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Supplementary methods

Data collection, mapping and annotation

The general  features of the DNA methylomes used for  different  cell  lines of  FB, iPS and ES are

described  in  Table  1.  The  raw  data  (fastq  files)  of  each  methylome  were  downloaded from  the

European  Nucleotide  Archive  (ENA)  (http://www.ebi.ac.uk/ena/home)  and  processed  using  the

following procedure:

1. The  bisulfite reads  were  trimmed with  BRAT-BW  (Harris et  al.,  2012),  fastqc and cutadapt

(Martin, 2011) by:

• Adapters.

• Base call quality (keeping only nucleotide with base call quality ≥20).

• Length (keeping only the reads with length ≥ 20bp).

• Number Ns of internal of bisulfite reads (keeping only the reads with Ns ≤ 2).

2. The trimmed  reads  were aligned with  BRAT-BW to  the  human genome version 19 (hg19)

obtained  from  the  UCSC  Human  Genome  Browser

(http://hgdownload.cse.ucsc.edu/goldenPath/hg1  9  /chromosomes/  ).

3. The  aligned  reads  with  duplicates  which  are PCR  byproducts  were  removed.  The  PCR

duplicates were detected with BRAT-BW by searching for reads with the same length that map

to the same locus in the hg19 reference genome.

4. For the deduplicated reads we calculated using BRAT-BW the methylation calls as the number

of C/T or G/A at each CpG position in the reference genome.

5. From the methylation calls we calculated the methylation ratios for each CpG locus (MR(CpG))

like in (Laurent et al., 2010), as the number of reads with a CpG in such locus divided by the

number of reads covering the locus.

6. To obtain high quality sequenced CpGs we choose only those CpGs whose cytosine coverage is

≥ 10 in both DNA strands simultaneously.

We used the  RefSeq “Genes track”  to  annotate  the  hg19 genes.  We used  an  extended concept  of

promoter,  defining  the  promoter  of  each  gene  as  the  region  within  29  Kb  upstream  and  1  Kb

downstream from the Transcription Start Site (TSS).
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Generation of “conserved” DNA methylome for each cell type

The methylomes of different cell lines from  the same cell type are grouped. Then all the CpGs are

aligned based on the cytosine genomic positions. Thus, we define a  CpG site as conserved when the

methylation ratios across  all the  cell lines  are  low  fluctuating. We assess  the  methylation  ratios

fluctuation using the  Kolmogorov–Smirnov test for goodness of fit with the null hypothesis that the

CpG methylation ratios follow a uniform distribution in the range [0,1] at a significance level α=0.001.

The alternative hypothesis is that the CpG methylation ratios are constant. E.g., when the alternative

hypothesis is true, the CpG is conserved. The Kolmogorov–Smirnov test tests were performed with the

function KStest of the stats package of scipy. 

Analysis of sequence and methylation similarity between the two DNA strands

We define the methylation dissimilarity MetDis(CpGi) of the methylation in each CpG locus i (i marks

the cytosine position) of the two DNA strands as the absolute difference between the methylation ratios

of the cytosines at the positive MR(CpG+) and negative MR(CpG-) strands 

MetDis(CpG i)=∣MR(CpGi
+)−MR(CpGi

−)∣ . (1)

Since the methylation ratios are determined in the range [0 1], we can define the methylation similarity

MetSim as:

MetSim(CpGi)=1−MetDis(CpG i) . (2)

We define the sequence similarity SeqSim(CpGi
w) of length w sequences at a locus i, as the matching

between the sequences of length w in the positive CpGi
w+  and negative CpGi

w-  strands centered in the

CpG of each loci i, normalized by the sequence length w,

SeqSim(CpGi
w)=

∑
j

w

match(CpG i
w+( j) ,CpGi

w−( j))

w
, (3)

where CpGi
w+(j) and CpGi

w-(j) are the nucleotides at the position j of the CpG sequences at the genomic

positions  i of  the positive and negative strands,  respectively.  The sequence match is  the Hamming

distance between each nucleotide in  the positive strand,  and the paired nucleotide  in  the  negative

strand. This similarity is a measurement of the degree of palindromy of the sequence. We applied Eqs.

