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1. SUPPLEMENTAL METHODS

1.1 Bulk cell analysis

1.1.1 SNP array analysis for REH and the DS-ALL sample

To define copy number alterations and SNPs for the REH cell line and the DS-ALL
sample we used the Affymetrix® Genome-Wide Human SNP Array 6.0 (Affymetrix®,
Santa Clara, CA, USA). Remission DNA was not available for the DS-ALL case so
controls for both samples were 20 HapMap Caucasian samples
(hapmap.ncbi.nlm.nih.gov). Briefly, according to manufacturer’s guidelines, 500ng of
sample DNA was digested using restriction endonucleases Nspl and Styl, ligated to
an adaptor, and then PCR amplified with adaptor-specific primers. The PCR
products were digested using DNasel and labelled with a biotinylated nucleotide
analogue. The resulting labelled DNA fragments were then hybridized to the
microarray, stained using streptavidin-phycoerythrin conjugates and washed using
the Affymetrix® Fluidics Station 450. The GeneChip® scanner 3000 7G was used to
scan the arrays and the image was acquired using Affymetrix® GeneChip® Operating
Software (GCOS version 1.4). Genotyping was performed in the Genotyping
Console 4.0 software (Affymetrix®) using the Birdseed clustering algorithm. Contrast
QCs and call rates are displayed in Supplemental Material Table 1B. Copy number
analysis was completed using Partek® Genomics Suite™ Software (Partek Inc,
Missouri, US) and the Hidden Markov Model default settings in the Copy Number

Workflow.

1.1.2 Whole exome sequencing — additional information
The in house-variant caller CaVEMan (Cancer Variants through Expectation

Maximisation) uses a naive Bayesian classifier to estimate the posterior probability



of each possible genotype (wild-type, germline SNP, somatic SNV) at a given base,
accounting for the effects of observables such as base quality (measuring
signal:noise ratio), read position, sequencing lane, and read orientation. CaVEMan is
configured to incorporate knowledge of copy number and normal cell contamination
in the posterior probability calculations. Several post-processing filters were applied
to the set of initial CaVEMan SNV calls in order to increase the specificity of the
output. Initially, at least 1/3 of mutant alleles in tumour reads are of quality = 25. At
least 1 mutant allele in a tumour read must fall in the middle third of the read, unless
the tumour read depth is less than 10, when a mutant allele the first third is
acceptable. There is no more than 1 high quality (= 20) mutant allele in a normal
read.

To call insertions and deletions, split-read mapping was implemented as a
modification of the pindel algorithm 1. The search for indels included read-pairs in
which one or both ends map to the genome, but allow one of the pair to have
mismatches, insertions or deletions. Pindel searches for reads where one end is
anchored on the genome, and the other end can be mapped with high confidence in
two (split) portions, spanning a putative indel. As completed for the CaVEMan
output, we applied several post processing filters to the pindel output in order to
improve specificity. Two classes of indel were identified: >4bp and <4bp. For both
classes the following filters were applied to the raw output; >3 tumour reads must
report putative indel variant; <5% of calls must occur in germline sequencing data
and when no wild-type coverage in BAM; Pindel must not call an event in the wild-
type. For small events the following filters were applied; tumour with BAM depth of
<200 reads must have variant call in 28% of reads; tumour with BAM depth of 2200

reads must have variant call in 24% of reads; germline BAM must have >5 reads



spanning the region; Pindel calls in germline reads must be <5% of the germline
BAM depth; if the tumour BAM depth > wild-type BAM depth normalise the Pindel
wild-type calls against this; discarding if new value is 25% reference; apply poly-
nucleotide tract filter for events with repetitive region >9 repeats; germline BAM
depth must be 28% of tumour BAM depth; tumour BAM must have <8% BWA
reference calls vs BWA variant calls. Furthermore, for large events no germline
sequencing reads should be called as part of an event by Pindel and exome data
results must annotate to coding regions of the genome.

Copy number analysis was performed using ASCAT (version 2.2) % taking into
account non-neoplastic cell infiltration and tumour aneuploidy, and resulted in
integral allele-specific copy number profiles for the tumour cells. Allele-specific copy
number estimates for point mutations and indels were obtained by integrating copy
number and sequencing data. In a sample containing only tumour cells, the number
of reads, r, with a mutation can be expressed as:

Equation (1.1)

Nyt R

Niocus

In equation (1.1), nics IS the copy number of the locus, nmy is the number of
mutated copies and R is the total number of reads from that locus. In case of a
tumour sample consisting of a fraction of tumour cells p, infiltrated with a fraction of
normal cells 1 — p (assumed to have two copies), equation (1.1) becomes equation
(1.2):

Equation 1.2
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Hence, allele-specific copy number estimates for point mutations and indels can be
described as:

Equation 2

1
Nmue = f:s‘ ;(pnlocus +2(1 - P))

In equation (2), fs = r/R is the frequency of mutated reads observed in the
sequencing data, and p and n locus can be obtained from the ASCAT copy number
analysis. These copy number estimates of mutations were used to determine which
mutations are likely sub-clonal: if nmut = 0.8, the mutation is called likely clonal and if
nmut < 0.8, the mutation is called likely sub-clonal.

