG") strands

MetDis(CpG ,)=|MR(CpG})— MR(CpG; )| . (1)
Since the methylation ratios are determined in the range [0 1], we can define the methylation similarity
MetSim as:

MetSim(CpG,)=1— MetDis(CpG) . (2)

We define the sequence similarity SeqSim(CpG/"”) of length w sequences at a locus i, as the matching
between the sequences of length w in the positive CpG;”" and negative CpG;" strands centered in the
CpG of each /oci i, normalized by the sequence length w,

2. match(CpG;”(j),CpG;" (j))
J

SeqSim(CpG)= - , G)

where CpG;"*(j) and CpG;*(j) are the nucleotides at the position j of the CpG sequences at the genomic
positions i of the positive and negative strands, respectively. The sequence match is the Hamming
distance between each nucleotide in the positive strand, and the paired nucleotide in the negative
strand. This similarity is a measurement of the degree of palindromy of the sequence. We applied Eqgs.
(1-3) for 12 < w < 52, with a step of 2 (one nucleotide in both directions outwards the central CpG,

whose length is also accounted for the sequence length) and depicted the methylation similarity versus
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the sequence similarity using heatmaps that represent the dot density on a color scale.

Figure 1b shows that the methylation similarity between both DNA strands is low. This justifies the
practice in NGS-based methylomics studies (Hackenberg et al., 2011) to use the average methylation in
the pairing /oci. Such approach is valid for the search of differentially methylation regions (DMRs), but
it can lead to loss of information determinant for the discrimination of CpGs whose methylation
depends on their sequence context. Therefore, in the present study we have kept track of the
methylation of the two DNA strands separately, which allowed us to analyze the regulation of the DNA
methylation of both strands disjointly.

Discriminative CpGMM discovery algorithm

The algorithm is based on the compilation of two CpG-centered DNA-word dictionaries, one collected
from low methylated, and another from high methylated regions. Each CpG word can have a different
length w. The shorter CpG words are fused into longer ones to avoid the appearance of submotifs inside
motifs. We applied the following pipeline to both DNA strands. In order to avoid cumbersome
notations, we describe the procedure for the positive strand. The same steps are applied for the negative

strand. The method workflow is depicted in Fig. S5.

1. Compilation of CpG word dictionaries

The minimal and maximal CpG word lengths were based on the results depicted in Figure S2a. The
minimal sequence length w,;,=12 is selected, since a typical methylome has around 10 million high
quality sequenced CpGs. The number of all possible CpG-centered words of length w is Ne,6(w)=4"".
Then, the number of possible different CpG-centered sequences of length 12, is N,6(12)=1048576.
This number is ten times smaller than the number of CpGs. Thus, the probability for all possible CpG
words of length w<12 to be compiled in the dictionary is very high, hence, the dictionary of CpG words
of length w<12 is a comprehensive dictionary. Ng,¢(w) is an increasing function of w, and w=12 is the
longest length, for which all the CpG words are found in the methylome. This is reflected in the high
peak of frequencies at length w=12. A quick frequency decay is observed for longer sequence lengths,
since they correspond to the less unique CpG words appearing in the genome. Based on such decay and

the insufficient number of unique sequences for a next clustering step, we stop to compile dictionaries
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for lengths w>44. For all cell lines, we found frequency distributions with similar behavior to those
previously described. Therefore we use minimal and maximal sequence lengths w,.,=12 and wy.=44,
respectively.

For all the genomic CpGs, and for lengths w,,<w<w..., with a step of 2, we collected the sequence
centered in each CpG (the central CpG is included in the w calculation). This procedure generates a
CpG-centered word genomic dictionary harboring all sequences of length w centered in each CpG. The

repeated sequences are grouped into unique ones. We call their repetition numbers F oG frequency of

the sequence of length w. Hence, we generate a set of unique CpG"™ sequences of different lengths w.