(1-3) for  12 ≤ w ≤ 52, with a step of 2 (one nucleotide in both directions outwards the central CpG,

whose length is also accounted for the sequence length) and depicted the methylation similarity versus
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the sequence similarity using heatmaps that represent the dot density on a color scale. 

Figure 1b  shows that the methylation similarity between both DNA strands is low. This justifies the

practice in NGS-based methylomics studies (Hackenberg et al., 2011) to use the average methylation in

the pairing loci. Such approach is valid for the search of differentially methylation regions (DMRs), but

it  can  lead  to  loss  of  information  determinant  for  the  discrimination  of  CpGs  whose  methylation

depends  on  their  sequence  context.  Therefore,  in  the  present  study  we  have  kept  track  of  the

methylation of the two DNA strands separately, which allowed us to analyze the regulation of the DNA

methylation of both strands disjointly. 

Discriminative CpGMM discovery algorithm

The algorithm is based on the compilation of two CpG-centered DNA-word dictionaries, one collected

from low methylated, and another from high methylated regions. Each CpG word can have a different

length w. The shorter CpG words are fused into longer ones to avoid the appearance of submotifs inside

motifs.  We applied the following pipeline to both  DNA strands.  In  order  to  avoid  cumbersome

notations, we describe the procedure for the positive strand. The same steps are applied for the negative

strand. The method workflow is depicted in Fig. S5.

1. Compilation of CpG word dictionaries

The  minimal and maximal  CpG word lengths were based on the results depicted in  Figure S2a.  The

minimal sequence length  wmin=12 is selected, since a typical methylome has around  10 million high

quality sequenced CpGs. The number of all possible CpG-centered words of length w is NCpG(w)=4w-2.

Then, the number of possible different CpG-centered sequences of length 12, is  NCpG(12)=1048576.

This number is ten times smaller than the number of CpGs. Thus, the probability for all possible CpG

words of length w≤12 to be compiled in the dictionary is very high, hence, the dictionary of CpG words

of length w≤12 is a comprehensive dictionary. NCpG(w)  is an increasing function of w, and w=12 is the

longest length, for which all the CpG words are found in the methylome. This is reflected in the high

peak of frequencies at length w=12. A quick frequency decay is observed for longer sequence lengths,

since they correspond to the less unique CpG words appearing in the genome. Based on such decay and

the insufficient number of unique sequences for a next clustering step, we stop to compile dictionaries
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for lengths  w>44.  For all cell lines, we found frequency distributions with similar behavior to those

previously described. Therefore we use minimal and maximal sequence lengths wmin=12 and wmax=44,

respectively.

For all the genomic CpGs, and for lengths  wmin≤w≤wmax, with a step of 2, we collected the sequence

centered in each CpG (the central CpG is included in the  w calculation). This procedure generates a

CpG-centered word genomic dictionary harboring all sequences of length w centered in each CpG. The

repeated sequences are grouped into unique ones. We call their repetition numbers F
CpGw

 frequency of

the sequence of length w. Hence, we generate a set of unique CpGw sequences of different lengths w.

We assume that similar sequences have similar methylation ratios  MR
CpGw

. Therefore, we assigned to

each unique sequence the average of the methylation ratios of the CpGs from the same unique group.

We denote this step as unique sequence search step. A final scanning analysis selects the CpGMMs that

discriminate between  methylation-prone and  -resistant regions. Next, to reduce the noise we imple-

mented a filter step. The unique sequences are filtered by their frequencies. Only unique patterns with

frequencies ≥ 3 are retained. This threshold is based on the fact that in our data compilation, a methy-

lome has around  10 million high-quality sequenced  CpGs, and the probability to find a sequence of

length 12, centered in a CpG, is 1/410=1/1048576. The probability to find (using the binomial distribu-

tion) 3 repetitions of the same sequence is 0.01093773. This value is in the null hypothesis acceptance

twilight. Therefore, we reckon this threshold as the minimal number of repetitions of a sequence of

length w ≥ 12 to consider its frequency statistically significant. The resultant set of sequences is classi-

fied into two subsets based on their methylation ratios.  If the central CpG methylation ratio of a se-

quence is ≥ 0.85, we assign such sequence to the methylation-prone subset. Conversely, if it is ≤ 0.5,

we assign it to the methylation-resistant subset.