In the case of indels, reads with an insertion or deletion may not map as well
as reads without insertions and deletions. Therefore, a procedure was followed to
estimate fs for indels that was independent of ease of mapping. Reads were
obtained by matching flanking sequence (10 bp on each side) around the indel,
further filtered to exclude spurious matches. The mutated read frequency was
subsequently calculated, accounting for the difference in sequence lengths with and

without the indel:

Equation 3
Tindels
f — (ls _ lindels + 1)
s Tindels + Thormal
(ls - lindels + 1) (ls - lnormal + 1)
rindels/(ls - lindels + 1)
fs

B Tindels/(ls - lindels + 1) + rnormal/(ls - lnormal + 1)



In equation (3), ringel and rnomar are the respective numbers of reads with and without
the indel, s is the read length (76 bp), and linger @and lnomar are the respective lengths
of the matching fragment in sequences with and without the indel.

For validation all putative somatic indels were confirmed by capillary
sequencing on the tumour and germline DNA from that patient. In <10% of calls, the
capillary sequencing gave noisy traces, and we report variants where there was
convincing evidence for the mutation on exome data (high coverage; good quality
sequencing and mapping; high fraction of reads reporting the variant in the tumour;
no reads reporting variant in matched germline sequencing. Validation of putative
somatic substitutions was performed via Roche pyrosequencing of both tumour and
remission samples. Primers were designed to generate 275-425 bp fragments
suitable for Roche 454 pyrosequencing. Pyrosequencing data were evaluated for the
presence of the mutant allele in the tumour sample. SNVs were annotated as
somatic only when mutant alleles were present in the tumour sample. Mutant allele
burden estimates were derived from the fraction of reads reporting the mutant allele
over the total read depth at each genomic location and confidence intervals were

derived using the binomial distribution.

1.2 Single cell analysis

1.2.1 Single cell labeling and flow sorting

Patient samples were thawed from liquid nitrogen stored cryovials by gentle warming
in lukewarm water followed by resuspension in 9ml RPMI-1640 medium 10% FCS.
Cells were pelleted and washed in PBS (1x10° cultured cells were pelleted prior to
washing). The cells were resuspened in 5ml PBS containing 10uM carboxyfluorescin

diacetate, succinimidyl ester (CFSE) and incubated at 37°C for 15 minutes. The cells



were then pelleted, resuspended in RPMI-1640 medium 10% FCS and incubated at
37°C for 30 minutes. Finally, the cells were pelleted and resuspended in 100ul PBS
prior to sorting. CFSE is an in vivo cell viability tracer that passively diffuses into cells
and only fluoresces once intracellular esterases cleave the acetyl groups from the
compound.

Single cell sorting was performed on a BDFACSArial-SORP instrument
(BD®, Franklin Lakes, NJ, USA) equipped with an automated cell deposition unit
using the following settings: 100micron nozzle, 1.4bar sheath pressure, 32.6KHz
head drive and a flow rate that gave 1-200 events per second. These flow settings
allow an average time between events (at worst) just less than 100 times larger than
the window used to select the event; therefore with a monodispersed sample the
chances of selecting two events in one sort window is small. Cell selection by
forward-scattered light (FSC) and side-scattered light (SSC) accounted for cell size
and internal complexity allowing accurate selection of single cells avoiding doublets
and clumps (Supplemental Figure 1).

To further assess the efficiency of single cell sorting Beckman Coulter Flow-
check beads (Beckman Coulter Inc®, CA, USA) were sorted singly onto an Ampligrid
slide (Beckman Coulter Inc®) and counted using a Nikon Eclipse 50i fluorescence
microscope (Nikon Corporation®, Japan) to confirm one particle per sorted droplet.
Once labelled with CFSE as previously described, cell suspensions were sorted and
assessed in the same way to confirm single cells by microscopy. If success was
achieved on 98% of occasions we proceeded with single cell sorting. This was

completed prior to each experiment.



1.2.2 Single Cell Q-PCR analysis

The BioMark™ HD generates a Cr value for each reaction (this is the PCR cycle at
which the concentration of free emitter dye fluorescence is detected by the
instrument). The C; value therefore indicates the amount of DNA after the
amplification phase and confers the DNA copy number or the presence of a SNV or
fusion. DNA copy number (CDKN2A and MX1) and EPOR SNP assay amplification
curves in a single REH cell can be found in Figure 2a and Supplemental Figure 2
respectively. A heterozygous mutation was considered to be present if the signals
from the mutant and wild-type sequence probes (FAM and VIC respectively) had a
C+ value <28 in a single cell. A homozygous mutation was considered to be present
if there was no wild-type sequence signal.

The AACt method (Applied Biosystems®) was employed to determine a copy
number for each locus with modifications to incorporate data from multiple Tagman®
assays targeting the same genome region. This method determines the mean AC+
value of quadruplicates from an endogenous reference gene, in this case B2M
(diploid), and a target gene of interest for both a calibrator cell (diploid) and the cell
of interest (REH/ALL - unknown ploidy). Normalising the result of each target gene
by a reference gene corrects for experimental variations. The corrected mean ACt
value for each target gene of the calibrator cell is then subtracted from that of the cell
of interest generating a ratio referred to as the AAC+. This ratio is an estimated copy

number and represented by the following equation:

Copy number = chZ‘MCT

where cn¢is the copy number of the target gene in the calibrator cell and AAC+ is the

difference between AC+ of the cell of interest and the calibrator cell.
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To ensure robust data from a system that can be influenced by assay
efficiency and experimental variability we used three distinct assays to target B2M
and the region of interest and calculated the DNA copy number estimates as
described above. Normalising every target gene assay by each reference gene
assay generated nine estimated copy number results for a region of interest. A
confidence metric was assigned to the estimated copy number. For example a
confidence value of 90% indicates that there is a 10% chance that the true copy
number differs from the estimated copy number (according to ABI CopyCaller®
Software v2). The inferred confidence is a function of the estimated copy number

and replicate mean and is calculated as:

f
Confidence (M ,CNestimated)= |1+ z rlcn o0

cn
cn#cng a

where a (subscripted) = estimated, y; = replicate mean for the sample, Chestimated =
copy number given to the sample, Il., = probability of copy number cn, Q is

calculated as:

B 1 cn ) log(cn,cn)
Q= Fiogtr+ By "9 (cna> ((“r K+ gt + E))

where o = standard deviation of the sub-distributions, E = PCR efficiency of the

target assay, K = constant in the function relating the sub-distribution mean (ucn) to

copy number (cn) calculated as:

Hen = K log(cn)

B log(1+E)

To calculate the actual DNA copy number for the region of interest taking into

consideration all nine estimates (where they were deemed to be reliable), we then

11



calculated the weighted mean of the estimated copy numbers according to the
confidence metric attributed to each. This reduced the contribution of less reliable
estimated DNA copy number results to the final DNA copy number result. Estimated
copy number results were not considered if the confidence value was less than 50%
or the estimated copy number was greater than four (with only quadruplicates per
assay the results are not robust enough to accurately determine DNA copy numbers
greater than four * or only one of the nine DNA copy number results for a given
region was deemed reliable.

The weighted standard error was also calculated in conjunction with the
weighted mean and the weighted mean only finally accepted for a cell of interest if
the attributed weighted standard error did not exceed the maximum weighted

standard error value generated from the control plate of 48 cord blood cells.

1.3 Single cell method validation
1.3.1 Assay validation
The correlation coefficient of each DNA copy number assay according to the
manufacturer is at least 0.98. To assess the efficiency of each assay in our single
cell system we used the standard curve method and data from single, two and three
collectively sorted cells; 18 data points per group. As expected the correlation
coefficient was not always above 0.98 in our system. However, only assays that
presented curves with correlation coefficients of 0.90 and higher were used for DNA
copy number analysis.

A control experiment was completed in a panel of 48 diploid cord blood cells
to determine the frequency of false positive calls for SNVs and DNA copy number

assays. The number of wells that presented a fusion gene, SNV or CNA indicated
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the reliability of each assay and this was used as a threshold to estimate the error
rate in sub-clonal population frequencies and define a cut-off for accepted

populations (Supplementary Tables 2 and 3).

1.3.2 Detection of duplicate cells in a single well

Whilst it is not possible to identify the number of wells with two or more cells visually
or by copy number analysis it is possible to estimate the amount of DNA in each well
for each reference gene. With this information it is possible to identify those wells
with above average amounts DNA indicating the presence of two or more cells and
remove the data from further analysis. Briefly, one, two, three or four cells were
sorted into consecutive wells of a 96 well plate for Q-PCR analysis and DNA
guantification; eighteen for each group. We used the control gene assay B2M-1 to
guantify the amount of DNA for each well and then considered the range for each
cell number (Supplemental Figure 3). The results indicate a significant difference in
average Cr between the eighteen wells containing one and two cells and two and
three cells; the assay reaches saturation with DNA from four cells. Using this data
cells sorted with the aim of obtaining a single cell but with a raw B2M-1 Ct value
lower than the upper quartile obtained in this control experiment when two cells are
sorted were removed from the final analysis as potentially two cells have been sorted
into the same well. This ensures that only data from single target cells is used for
phylogenetic analysis. The rate was approximately one well per 96 well plate but
given our single cell visual assessment prior to sorting it was felt that this was an

over estimation; however an acceptable loss to ensure robust data from single cells.

13



1.3.3 Data exclusion from Q-PCR and phylogenetic analysis

Data from single cells that were removed from the Q-PCR analysis included those
wells that showed no data (no cell), those wells in which all B2M assays did not have
a strong signal (<28 Ct) and wells in which all CNA assays for a target region of
interest did not produce Cr results within one Cy. Data from suggested minor sub-
clonal populations that did not exceed assay error rates was removed from further
phylogenetic analysis. On average 75% of interrogated single cells generated
complete comprehensive results. Supplemental Table 4 provides details and

explanations of cell removed from each case experiment.

1.4 Phylogenetic analysis and clonal evolution

1.4.1 Phylogenetic characters and motifs
In order to analyse the clonal expansion and to infer the evolution of ALL we have
associated the experimental observed data with a signature or a motif to label each
cell. Each examined cell shows, for each unit assayed (i.e. gene), a determined
genotype or a copy number alteration which can be concatenated in a linear array of
n characters in length where n is the number of units assayed; each character (c)
represents the observed unit state.

This array of n characters represents the genomic state of each cell, encloses
signatures of the evolutionary history and thus, we can consider it as a phylogenetic

motif:

C = {C1, ...,Cn}

where C is the observed finite motif of each cell and c; represents each observation.
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All cells with the same motif are then grouped together to form a clone or a
taxon. Each character state of the motif may be phylogenetically informative and can
be assumed as a phylogenetic character state; a set of mutually exclusive states
with a fixed order of evolution. Each state directly evolves from another and a set of
the observed character states can evolve from one ancestor character state known
as the nearest common ancestor *. According to parsimonious analysis each
character state, either observed or inferred, is assigned to a node or tip of an

evolutionary tree °.