We assume that similar sequences have similar methylation ratios MR oG Therefore, we assigned to

each unique sequence the average of the methylation ratios of the CpGs from the same unique group.
We denote this step as unique sequence search step. A final scanning analysis selects the CpGMMs that
discriminate between methylation-prone and -resistant regions. Next, to reduce the noise we imple-
mented a filter step. The unique sequences are filtered by their frequencies. Only unique patterns with
frequencies > 3 are retained. This threshold is based on the fact that in our data compilation, a methy-
lome has around 10 million high-quality sequenced CpGs, and the probability to find a sequence of
length 12, centered in a CpG, is 1/4'°=1/1048576. The probability to find (using the binomial distribu-
tion) 3 repetitions of the same sequence is 0.01093773. This value is in the null hypothesis acceptance
twilight. Therefore, we reckon this threshold as the minimal number of repetitions of a sequence of
length w > 12 to consider its frequency statistically significant. The resultant set of sequences is classi-
fied into two subsets based on their methylation ratios. If the central CpG methylation ratio of a se-
quence is > 0.85, we assign such sequence to the methylation-prone subset. Conversely, if it is < 0.5,
we assign it to the methylation-resistant subset.

To check whether the assumption that similar sequences have similar methylation ratios MR oG for

each CpG word of length w we discretized the CpG methylation ratios into three categories as in
Stadler et al (2011): 0.0< MR oG <0.1 for unmethylated sites (UMSs), 0.1< MR o <0.5 for low
methylated sites (LMSs) and 0.5< MR o <1.0 for high methylated sites (HMSs). Then, for each CpG

word we count its membership percentage to one of the three categories. If the percentage is higher
than 90%, we assign a 1 to that word, and a 0, if it is less than 90%. Finally calculate the percentage of

ones in relation to the total number of CpG words.
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2. Fusion of CpG word dictionaries

During the dictionary compilations, the sequences are extended in both directions outwards the central
CpG. Therefore, some sequences of length w could appear inside sequences of length w+2. Hence, we
designed a sequence fusion method that avoids shorter submotifs centered inside longer ones. This
method is implemented in an iterative way, starting from the shortest length w,.,. Thus, for each length
w, if a sequence CpG" is included in the center of a sequence CpG"* of length w+2, the shorter se-
quence is fused inside the longer one. The methylation ratio of the new sequence is updated as the

weight averaged methylated ratios of the fused sequences

e F e MRt F oy MR-

CvaMl -_
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Before the sequence fusion step, each unique sequence CpG"* has an associated scalar frequency
F, that imputes the same frequency to all sequence nucleotides. After the fusion, to keep track of
pGw+2

the individual frequency position in the fused sequence, the scalar frequency is converted into a fre-

quency vector F oGt of length w+2, that stores for each nucleotide position j its respective frequency.

Thus, for the central common positions in the sequence CpG"*, the vectorial frequencies are

F . oniN=F - JOFF o o, U-1). The peripheral positions preserve the original frequencies of the longer

sequence. The scalar frequency of the new sequence is updated as the sum of the scalar frequencies of

update — : w3 LI
the fused sequences F pows2 F cpon F o After fusion, the shorter sequence CpG" is eliminated

from the dictionary. The fusion method iterates till reaching the longest sequence length wy.., fusing
whenever possible shorter sequences centered in the central CpG into the longer sequences. An exam-
ple of the distribution of the number of CpG words before and after fusion with respect to their length

for the highly methylated CpGs of the negative strand is depicted in Fig. S2a.

3. Motif discovery through hierarchical clustering
After the fusion step, the information associated to each CpG word i of length w of each dictionary is

integrated into a Position Occurrence Matrix POM;" of dimension (4xw) that collects in every column j

the frequency F o ., U) and stores it in the row indexed by the nucleotide in the position j of the se-

quence CpG."(j). Initially, the POM;"” column has only a non-null value. For each length w, all the
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POMs are grouped with a hierarchical clustering algorithm, using the cosine metric calculated with Eq.
(4) and the complete linkage method. Before calculating the distances, the (4%w) bi-dimensional matri-
ces are vectorized into 4w length vectors.

pPOM;"-(POM")"
IPOMY|,[lPOMT ],

dist(POM, POM" )=1— (4)

Since the number of sequences to be clustered is very high (in the order of 40000), to accelerate the
process, we performed the hierarchical clustering with the Python library fastcluster (fastcluster: Fast
hierarchical clustering routines for R and Python). The cut-off parameter for the cluster distance was set
to 0.75. This parameter is learned from the ADS-iPSC promoter methylome dataset, using silhouettes
algorithm (Crooks et al., 2004), in-house implemented in Python. We performed 1001 cut-offs of the
hierarchical clustering from 0 < cut-off < 1, with a step of 0.001. As a final cut-off, we chose the one
(0.75) that maximizes the average silhouette width. For each cluster ¢, all the sequences are merged

into a new averaged POM." that represents the motif cluster.