To  check whether the  assumption that  similar sequences have similar methylation ratios  MR
CpGw

,  for

each CpG word of length  w we discretized the CpG methylation ratios into three categories as in

Stadler  et  al  (2011):  0.0≤  MR
CpGw

 <0.1  for  unmethylated  sites (UMSs),  0.1≤  MR
CpGw

 <0.5  for  low

methylated sites (LMSs) and 0.5≤ MR
CpGw

 ≤1.0 for high methylated sites (HMSs). Then, for each CpG

word we count its membership percentage to one of the three categories.  If the percentage is higher

than 90%, we assign a 1 to that word, and a 0, if it is less than 90%. Finally calculate the percentage of

ones in relation to the total number of CpG words. 
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2. Fusion of CpG word dictionaries 

During the dictionary compilations, the sequences are extended in both directions outwards the central

CpG. Therefore, some sequences of length w could appear inside sequences of length w+2. Hence, we

designed a sequence fusion method that avoids shorter submotifs centered inside longer ones. This

method is implemented in an iterative way, starting from the shortest length wmin. Thus, for each length

w, if a sequence  CpGw is included in the center of a sequence CpGw+2 of length w+2, the shorter se-

quence is fused inside the longer one. The methylation ratio of the new sequence is updated as the

weight averaged methylated ratios of the fused sequences

MRCpGw+2

update
=

F CpGw MRCpG w+F CpGw +2 MRCpG w +2

F CpG w+FCpG w+2

.

Before the sequence fusion step,  each unique sequence  CpGw+2 has an associated scalar  frequency

F
CpGw+2

 that imputes the same frequency to all sequence nucleotides. After the fusion, to keep track of

the individual frequency position in the fused sequence, the scalar frequency is converted into a fre-

quency vector F
CpGw+2

 of length w+2, that stores for each nucleotide position j its respective frequency.

Thus,  for  the  central  common  positions  in  the  sequence  CpGw+2,  the  vectorial  frequencies  are

F
CpGw+2

(j)=F
CpGw+2

(j)+F
CpGw

(j-1). The peripheral positions preserve the original frequencies of the longer

sequence. The scalar frequency of the new sequence is updated as the sum of the scalar frequencies of

the fused sequences  Fupdate
CpGw+2

=F
CpGw

+F
CpGw+2

. After fusion, the shorter sequence CpGw is eliminated

from the dictionary. The fusion method iterates till reaching the longest sequence length  wmax, fusing

whenever possible shorter sequences centered in the central CpG into the longer sequences. An exam-

ple of the distribution of the number of CpG words before and after fusion with respect to their length

for the highly methylated CpGs of the negative strand is depicted in Fig. S2a. 

3. Motif discovery through hierarchical clustering

After the fusion step, the information associated to each CpG word i of length w of each dictionary is

integrated into a Position Occurrence Matrix POMi
w of dimension (4×w) that collects in every column j

the frequency  F
CpGw

(j) and stores it in the row indexed by the nucleotide in the position  j of the se-

quence  CpGi
w(j). Initially, the  POMi

w   column has only a non-null value. For each length  w, all the
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POMs are grouped with a hierarchical clustering algorithm, using the cosine metric calculated with Eq.

(4) and the complete linkage method. Before calculating the distances, the (4×w) bi-dimensional matri-

ces are vectorized into 4w length vectors.

dist (POM i
w , POM j

w
)=1−

POM i
w
⋅(POM j

w
)
T

∥POM i
w
∥2∥POM j

w
∥2

. (4)

Since the number of sequences to be clustered is very high (in the order of 40000), to accelerate the

process, we performed the hierarchical clustering with the Python library fastcluster (fastcluster: Fast

hierarchical clustering routines for R and Python). The cut-off parameter for the cluster distance was set

to 0.75. This parameter is learned from the ADS-iPSC promoter methylome dataset, using silhouettes

algorithm (Crooks et al., 2004), in-house implemented in Python. We performed 1001 cut-offs of the

hierarchical clustering from 0 ≤ cut-off ≤ 1, with a step of 0.001. As a final cut-off, we chose the one

(0.75) that maximizes the average  silhouette width. For each cluster  c, all the sequences are merged

into a new averaged POMc
w that represents the motif cluster.