1.4.2 Character state graph

Phylogenetic analysis is governed by assumptions given to each character state that
determine its evolution®. For discrete characters with a limited number of possible
states we can describe these assumptions using a visual representation adopted
from the graph theory °.

Consider a graph:

G=(V,E ¢)
where:
(1) V is a n empty finite set called vertices of G (singular vertex);

(2) E is a consecutive set of e-elements of G called edges of G where the

marginal e-elements are subsets of V;

(3) VNE # g;

(4) ¢ is a function with domain E and codomain P (V) such that:

15



¢ (e)={ViV}VveeE VV,V,eV.

Given a graph G, we denote it pictorially by drawing a dot (¢) for each vertex
in V (G), and lines or arcs for each e € E (G) connecting the dots that represent
vertices in ¢ (e).

We can, therefore assign an order to each vertex and a graphical direction to
each edge to model a directional graph where each edge is a path carrying a
direction from one vertex to the other; both directions can be allowed. To illustrate
this principle consider the following graph:

G=(V,E ¢)
where:
V ={Vy, V2};

E ={e4, ex};

¢ = ({V:‘Z'z} {V62,2V1})'

This is a graph formally represented by a set of two vertices (Vi, V>)
connected by two edges (e1, e2). Each has a direction from V; to V; for the first and

from V, to V; for the second:

This directional graph can be expanded to a set of n vertices where the main
vertices represent the source or the origin of the graph while all others constitute the
vertices of each edge. Assuming the vertex V; is the source, two different examples

are given below:
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1) Ordered and bidirectional graph:

G=(V,E ¢)
where:
V ={Vs, V1, Vo};
E ={e1, e2};

— €1 ez

d) - ({V1'V2} {V7!V3}).
where the source vertex V; is ordered in the central position and is connected
to the remaining vertices V, and V3 by two edges (e, and e;,). The only two paths

are from V; towards V- or V.

i v v
2) Ordered and unidirectional graph:
G=(V,E, ¢)
where:
V ={Vy, V2, V3};
E ={e1, ex};

¢ = ({Vfllz} {V62:2V3})'

where the source vertex V; is ordered at the left of the linear graph. In this

case only one direction is allowed starting from V1 and ending with V3 but via V5.

We then applied the graph theory to each unit assayed (i.e. gene). Each edge

represents a character state transition or a step (e.g. DNA copy number loss) and
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each vertex corresponds to a character state (e.g. one, two or three DNA copies).
Therefore each graph can model the assumptions made for each gene. The source
vertex (V1) represents the ancestral state of 2 copies, while the other vertices
represent copy number alterations. For example, suppose the experimental data
from a gene indicates that single cell DNA copy number alterations range from 0 to
4, if we assume that reverse alterations are not possible, the directional graph can
be drawn as:
Ggene1 = (V, E, ¢)
where:
v={43,2,1,0}

E={a, b, c, d};

_ a b [ d
¢ = ({2,1} {1.0} {23} {3,4})'

The graph is linear and bidirectional where the ancestral state occupies the
centre. The direction allowed is that which leads to DNA copy number loss (edges a
and b) or DNA copy number gain (edges c and d); the reverse direction is not

allowed. The graph is as follows:

c a b

L d o< @ > >9

4 3 2 1 0
*--- Gaining copies___ __  __ Loosing copies __ _ __ __ >

In the case of SNVs, there are only three possible character states: ancestral
(anc), one mutation (heterozygous) and two mutations (homozygous). Although the
environment in which the clonal expansion arises is under selection’ we cannot
exclude back mutations and thus, we need a graph that considers multidirectional

character states:
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Ggenez =(V,E, ¢)
where:
V = {anc, het, hom};

E={a, b, c, d,};

_ a b [ d
(].') - ({anc,het} {het,hom} {hom,het} {het,anc})'

The graph is linear and multidirectional where the ancestral state occupies the
left of the graph. All paths are allowed except the from the ancestor to homozygous

and back, which are assumed to be impossible:

>

anc het hom

1.4.3 Step Matrix

Once a character state graph has been defined which imposes an order and
direction upon each phylogenetic assumption, we can use a matrix to represent the
evolutionary cost for each transition or step from one character state to another.
Consider a set of numbers arranged in a rectangular array containing n rows and m
columns. If n, m =21, amatrix of size n xmisamapof{l,...,n}x{1,...,m}
values. Each entry or component of the matrix is designed as mj indicating the
position of the element at the intersection of the i row and the " column. Therefore,

if M is the matrix of order n by m the M, matrix is denoted as follow:

M =

mqq m1m]
Mp1 0 Mpm
When m = n the resulting matrix is a matrix of order n (M), and is called n-

square matrix®.
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We can use an n-square matrix to describe the evolutionary distances
between each character state. Distances within this matrix represent the “cost” of
each genetic alteration; the higher the cost the less likely an alteration will occur. We
can then assign a cost to each edge. In order to optimize this step-cost approach for
each criteria, we expressed the cost using an algebraic equation that describes each
cost as a function of the step. As the character state graph is linear the cost of each
step is given by the linear equation:

Yi = mx;

where x; represents the step of the i edge and y; represents the cost for that
step; m is a constant (the slope). We assigned the natural number two to m as it
allows the smallest total cost; therefore the above equation becomes:

yi = 2x;

We did not assign the natural number of zero to m as zero this would suggest
no step. For the first evolutionary step (initiating leukaemia specific fusion ETV6-
RUNX1) we assumed m=1 paired with x=1 (one step). Therefore, the following
smallest natural number to be assigned to m is two and consequent steps are
described by the equation y;=2x;. This criterion programs the matrix with an order
and the first triggering evolutionary event.