4. Selection of the motifs with discrimination capability based on binding energy scanning
method

With the given potential discriminative methylation motif sets, one for methylation-prone and other for
-resistant, we searched for motifs that are specific to discriminate between high and low methylated
CpGs. For such purpose, we took advantage of the analogy of the TF-DNA binding energy, using the
Berg-von Hippel method (Berg and Von Hippel, 1987). Based on such analogy, we treat the methyla-
tion motif as TFBM, and we consider that a methylation motif has a good match with a genomic region
center in a CpG, if the “virtual” binding energy estimated by the Berg-von Hippel method is high. To
perform such energy calculation, first, we normalize the POMs, creating the so called Position Weight
Matrices (PWMs)

POM" (i, j)

4

ZPOMW(k,j).

PWM" (i, j)=

Thus, all the motifs PWM" are scanned as in a typical TFBS search (Sarkar et al., 2008) against each
CpG of the methylation-prone and -resistant sets, using the binding energy equation of the Berg von

Hippel method
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matchingScore(PWMW,CpGW):Z]H(PWM (CpG"(i),1)+p

i max (PWM"(:,i))+p ) ©)

where f = 0.00001. The addition of B is necessary to avoid division by zero. The specific value of f3
was chosen after empirical study to maximize the score dynamic range. CpG" is the CpG word of
length w centered in the genomic CpG locus. For better computational performance, we used a
different but equivalent implementation of Eq. (5). Higher matching score corresponds to more specific
similarity of the motif with the target sequence. We split the matching scores for each motif into two
distributions, one for high and another for low methylation regions. Next, we checked whether the
motif can discriminate between the two distributions using the Kolmogorov—Smirnov test (KStest) for
two samples (with the stats package of scipy) with a significance level a = 0.00001. The motifs passing
this test are retained and subjected to a second filter with a double objective. On one hand, the filter
estimates the minimal matching score (threshold of the right tail) that has to have a potential target
DNA sequence to be “bound” by the motif. The thresholds 7, of the right tails are computed with the
equation

T, =min(pn + oA, 0) , (6)
where 0 is the threshold of the right tail of the matching score distribution (methylation-prone distribu-
tion, if the underlying motif is a potential methylation-prone CpGMM), p is the matching score distri-
bution mean, ¢ is the matching score distribution standard deviation, and A is set to 2, based on an em-
pirical study. On the other hand, considering as true targets the sequences that pass the filter (6), to
strengthen the discriminating capabilities of the motif, we select only those with a False Discovery Rate
(FDR)<0.05

FDR= F(?I?ePOSItzve .
FalsePositive+ TruePositive

(7)

where FalsePositive is the number of scores > 0 in the methylation-resistant distribution, if the underly-
ing motif is a potential methylation-prone CpGMM, TruePositive is the number of scores > 6 in the
methylation-prone distribution, if the underlying motif is a potential methylation-prone CpoGMM. We
use the right tail (high matching score) of the two distributions. The selected motifs are represented as
motif logos, using WebLogo 3.0 (Crooks et al., 2004). All the found motifs were annotated with the
gene ontology of their corresponding targets using the R-bioconductor package GOstat (Falcon and

Gentleman, 2007). To assess the stability of the motif discovery we performed a bootstrapping with
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100 time samplings with replacement over the ADS-iPSC methylomics data. We used as an estimation of

the CpGMMs the percentage of CpGMMs that are recovered in at least half of the bootstrapping samples.

Search of cell-type specific and somatic memory CpGMMs
For all the methylation motifs in each pair of cell types (ES/FB/iPS), we computed the Pearson
correlation.