4. Selection  of  the  motifs with  discrimination capability  based on binding energy  scanning

method

With the given potential discriminative methylation motif sets, one for methylation-prone and other for

-resistant, we searched for motifs that are specific to discriminate between  high and low methylated

CpGs. For such purpose, we took advantage of the analogy of the TF-DNA binding energy, using the

Berg-von Hippel method (Berg and Von Hippel, 1987). Based on such analogy, we treat the methyla-

tion motif as TFBM, and we consider that a methylation motif has a good match with a genomic region

center in a CpG, if the “virtual” binding energy estimated by the Berg-von Hippel method is high. To

perform such energy calculation, first, we normalize the POMs, creating the so called Position Weight

Matrices (PWMs) 

PWMw
(i , j)=

POM w
(i , j)

∑
k

4

POMw
(k , j)

.

Thus, all the motifs PWMw are scanned as in a typical TFBS search (Sarkar et al., 2008) against each

CpG of  the methylation-prone and -resistant sets, using the binding energy equation of the Berg von

Hippel method 
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matchingScore (PWMw ,CpGw)=∑
i

w

ln(
PWMw (CpGw(i) , i)+β

max (PWM w(: , i))+β
) , (5)

where β = 0.00001. The addition of β is necessary to avoid division by zero. The specific value of β

was chosen after empirical study to maximize the score dynamic range.  CpGw is the CpG word of

length  w centered  in  the  genomic  CpG  locus.  For  better  computational  performance,  we  used  a

different but equivalent implementation of Eq. (5). Higher matching score corresponds to more specific

similarity of the motif with the target sequence. We split the matching scores for each motif into two

distributions, one for high and another for low methylation regions. Next, we checked whether the

motif can discriminate between the two distributions using the Kolmogorov–Smirnov test (KStest) for

two samples (with the stats package of scipy) with a significance level α = 0.00001. The motifs passing

this test are retained and subjected to a second filter with a double objective. On one hand, the filter

estimates the minimal matching score (threshold of the right tail) that has to have a potential target

DNA sequence to be “bound” by the motif. The thresholds Tr of the right tails are computed with the

equation 

Tr = min(μ + σλ, θ) , (6)

where θ is the threshold of the right tail of the matching score distribution (methylation-prone distribu-

tion, if the underlying motif is a potential methylation-prone CpGMM), μ is the matching score distri-

bution mean, σ is the matching score distribution standard deviation, and λ is set to 2, based on an em-

pirical study. On the other hand, considering as true targets the sequences that pass the filter (6), to

strengthen the discriminating capabilities of the motif, we select only those with a False Discovery Rate

(FDR) ≤ 0.05

FDR=
FalsePositive

FalsePositive+ TruePositive
, (7)

where FalsePositive is the number of scores ≥ θ in the methylation-resistant distribution, if the underly-

ing motif is a potential  methylation-prone CpGMM, TruePositive is the number of scores  ≥ θ in the

methylation-prone distribution, if the underlying motif is a potential  methylation-prone CpGMM. We

use the right tail (high matching score) of the two distributions. The selected motifs are represented as

motif logos, using WebLogo 3.0  (Crooks et al., 2004). All the found motifs were annotated with the

gene ontology of their corresponding targets using the R-bioconductor package GOstat  (Falcon and

Gentleman, 2007).  To assess the  stability of  the motif discovery we performed a bootstrapping  with
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100 time samplings with replacement over the ADS-iPSC methylomics data. We used as an estimation of

the CpGMMs the percentage of CpGMMs that are recovered in at least half of the bootstrapping samples. 

Search of cell-type specific and somatic memory CpGMMs

For  all  the  methylation  motifs  in  each  pair  of  cell  types  (ES/FB/iPS),  we  computed  the  Pearson

correlation.