The character graph approach for modelling the step and cost is extremely
powerful. If higher cost was attributed to a step and the number of steps increased
an exponential relationship may also be employed instead of a linear one. This is
expressed by the following equation:

Vi = 21
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where x; represents the step of the i edge and y; represents the cost for that
step; 2 is the constant for the point slope. The first two steps for both the linear and
exponential equations yield the same cost. Once a cost is assigned to each step of
the character graph, a step matrix is built.

G=(V,E, ¢)

where:
v={43,2,1,0}

E={a, b,c, d, e, f}

— a b c d e f
¢ = ({2,1} (1.0 23} {34} {20} {2,4})'

f e
d c a b
B¢ >& »
4 3 2 0

where each vertex represents the observed copy number and each edge the
step or character change from one condition state to the other. The character graph
is ordinate and bidirectional.

The 5-square matrix of 5 rows and 5 columns (M) is follows:

L TR S
~
~
~
o)
Sh

21



The cost for changing from one state to another is denoted by c; where |
represents the edge; each cost will result from the equation yi=2x;. The character i in
the matrix indicates infinity, representing an infinite cost and an impossible
evolutionary change or disallowed transformation. The dot character represents no
evolutionary changes.

Within this matrix we cannot ignore reverse mutations, which restore the
previous ancestral conditions, especially when deleterious mutations occur. Reverse
mutations for an SNV occur at a very low rate but for some types of DNA alterations,
such as large deletions, reversal is nearly impossible °. In the case of SNV we could
not ignore the potential for reverse mutations and a 1:5 (forward:reverse) cost was
used indicating that each reverse mutation costs five times more than a forward

mutation.

Estimating branch length s under parsimony criterion: Sankoff algorithm
In order to infer the phylogeny of the clonal expansion, given the step matrix, we
needed an algorithm that considered the number of character changes required by

any given tree. The Sankoff's algorithm*® **

, Is an algorithm that counts the number
of evolutionary changes for a specific site in a phylogenetic tree and evaluates all
possible character reconstructions. Given a cost matrix C = [c;;], in which the cost for
changing from state j to z can be read, the Sankoff algorithm computes the total cost
of the combinations of n events for each character. For each node () of the tree, a
character state j is assigned and the cost vector Sy (j) is computed. This reflects the
minimum cost of events (state changes) from 9 to the root of the tree. Sankoff

algorithm calculates this at each node starting from the tips of the tree moving

towards to the root. Initially, the Sy (j) at the inner nodes are unknown while those at
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the tips are computed assigning the cost 0 to the observed state j and infinity
(outlined as i) to the rest (Supplemental Figure 4). If a copy number of 1 is an
observed character state for a specific cell or cub-clone, the cost would be S,(0)= i,
Ss(1)= 0, Sy(2)= 1, assuming three character states (0, 1, and 2) are observed within
the sample. Then for the node a representing the immediate common ancestor S,* is
calculated according to the following equation:
Sa(j) = mzin[cjz + S (Z)] + mkjn[czk + S, (k)]

where S, is the actual node in state j, S|(z) is the left descendant in state z and Sy(k)
is the right descendant in state k. This means that the cost of the character state j for
the node a is the cost ¢j; of changing from character state j to z in the left descendant
lineage plus the cost S|(z) of having reached state z at the node |. Character z is
selected to minimize this sum. The same procedure is then applied to character k in
the right descendant lineage. The sum of the minimum z and minimum Kk is the
smallest possible cost for the sub-tree above node a, given the node « in state j. The
equation is applied to all nodes of the tree, up to the root (node 0):

S =minS,(j)
J

where S represents the minimum number of evolutionary changes for a given tree

with character state j at the root.

Searching for optimal trees: heuristic search

Felsestein (1993) suggests applying heuristic approaches, when trees are
constructed on the basis of ten or more sequences'* **. Alternatively, when the data
set is smaller, an exhaustive search can be applied. In this study we analysed two

datasets, a smaller set of four taxa (Case A) and a larger one of seven taxa (Case
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B). In order to infer the most parsimonious tree, we employed a heuristic search to
find optimal trees, using branch swapping of trees constructed by stepwise addition
of taxa. This searching algorithm is capable of generating all possible tree topologies
within an efficient computation time and negates the computational hardness of
exhaustive searches **. However, as our data sets were small we also employed the

branch and bound algorithm used in exhaustive searches *°

to phylogenetically
analyse our data. The results generated were the same as those achieved using the
heuristic search.

The step wise addition algorithm begins joining three taxa in an initial tree of
three branches representing the taxa and one internal node representing the
common ancestor *°. Each remaining unplaced taxon is then added to the tree one
at a time. The algorithm stops when all taxa have been joined to the tree. The
algorithm needs to be instructed as to how to determine which three taxa will be
initially joined and which one of the unplaced taxa will be connected to the tree
during each step. In order to search for the largest number of possible trees, the best
approach is to allow the algorithm to test as many tree topologies as possible using
random addition of taxa. This approach may not be very effective in terms of
stepwise addition but is extremely appropriate in obtaining different starting points for
branch swapping. All heuristic algorithms are susceptible to the problem of
entrapment in local optima but a tree topology search from a variety of starting points
increases the probability of escaping from the local optimum. In particular, stepwise
addition, is an extremely greedy algorithm and is highly susceptible to local-optima
problems; by initiating branch swapping repeatedly from different starting trees we

increase the probability of the heuristic search finding the optimum tree > *’.
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Branch swapping ' is a tree perturbation method that involves cutting off one
or more pieces of a tree (sub-trees) and reassembling them in a way that is locally
different from the original tree. This increases the effectiveness of searching the
global optimum. Different studies have shown that a non-branch swapping approach
yields significantly lower support estimates than analyses using some kind of branch
swapping approach **%. The phylogenetic package, PAUP*, implements the branch
swapping method using different algorithms. We employed the tree bisection and
reconnection (TBR) algorithm which is the most extensive rearrangement strategy
available in PAUP*,

Exhaustive explanations of the above algorithms are described in many

phylogenetics treatises and will not be explained here.