(PWM,— PWM,)-(PWM ,— PWM )"
[PWM,—PWM |,|[PWM ;— PWM ||, ’

p(PWM,, PWM,)= (8)

where PWM; and PWM; are PWMs of the cell type i and j, respectively. When the two PWMs have
different lengths, e.g. if length(PWM;)>length(PWM,), we substitute in the Pearson correlation (8) the
longest matrix PWM, by the overlapped central block of the PWM; matrix with the same length of the
shorter matrix PWM,. Before applying Eq. (8), both PWMs should be converted from (4xw)
bidimensional matrices to 4w-length vectors. Following the standards, defined in the field of DNA
motifs to estimate the pairwise similarities (Stormo, 2000), we consider that two motifs are similar, if
their Pearson correlation p > 0.85. We define as cell-type specific motifs those whit low correlation (p <
0.5) with any other motif in any cell type. The persistent somatic memory CpGMMs are those that have
high correlation (p > 0.85) between iPS cells and FBs and simultaneously have low-correlation (p <
0.5) with ES cells. The absent somatic CpGMMs are the ES specific motifs, thus, those ES motifs with
low-correlation (p < 0.5) with any other motif in iPS and FB. We searched separately for

methylation-prone and -resistant CpGMMs.

Nucleotide enrichment analysis of CpGMMs

The four types of nucleotides for each methylation-resistant and -prone CpGMM are counted and
normalized with the motif length. The Wilcoxon-Mann-Whitney-test is applied for each pair
distribution of methylation-prone -resistant CpGMMs of the same nucleotide to find the significantly

different enrichments with a significance level o = 0.01.

Analysis of conservation of CpGMM targets
All targets of methylation-resistant and -prone CpGMMs targets are mapped to phastCons46way

conservation  track in  primates (Siepel et al, 2005) downloaded from:
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http://hedownload.cse.ucsc.edu/goldenPath/hg19/database/phastCons46wayPrimates.txt.gz. From that

file we get the conservation score for each nucleotide position. The Kolmogorov—Smirnov test is
applied for two distributions of conservation scores of methylation-prone/resistant CpGMMs with a

significance level a = 0.01.

Analysis of co-localization of CpGMM targets with genetic loci

1 Analysis of co-localization of CpGMM targets with TSS
The distance from all targets of methylation-resistant and -prone CpGMMs to the corresponding TSS
are computed. All target genes and TSSs annotation are taken from the UCSC genome browser Refseq

hg19 (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/knownToRefSeq.txt.gz). The

Kolmogorov—Smirnov test is applied for two distance distributions of methylation-prone/resistant

CpGMMs with a significance level o = 0.01.

2. Analysis of co-localization of CpGMM targets with CpG islands

We downloaded the conserved the CpG islands annotation from the UCSC genome browser
(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/cpglslandExt.txt.gz). We counted for each
cell type the number of targets of methylation-resistant and -prone CpGMMs occurring inside or

outside CpG islands.

3. Analysis of co-localization of CpGMM targets with TFBSs
We  downloaded the conserved TFBS  from the UCSC  genome  browser
(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/tftbsConsSites.txt.gz and

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/ttbsConsFactors.txt.gz). The search of TFs
that share binding sites with the CpGMM s is not straightforward, since the CpGMMs have a central
CpG anchor but the TFBMs do not necessarily have it. Even focusing on TFBMs with a strong CpG
signal, such a signal is not always in the TFBM center. If the targets of a CpGMM co-occur with a
TFBS, we consider that the CpG methytlation motif and the TFBMs are associated. Then, to compare
CpGMMs and TFBMs, we designed a technique based on detecting co-occurrences between the targets

of the two motif types. Thus, for the conserved TFBS co-localization analysis, we counted for each cell


http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/tfbsConsSites.txt.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/knownToRefSeq.txt.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/phastCons46wayPrimates.txt.gz
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type the number of targets of methylation-resistant and -prone CpGMMs occurring inside or outside

conserved TFBS.