ρ(PWM i , PWM j)=
(PWM i−PWM i)⋅(PWM j−PWM j)

T

∥PWM i−PWM i∥2∥PWM j−PWM j∥2

, (8)

where  PWMi and  PWMj are PWMs of the cell type  i and  j, respectively.  When the two PWMs have

different lengths, e.g. if length(PWMi)>length(PWMj), we substitute in the Pearson correlation (8) the

longest matrix PWMi by the overlapped central block of the PWMi matrix with the same length of the

shorter  matrix  PWMj.  Before  applying  Eq.  (8),  both  PWMs  should  be  converted  from  (4×w)

bidimensional matrices to 4w-length vectors. Following the standards, defined in the field of DNA

motifs to estimate the pairwise similarities (Stormo, 2000), we consider that two motifs are similar, if

their Pearson correlation ρ > 0.85. We define as cell-type specific motifs those whit low correlation (ρ ≤

0.5) with any other motif in any cell type. The persistent somatic memory CpGMMs are those that have

high correlation (ρ  ≥ 0.85) between iPS cells and FBs and simultaneously have low-correlation (ρ ≤

0.5) with ES cells. The absent somatic CpGMMs are the ES specific motifs, thus, those ES motifs with

low-correlation  (ρ  ≤  0.5)  with  any  other  motif  in  iPS  and  FB. We  searched  separately  for

methylation-prone and -resistant CpGMMs.

Nucleotide enrichment analysis of CpGMMs

The four  types  of nucleotides  for  each  methylation-resistant  and  -prone CpGMM are counted and

normalized  with  the  motif  length.  The  Wilcoxon-Mann-Whitney-test  is  applied  for  each  pair

distribution of methylation-prone -resistant CpGMMs of the same nucleotide to find the significantly

different enrichments with a significance level α = 0.01.

Analysis of conservation of CpGMM targets

All  targets  of  methylation-resistant  and  -prone  CpGMMs  targets  are  mapped  to  phastCons46way

conservation  track  in  primates  (Siepel  et  al.,  2005) downloaded  from:
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http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/phastCons46wayPrimates.txt.gz.  From  that

file  we get  the  conservation  score  for  each  nucleotide  position.  The  Kolmogorov–Smirnov  test  is

applied for two distributions of conservation scores of  methylation-prone/resistant CpGMMs with a

significance level α = 0.01. 

Analysis of co-localization of CpGMM targets with genetic loci

1. Analysis of co-localization of CpGMM targets with TSS

The distance from all targets of methylation-resistant and -prone CpGMMs to the corresponding TSS

are computed. All target genes and TSSs annotation are taken from the UCSC genome browser Refseq

hg19  (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/knownToRefSeq.txt.gz).  The

Kolmogorov–Smirnov  test  is  applied  for  two  distance  distributions  of  methylation-prone/resistant

CpGMMs with a significance level α = 0.01. 

2. Analysis of co-localization of CpGMM targets with CpG islands

We  downloaded  the  conserved  the  CpG  islands  annotation  from  the  UCSC  genome  browser

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/cpgIslandExt.txt.gz).  We counted for each

cell  type  the  number  of  targets  of  methylation-resistant  and  -prone  CpGMMs occurring  inside  or

outside CpG islands.

3. Analysis of co-localization of CpGMM targets with TFBSs

We  downloaded  the  conserved  TFBS  from  the  UCSC  genome  browser

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/tfbsConsSites.txt.gz and

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/tfbsConsFactors.txt.gz).  The search  of TFs

that share binding sites with the CpGMMs is not straightforward, since the CpGMMs have a central

CpG anchor but the TFBMs do not necessarily have it. Even focusing on TFBMs with a strong CpG

signal, such a signal is not always in the TFBM center. If the targets of a CpGMM co-occur with a

TFBS, we consider that the CpG methytlation motif and the TFBMs are associated. Then, to compare

CpGMMs and TFBMs, we designed a technique based on detecting co-occurrences between the targets

of the two motif types. Thus, for the conserved TFBS co-localization analysis, we counted for each cell
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type the number of targets of  methylation-resistant and  -prone CpGMMs occurring inside or outside

conserved TFBS. 

4. Analysis of co-localization of CpGMM targets with histone marks

We  downloaded  the  twelve  histone  marks  broad  peak signals  from  the  ENCODE  project  (The

ENCODE Project Consortium, 2011) for ES cells (H1) and fibroblasts (NHLF). For each histone mark

and for each CpGMM type (methylation-prone or -resistant), we developed the following algorithm to

calculate the correlation between CpGMM targets and ES histone mark signals:

1. Identify in which loci the histone mark signals and the CpGMM targets co-occur. Such loci are

those for which CpGMM target and the support of the broad peak signal overlap in at least one

nucleotide. 