Evaluating the reliability of inferred trees
Phylogenetic reconstruction can determine the evolutionary history of taxa based on
characters states. However, different ways of assembling data such as taxon
sampling, alignment and data concatenation may bias the phylogenetic
reconstruction. A reliable phylogenetic tree is a tree where a small modification in the
data should not drastically change the phylogeny inferred or at least if it does, it
should only do so with a small probability. An inferred phylogeny without this
property is weak and inefficient. How can we estimate the reliability of the trees we
have inferred?

In the context of parsimony analyses two basic types of re-sampling methods

21-23

are used to assess the reliability of the inferred phylogenetic tree: bootstrap and

24, 25

jackknife which are both re-sampling statistical methods for error estimation %°.

Re-sampling procedures are considered to be an essential component of rigorous
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parsimonious phylogenetic analysis, offering support to any branch node of the tree.
Both bootstrap and jackknife can be used to quantifying any tree branch reliability.

The bootstrap approach is one of the most popular re-sampling methods to
place confidence in phylogenies but recently Simmons and Freudenstein (2011)
indicate that jackknife re-sampling should be used rather than bootstrap re-sampling
2’ Because of the step matrix method employed where for each unit (or gene) the
proper matrix is applied, a bootstrap analysis cannot be computed for our data set.
However, we did not want to ignore this approach and wrote an R in house script
that mimics the bootstrap re-sampling. Due to the short length of the data (only eight
characters) and aiming to keep the informative, complete data set, the script
samples without replacement, generating eight character replicas of the observed
clones but with units in another order. This approach, therefore has allowed us to
test if data concatenation could mislead the inferred phylogeny. Each replica
obtained using this script, has then been used in PAUP* to infer the replica
phylogenetic tree. We conducted this approach for each sample and the results were
the same for all replicas; a single tree found for case A and two identical trees found
for case B. These results support the evidence that the order of the concatenated
character does not bias our approach.

In order to evaluate the stability of the inferred phylogenetic trees and to
support each node, we applied a jackknife re-sampling approach. Jackknifing
repeatedly calculates the statistics of interest, missing out one or more characters in
turn and preserving their orders in the original data. This procedure does not conflict
with the step-matrix as bootstrap does. However, this approach has been criticised
as single character deletions from large dataset would produce very similar trees

from the respective replicates and would not provide any effective measure of
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support. Deleting a larger proportion of the characters has consequently been
adopted to increase the performance of the jackknife algorithm to that of the

bootstrap .

However, Farris et al., (1996) investigated jackknifing further and
concluded that deleting 50% of the characters was too severe.

Both Cases investigated consist of eight characters generating four sub-
clones for Case A and seven sub-clones for Case B; both are small datasets.
Considering the small size of our datasets and to keep as much data as possible we
chose to delete 12.5% of characters at random within each iteration. We then
jackknifed both datasets which resulted in a jackknife 50% majority rule consensus
tree 2°. We also tested our dataset with jackknifing at 25% and 50%. Considering the
size of our dataset we agree with Farris et al., (1996) that 50% jackknifing may be

too severe but a 25% jackknifing is still robust. Results are shown in Supplementary

Table 7.

PAUP*

The program PAUP* '’ is one of the most widely used software packages for
inferring evolutionary trees. The program is particularly proficient in inferring
phylogenies using parsimony. PAUP* also implements jackknife to support tree

nodes.

The problem of multiple Equally Parsimonious Reconstructions

In many situations, competing equally parsimonious reconstructions can result from
the inferred phylogeny. These trees may have different implications for the
evolutionary hypothesis under investigation and discharging one or more alternative

equally parsimonious reconstructions can strongly affect the conclusions.
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Consequently in this manuscript we have kept all parsimonious trees; one most

parsimonious tree for the case A and two equally parsimonious trees for the case B.
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SUPPLEMENTAL FIGURES

Tube: CaseA
Fopulation #Events %Parent %Total
B 2l Events 14,897 #1000
W r4 9,714 652  B5.2
~ P 9,675 996  64.9
Pz 9,605 993 645
W r3 9,493 988  B3T
A B
Samples-Case A Samples-Case A

2

10°
(x 1,000)
a

L1l l?

2?[!