4. Analysis of co-localization of CpGMM targets with histone marks

We downloaded the twelve histone marks broad peak signals from the ENCODE project (The
ENCODE Project Consortium, 2011) for ES cells (H1) and fibroblasts (NHLF). For each histone mark
and for each CpGMM type (methylation-prone or -resistant), we developed the following algorithm to
calculate the correlation between CpGMM targets and ES histone mark signals:

1. Identify in which loci the histone mark signals and the CpGMM targets co-occur. Such /oci are
those for which CpGMM target and the support of the broad peak signal overlap in at least one
nucleotide.

2. Collect the co-occurring scores of the histone mark signal over the overlapping region with the
CpGMM target (Fig. S6) for all the CpGMM targets of all the CpGMMs.

3. Calculate the histogram of the co-occurring scores (Fig. 5c¢).

4. Calculate the mean of the co-occurring scores (Fig. 5a).

5. Calculate the difference between the mean of the co-occurring scores of the
methylation-resistant CpGMMs and the mean of the co-occurring scores methylation-prone

CpGMMs (Fig. 5b).

Correlation analysis between CpGMM targets, CTCF and gene expression
The transcriptomics RNA-seq data and the CTCF binding data of ES cells (H1) and fibroblasts (NHLF)
are downloaded from the ENCODE project (The ENCODE Project Consortium, 2011). We focused on
the extended promoter regions as defined in the Data collection and annotation subsection. We collect
all the CpGMMs targets and the broad-peak CTCF signals inside of the extended promoter regions.
The target genes are classified into six groups:

1. Genes with only methylation-prone CpGMMs.

2. Genes with only methylation-resistant CpGMMs.

3. Genes with methylation-prone CpGMMs near TSS, and CTCF signal in-between

methylation-resistant and -prone CpGMMs.
4. Genes with methylation-resistant CpGMMs near TSS, and CTCF signal in-between

10
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methylation-resistant and -prone CpGMMs.
5. Genes with methylation-resistant CpGMMs, methylation-prone CpGMMs near TSS, and absent
CTCEF signal in-between.
6. Genes with methylation-prone CpGMMs, methylation-resistant CpGMMs near TSS, and absent
CTCEF signal in-between.
The expected number of CTCFs inside the extended promoter regions of genes with bivalent
composition of CpGMMs is defined as the pool of the lengths covered by the broad-peak CTCF signals
that lie inside the extended promoter of the bivalent composition genes divided by the pool of the total
lengths of the extended promoters of the bivalent composition genes. The expression values (FPKM) of

these classified genes are computed based on the RNA-seq data.

Algorithm implementation

All annotation information was compiled in a relational database, with the database management
performed with MySQL (version 5.1.61). The algorithms were implemented in Python (version 2.6.5),
with numerical package numpy (version 1.6.1) and scipy (version 0.9.0), in an Ubuntu (version

10.04.1) environment.
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Figures Supplementary material

a 5.4
48
o8
a2
06 36
30
04 24
18
0z 12
0.6
%0 02 04 0.6 038 w0 0
ES
: 4.8
42
36
30
24
18
1.2
06
08 10 00

Figure S1. Comparison between conserved methylomes of the different cell types across the
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different cell lines, and cell line methylomes and transcriptomes. (a) Pairwise scatter plots of the
positive DNA strand of the conserved methylomes of each of the three cell types used. (b) Pairwise
scatter plots of the positive DNA strand of the fibroblast, FF iPS and H9 ESC methylomes. (c) Pairwise
scatter plots of the fibroblast, iPS and H9 ESC transcriptomes. The transcriptomics data were taken
from Takahashi and Yamanaka (2006) and produced the scatter plots of Fig. S1c. The scatter density is
represented in log;o scale by the colorbar to the right of each plot.
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Figure S2. Intermediary results from the CpGMM discovery method pipeline. (a) Distribution of
the frequency of sequences before (red), and after (blue) fusion for different sequence lengths w for
high-methylated CpGs of the negative strand of the ADS-iPSC case. (b) Hierarchical clustering of
fused sequences for the negative strand of the ADS-iPSC case for sequence length w=16. The cut-off
value that decides the final clusters is marked with a horizontal red line. (c) Histogram of the matching
score of a typical methylation-prone CpGMM. (d) Histogram of the matching-score of a typical
methylation-resistant CpGMM. The upper panels in (c) and (d) show the matching-score distribution,
generated when scanning the motifs over high methylated regions, and the lower panels when scanning
over low-methylated regions. The vertical blue line indicates the position of the threshold, calculated
with Eq. (6) and used to collect the specific motif targets. The corresponding methylation motifs
overlay the matching score distributions obtained in the high-methylated regions. (¢) Bar plot of the
percentages of sequences of length w that preserves the same category of methylation ratios (UMS,
LMS or HMS) across the ADS-iPSC methylome. (f) Number of methylation-resistant (red top bars)
and methylation-prone (green bottom bars) CpGMMs that appear in one cell line (left bars) and in more
than one cell line (right bars) of each cell type. (g) Number of times each ADS-iPSC CpGMM is
recovered by the bootstrapping process. (h) Percentage of recoved ADS-iPSC CpGMMs for each of the