2. Collect the co-occurring scores of the histone mark signal over the overlapping region with the

CpGMM target (Fig. S6) for all the CpGMM targets of all the CpGMMs.

3. Calculate the histogram of the co-occurring scores (Fig. 5c).

4. Calculate the mean of the co-occurring scores (Fig. 5a).

5. Calculate  the  difference  between  the  mean  of  the  co-occurring  scores  of  the

methylation-resistant  CpGMMs and the mean of the  co-occurring  scores methylation-prone

CpGMMs (Fig. 5b).

Correlation analysis between CpGMM targets, CTCF and gene expression

The transcriptomics RNA-seq data and the CTCF binding data of ES cells (H1) and fibroblasts (NHLF)

are downloaded from the ENCODE project (The ENCODE Project Consortium, 2011). We focused on

the extended promoter regions as defined in the Data collection and annotation subsection. We collect

all the CpGMMs  targets and the  broad-peak CTCF signals  inside  of the  extended  promoter regions.

The target genes are classified into six groups: 

1. Genes with only methylation-prone CpGMMs.

2. Genes with only methylation-resistant CpGMMs.

3. Genes  with  methylation-prone  CpGMMs  near  TSS,  and  CTCF  signal  in-between

methylation-resistant and -prone CpGMMs.

4. Genes  with  methylation-resistant  CpGMMs  near  TSS,  and  CTCF  signal  in-between
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methylation-resistant and -prone CpGMMs.

5. Genes with methylation-resistant CpGMMs, methylation-prone CpGMMs near TSS, and absent

CTCF signal in-between.

6. Genes with methylation-prone CpGMMs, methylation-resistant CpGMMs near TSS, and absent

CTCF signal in-between. 

The  expected  number  of  CTCFs  inside  the  extended  promoter  regions  of  genes  with  bivalent

composition of CpGMMs is defined as the pool of the lengths covered by the broad-peak CTCF signals

that lie inside the extended promoter of the bivalent composition genes divided by the pool of the total

lengths of the extended promoters of the bivalent composition genes. The expression values (FPKM) of

these classified genes are computed based on the RNA-seq data.

Algorithm implementation

All  annotation  information  was  compiled  in  a  relational  database,  with  the  database  management

performed with MySQL (version 5.1.61). The algorithms were implemented in Python (version 2.6.5),

with  numerical  package  numpy  (version  1.6.1)  and  scipy  (version  0.9.0), in  an  Ubuntu  (version

10.04.1) environment.
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Figures Supplementary material

Figure  S1.  Comparison  between  conserved  methylomes  of  the  different  cell  types  across  the

different cell lines, and cell line methylomes and transcriptomes.  (a) Pairwise scatter plots of the

positive DNA strand of the conserved methylomes of each of the three cell types used.  (b) Pairwise

scatter plots of the positive DNA strand of the fibroblast, FF iPS and H9 ESC methylomes. (c) Pairwise

scatter plots of the fibroblast, iPS and H9 ESC transcriptomes.  The transcriptomics  data were taken

from Takahashi and Yamanaka (2006) and produced the scatter plots of Fig. S1c. The scatter density is

represented in log10 scale by the colorbar to the right of each plot.
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Figure S2. Intermediary results from the CpGMM discovery method pipeline. (a) Distribution of

the frequency of sequences before (red), and after (blue) fusion for different sequence lengths  w for

high-methylated CpGs of the negative strand of the  ADS-iPSC case.  (b) Hierarchical clustering of

fused sequences for the negative strand of the ADS-iPSC case for sequence length w=16. The cut-off

value that decides the final clusters is marked with a horizontal red line. (c) Histogram of the matching

score  of  a  typical  methylation-prone  CpGMM.  (d) Histogram  of  the  matching-score  of  a  typical

methylation-resistant CpGMM. The upper panels in (c) and (d) show the matching-score distribution,

generated when scanning the motifs over high methylated regions, and the lower panels when scanning

over low-methylated regions. The vertical blue line indicates the position of the threshold, calculated

with  Eq. (6)  and  used  to  collect  the  specific  motif  targets.  The corresponding  methylation  motifs

overlay the matching score distributions obtained in the high-methylated regions.  (e)  Bar plot of the

percentages of sequences of length  w that preserves the same category of methylation ratios (UMS,