% ]
=3 ]
3 T 2
T3 O
o N [
m.C‘_—E g7
o] &
’l'l}l.]Tllllllll"ll]]lllT] Illlllllllllllllllllllllll
50 100 150 200 250 50 100 150 200 250
C FSC-A (x 1,000) D FSC-A (x 1,000)
Samples-Case A Samples-Case A
5 2] 52
g &7 3 &
g 5| E 3
a a
Oy o0
~ L
& < 8
o] (SR
o 4 [x] -
w5 [
27 =7
= o
LI l.l LI I LI l 11 | LG 10 IR | I T IIIIIIII T IIIlIII] T IIIIHII T IIIlIIIl T
50 100 150 200 250 10 10 10* 10
FSC-A (x 1,000) FITC-A

Supplemental Figure 1. Fluorescence-activated cell sorting plots illustrating gating
approaches to efficiently isolate single cell. (A) This figure shows all events collected
by the BDFACSArial. Propidium iodide staining distinguishes dead and live cells;
the P4 gate encompasses live cells that lack staining. (B) This figure displays gating
(P1) for single cells only avoiding clumps identified by lower forward-scattered light
height (FSC-H) and broad forward-scattered light area (FSC-A); these events were

gated from the P4 population. (C) This figure displays only events gated by P1 but




confirms cell isolation by size and internal complexity (FSC-A and side-scattered
light (SSC)); P2 gate. (D) Fluorescein isothiocyanate (FITC) marks those cells that
successfully take-up the viability marker carboxyfluorescin diacetate, succinimidyl
ester (CFSE). Viable single cells were sorted according to the P3 gate ensuring

random sampling of the leukaemia; P3 was gated from P2.
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Supplemental Figure 2. EPOR SNP assay amplification curves generate by Q-PCR

for a single REH cell. (A) Amplification curve generated from the probe labelled with

VIC and complementary to the SNP sequence. (B) Amplification curve generated

from the probe labelled with FAM and complementary to the wild-type sequence.
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Supplemental Figure 3. Box and whisker plots to illustrate the range of raw Cr
values generated by Q-PCR from wells that contained either one, two, three or four
cells with a normal diploid karyotype. The upper and lower quartiles and minimum
and maximum values are displayed. The median values for the groups with either
one and two or two and three cells were significantly different (p<0.05); three and

four were not indicating assay saturation.
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Supplemental Figure 4. Example of Sankoff’'s algorithm. Possible character states
are bold, those infered or observed are blue. Each rectangle represents a node or a
tip and the digit within represents the cost of being in state 2, 1 or 0. The step matrix
is shown on the left. Each character state transition cost is indicated by a number; i

stands for infinite cost.
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SUPPLEMENTAL TABLES

Supplemental Table 1A. QC metrics for Affymetrix® Cytogenetics Whole Genomic

2.7M arrays.
Waviness
QC | SNPQC | MAPD Antigenomic Ratio seg count
CaseAdiagnosis.cychp | true | 2.376 0.17 0.25 52
CaseAremission.cychp | true | 2.316 0.18 0.23 3
CaseBdiagnosis.cychp | true | 2.658 0.16 0.23 567
CaseBremission.cychp | true | 2.502 0.17 0.21 4

Supplemental Table 1B. QC metrics for Affymetrix® Genome-Wide Human SNP

Array 6.0.

File Computed Gender | Call Rate | Contrast QC
DS-ALL.birdseed-v2.chp female 98.98 2.27
REH.birdseed-v2.chp female 99.45 2.83
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Supplemental Table 2. Custom and designed assays for each sample specific
mutation used in this study

Mutation Custom Assays

Error Rate in
diploid cells

IL7R

Forward Primer TGCATGGCTACTGAATGCTC
Reverse Primer CCCACACAATCACCCTCTTT
Probel ATGGATGGCTGTCTGGTCAT
Probe2 CTGATGGTTAGTAAGATAGGATCCATC

0%

EPOR SNP assay

rs318720 ( Life Technologies)

0%

PIK3R1

Forward Primer AGAACAGTGCCAGACCCAAGAG
Reverse Primer CAAGGGAAACACCAACCTTTGT
Probel AGGCAATCAGAAAGA
Probe2 AGGCAATGAGAAAGA

0%

DAXX

Forward Primer GGAAATGTCCGTCTCCACAGA
Reverse Primer CTGACCCTGGAGGAAGAAAGC
Probel AAGAGCTAAGACACAG
Probe2 TCAAAGAGCTGAGACAC

0%

EZH2

Forward Primer AGCGGCTCCACAAGTAAGACA
Reverse Primer TGCAAAGCACAGTGCAACAC
Probel TAGCACAGGCACTG
Probe2 TAGCACGGGCACTGC

2%

BCHE

Forward Primer GCCAGAAACTTGCCATCATAAAC
Reverse Primer ACCTAAACCAAAAAATGCCACTGT
Probel ACCACCATAAGTCC
Probe2 CCACCATAAATCCA

0%

BAZ2A

Forward Primer AAGGAAGTCCCCAAGGTGAAA
Reverse Primer GTCTTGTTCAATAGCTCAGTGATTTTG
Probel TCGAGGTCGGCTAC
Probe2 TCGAGGTCGGCCAC

2%

RB1

Forward Primer CCTAGTTCACCCTTACGGATTCC
Reverse Primer TGTTGGCAGACCTTCTGAAATTT
Probel CCCTGAACAGTCCAT
Probe2 CCCTGAAGAGTCCAT

0%

KRAS

Forward Primer TGGTCCTGCACCAGTAATATGC
Reverse Primer AAGGCCTGCTGAAAATGACTGA
Probel CTACGCCACCAGCT
Probe2 TACGCCACAAGCT

0%

SFRS11

Forward Primer AATCAAGCTTTGTATTTTAGCGAACA
Reverse Primer ACACACAAAAACACCCAGAAAATG
Probel TACTTTCAACAAACTGAG
Probe2 TTCAACAAACTCAGGTGG