100 time samplings of the bootstrapping process.
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Figure S3. Venn diagrams of the numbers of CpGMM for each DNA strand and each methylation
mode clustered in each cell type. (a) Methylation-resistant CpGMMs in the positive DNA strand. (b)
Methylation-prone CpGMMs in the positive DNA strand. (¢) Methylation-resistant CpoGMMs in the
negative DNA strand. (d) Methylation-prone CpGMMs in the negative DNA strand. In red ES CpGMM
numbers, in green iPS and in blue fibroblast. The numbers enclosed by the circular segments are the
numbers of cell-type specific motifs (those with a Pearson correlation with any CpGMM of any other

cell type population less than 0.5).

15



45

Supplementary information

0.8 0.9
40 0.7 0.8
35
0.6 07
30 o 0.6
> .
[9) > >
£25 g gos
S
T 504 35
g 20 g g04
£ £
0.3
15 03
10 0.2 [32.4%]
0.2
5 01 0.1
. e . D
o 10 15 20 25 30 0.0 0.0
. ; 20 o 2 4 6 10 o 2 4 6 B 10
Distance from Prone and Resistant Motifs to in between CTCF Normalize FPKM Score of NHLF Normalize FPKM Score of NHLF
(S
06 12
0.5 1.0
0.4 0.8
> >
Z Z
2 2
303 ‘é’ 0.6
Q Q
g g |z8.9%]
0.2 0.4
13.3%
0.1 0.2
0.0 2 4 6 B 10 12 0.0 2 4 6 ] 10 12
Normalize FPKM Score of H1 Normalize FPKM Score of H1
06 g
0.4
> >
3 3
c c
$o3 E]
o o
o 14
& £
02 [35.9%]
01
4 6 g 10 12 0.0 2 10 12

4 6 8
Normalize FPKM Score of NHLF Normalize FPKM Score of NHLF

Percentage of expressed genes

16

12



Supplementary information

Figure S4. Discriminative features between mixed promotors contained bivalent- and
monovalent-CpGMMSs. (a) Histograms of the distances of methylation-resistant CpGMM targets
(red), methylation-prone CpGMM targets (green) to the in-between CTCF for promoters containing
simultaneously methylation-resistant and -prone CpGMMs in fribroblasts. The red and green vertical
lines show mean values of the distances to CTCF or methylation-resistant and -prone CpGMM loci,
respectively. (b) Histogram of the fibroblast expression of genes with only methylation-resistant or
-prone CpGMMs. (¢) Histogram of the fibroblast expression of all the genes (yellow) and genes with
promoters containing simultaneously methylation-resistant and -prone CpGMMs (blue). (d,e.f,g)
Histograms of the expression of the genes with mixed structure of methylation-resistant and -prone
CpGMMs in their 1Kb upstream promoters. (d) ES cell gene-expression histograms for the case of
methylation-resistant CpGMM close to the TSS. (e) ES cell gene expression histrograms for the case of
methylation-prone CpGMM close to the TSS. (f) Fibroblast gene-expression histrograms for the case of
methylation-resistant CpGMM close to the TSS. (g) Fibroblast gene-expression histrograms for the
case of methylation-prone CpGMM close to the TSS. In dark red are shown the cases with a CTCF
in-between a methylation-prone and -resistant CpGMM region close to the TSS. In light red are shown
the cases without a CTCF in-between a methylation-prone and -resistant CpGMM region close to the
TSS. In dark green are shown the cases with a CTCF in-between a methylation-prone and -resistant
CpGMM region close to the TSS. In light green are shown the cases without a CTCF in-between a
methylation-prone and -resistant CpGMM region close to the TSS. The numbers inside boxes are the
percentages of expressed genes. (h) Heatmap of the percentage of fibroblast expressed genes with
mixed and unmixed structure of methylation-resistant and methylation-prone CpGMMs in their 1Kb
upstream promoters. The corresponding genomic structure (with the positions relative to the TSS
marked with an arrow) of the methylation-resistant and -prone CpGMMs, and the CTCF is represented