LMS or HMS) across the ADS-iPSC methylome.  (f) Number of methylation-resistant (red  top  bars)

and methylation-prone (green bottom bars) CpGMMs that appear in one cell line (left bars) and in more

than one cell line (right bars) of each cell  type.  (g)  Number of times each  ADS-iPSC CpGMM is

recovered by the bootstrapping process. (h) Percentage of recoved ADS-iPSC CpGMMs for each of the

100 time samplings of the bootstrapping process.
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a     b

c    d

Figure S3. Venn diagrams of the numbers of CpGMM for each DNA strand and each methylation

mode clustered in each cell type. (a) Methylation-resistant CpGMMs in the positive DNA strand. (b)

Methylation-prone CpGMMs in the positive DNA strand. (c)  Methylation-resistant CpGMMs in the

negative DNA strand. (d) Methylation-prone CpGMMs in the negative DNA strand. In red ES CpGMM

numbers, in green iPS and in blue fibroblast. The numbers enclosed by the circular segments are the

numbers of cell-type specific motifs (those with a Pearson correlation with any CpGMM of any other

cell type population less than 0.5).

15

Methylation-resistant

Positive
DNA

strand

Negative
DNA

strand

Methylation-prone



Supplementary information

a b c

d e

f g

h

16



Supplementary information

Figure  S4.  Discriminative  features  between  mixed  promotors  contained  bivalent-  and

monovalent-CpGMMs.  (a)  Histograms  of  the  distances  of  methylation-resistant  CpGMM  targets

(red), methylation-prone CpGMM targets (green) to the in-between CTCF for promoters containing

simultaneously  methylation-resistant and -prone CpGMMs in fribroblasts. The red and green vertical

lines show mean values of the distances to CTCF or  methylation-resistant and -prone CpGMM loci,

respectively. (b) Histogram of the fibroblast expression of genes with only  methylation-resistant or

-prone CpGMMs. (c) Histogram of the fibroblast expression of all the genes (yellow) and genes with

promoters  containing  simultaneously  methylation-resistant  and  -prone  CpGMMs  (blue).  (d,e,f,g)

Histograms of the expression of the genes with mixed structure of  methylation-resistant and  -prone

CpGMMs in their 1Kb upstream promoters. (d) ES cell gene-expression histograms for the case of

methylation-resistant CpGMM close to the TSS. (e) ES cell gene expression histrograms for the case of

methylation-prone CpGMM close to the TSS. (f) Fibroblast gene-expression histrograms for the case of

methylation-resistant CpGMM close to the TSS. (g) Fibroblast  gene-expression histrograms for the

case of methylation-prone CpGMM close to the TSS. In dark red are shown the cases with a CTCF

in-between a methylation-prone and -resistant CpGMM region close to the TSS. In light red are shown

the cases without a CTCF in-between a methylation-prone and -resistant CpGMM region close to the

TSS. In dark green are shown the cases with a CTCF in-between a  methylation-prone and  -resistant

CpGMM region close to the TSS. In light green are shown the cases without a CTCF in-between a

methylation-prone and -resistant CpGMM region close to the TSS. The numbers inside boxes are the

percentages  of expressed genes.  (h) Heatmap of the percentage of fibroblast  expressed genes with

mixed and unmixed structure of  methylation-resistant and  methylation-prone CpGMMs in their 1Kb

upstream promoters.  The  corresponding  genomic  structure  (with  the  positions  relative  to  the  TSS

marked with an arrow) of the methylation-resistant and -prone CpGMMs, and the CTCF is represented

on the side of each cell.
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Figure  S5.  CpGMM discovery  method  pipeline.  Example  of  processing  of  a  genomic  sequence

fragment annotated with the methylation level of each CpG. The data collection is illustrated for a

simple case of sequence length w=3. The identical sequences are of the same color. We focused on the

low (red) and high (green) methylated sequences. The processes of  methylation-resistant and  -prone

CpGMMs are highlighted in red and green, respectively.
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Figure S6. Example of calculation of the co-occurrence scores between a broad-peak signal histone

mark and a CpGMM target. The position of the CpGMM target is framed by a red box, the scores of

the histone mark region not-overlapping with the CpGMM target are drawn with green bars, and those

corresponding with the region overlapping the CpGMM target are drawn with yellow bars. 
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