on the side of each cell.
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1. Compilation of DNA words dictionaries

Input data
Methylation ratio .92 a2 33 1.0 .85 .98 .25 .81 00
Sequence wcaCGet...ttCGag...ceCGet...caCGet...caCGtt..caCiet.. . ttCGag...caChtt... ttCGag...

Unique sequences ﬂ Lengthw=12, 14, ..., 46

ID | Sequence Frequency Methylation Ratio
1 | caCGet 3 .97 ={.9241.0+0.98)/3
2 | ttCGag 3 123 =(0.12+0.25+0.00)/3
3 | caCGrt 2 .83 ={0.85+0.81)/2
4 | cccGer 1 33 ™ R
5 e -
<=0.50 =
-
] -
Filter sequences .
-

2a. methRatio ==0.5

Resistant Methylation It

ID | Sequence |Frequency |Meth Ratio ID Sequence Frequency |Meth Ratio
2 ttCGag 3 12 1 caCGet 3 .97

11 | . 21

2. Fusion of DNA sequence dictionaries
1D Sequence |Frequency | Meth Ratio ID Sequence |Frequency |Meth Ratio

2 5 12 1 caCGet 7 97
11 3 .10 21 acaCGctg 4 91
22 33
ﬂ Fusion of the shorter sequence to the longer one ﬂ

ID | Sequence | Frequency vector | Meth Ratio || ID Sequence Frequency vector | Meth Ratio

11 |attCGagce 25555552 11 21 acaCGetg 47777774 04

22 |.. 33

3. Motifs discovery through hierarchical clustering

GQQQQGAIQI sl LG f%x;@IBszAég

Resistant/Prone Methylation motif candidates

by
H

4. Screening discriminative motif with scanning method

Resistant methylation motif candidate

o [ ogsllmabr, ] e
Match the motif with 3 Match the motif with
- d QQQ.._M é Is # eachsequence

eachsequence

ID Sequence |Frequency |MethRatio ||ID |Sequence |Frequency |Meth Ratio
2 ttCGag 3 12 1 caCGcet 3 a7
11 21 e . .

Q Compute matching score against both sequence sets

Matching score distribution of the
motif against Prone Methylation set El ol

Matching score distribution of the motif
against Resistant Methylation set

0.5]

—0.5

~1.0
Matching score

1. Kolmogorov-Smirnov test on 2 samples
Z FDR =<=0.01

QAA fCI F {Prone Methylation Motif)
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Figure S5. CpGMM discovery method pipeline. Example of processing of a genomic sequence
fragment annotated with the methylation level of each CpG. The data collection is illustrated for a
simple case of sequence length w=3. The identical sequences are of the same color. We focused on the
low (red) and high (green) methylated sequences. The processes of methylation-resistant and -prone

CpGMMs are highlighted in red and green, respectively.
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Score of the histone mark signal

Figure S6. Example of calculation of the co-occurrence scores between a broad-peak signal histone
mark and a CpGMM target. The position of the CpGMM target is framed by a red box, the scores of
the histone mark region not-overlapping with the CpoGMM target are drawn with green bars, and those

corresponding with the region overlapping the CpGMM target are drawn with yellow bars.
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