0%

P2RY8-CRLF2

Forward Primer CTCTGAGCTCCATGGTTCGT
Reverse Primer CAAGCCACCCTTCCTTTAAT
Probel TCTCGAACTCCTGACCTCGT

0%

ETV6-RUNX1 REH

Forward Primer TGGAGGTTGTAATGAGCCAAGA
Reverse Primer CCCACCCCGACATAAATTCA
Probel AGCCTGGGCAACAGAGTGATACTCTCCC

REH: 0%

ETV6-RUNX1 Case A

Forward Primer GTGTATACACATATAGTGTATGTGCGTGTAC
Reverse Primer CCTCCTGCCATTGCTTTCTC
Probel AAGAGTCTGGAGGCATA

Case A: 0%

ETV6-RUNX1 Case B

Forward Primer TCACTCCCAACCTCTAGAACA
Reverse Primer TGTGTGCATGTGTGTAAGATGGA
Probel ACACTAATTTTCTCAGGTTGC

Case B: 0%

35




Supplemental Table 3. Copy number assays for each sample specific alteration in

this study
Error Rate
Copy Number (% loss/gain in diploid
Assays cells)
B2M -1 Hs 00128408
B2M -2 Hs 00112422 -
B2M -3 Hs 03896400
CCNC -1 Hs 02941667
CCNC -2 Hs 02942602 +- 6.6%
CCNC -3 Hs 06148409
CDKN2A -1 Hs 03724208
CDKN2A -2 Hs 03700684 +- 4.5%
CDKN2A -3 Hs 03704181
DPF3 -1 Hs 07066526
DPF3 -2 Hs 07074482 +-7.1%
DPF3 -3 Hs 0795788
MX1 -1 Hs 05557497
MX1 -2 Hs 02954936 +- 4.5%
MX1 -3 Hs 05528846
PAX5 -1 Hs 01885952
PAXS5 -2 Hs 02165423 +- 4.3%
PAXS5 -3 Hs 06837891
TBL1X -1 Hs 05633780
TBL1X -2 Hs 05614341 +- 4.7%
TBL1X -3 Hs 02806412
VPREB1°-1 Hs 06690444 ) 6.3%
VPREB1 -2 Hs 02879734 '

SOnly two VPREB1 assays were used as only a small number of commercial assays

were available in this region.
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Supplemental Table 4. Details and explanations of cell data removed from each individual case single cell experiment

REH - 2x96 plate

DS-ALL - 2x96 plate

ALL Case A - 4x96

All Case B - 4x96

Total number of single cells sorted 190 190 380 380
Total number of control cells sorted (11 per plate) 22 22 44 44
Total number of target cells sorted 168 168 336 336
Number of wells that were blank - no cell 6 9 10 6
Number of wells with data that suggested the cell was damaged 25 24 31 28
Number of wells with high DNA levels suggesting two cells 2 1 5 2
Number of cells constituting minor sub-clones below error rates 12 25 35 53
Successful data collected from target cell 126 115 261 254
Successful data collected from experiment 145 133 299 291
Percent of data removed because of failure 17.37 17.89 12.11 9.47
Percent of data removed as part of sub-clonal populations below 714 14.88 10.42 15.77
error rates
Percent of successful data collected form experiment 76.32 70.00 78.68 76.58
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Supplemental Table 5. FISH probes and scoring frequencies for each sample
specific alteration in this study

Gene/Chromosome Nuclei with normal Number of gene copies in each
; BAC clone signal pattern (%)
region (expected signals) sample tested
MX1 WI2-2208G5 100 (2C) REH: 4C-5%, BC;?’/OQ%, 2C-49%, 1C-
REH: 1C-2%, 0C-98%
CDKN2A W12-1034K10 99 (2C) DS-ALL: 2C-8%, 1C-78%, 0C-14%
Case B: 2C-21%, 1C-79%
RP13-309C18, .
P2RY8-CRLF2 RP11-309M23 98 (0OF) DS-ALL: 1F-96%
Vysis LSI
ETV6(TEL)/R
UNX1(AML1) REH: 1F-100%
ETV6-RUNX1 ES Dual 98 (OF) Case A: 1F-96%
Colour Case B: 1F-91%
Translocation
Probe Set
TBL1X RP11930D21 98 (2C) Case B: >2C-3%, 2C-7%, 1C-90%
CCNC RP11-484P14 97 (2C) Case A: 2C-10%, 1C-90%
PAX5 WI2-500F8 99 (2C) Case B: 2C-19%, 1C-81%
DPF3 RP11-73K12 97 (2C) Case B: 2C-27%, 1C-73%
Case B: 2C-8%,
VPREB1 RP11-24N11 100 (2C) 1C(minor signal)-8%, 0C-84%

8C=copy number
F= gene fusion
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Supplemental Table 6. Character states graphs and corresponding matrices employed in this manuscript

Gene Genomic alteration Graph Graphic Matrix
visualization
Case A and B: o y=x
LasefAandb. G =(V, E
ETV6-RUNX1 | Fusion CGuusion = (V, E, @) , 0 1
where: 0 1 Masin= 'l’ { ’}
V={0, 1} -
E={f}; ;
¢= ({0,1})
Case A: Forward: yi=2x;
CCNC CNA Gona = (V, E, @) . Back: not allowed (i)
TBL1X Xa= Xp= 1 step
where: 2 ! ' | x=2steps
Case B: V=12 1,0} o
CDKN2A E={a, b, c}; 2
DPF3 _ a b c 0 . i i
PAX5 ¢ = ({2,1} 1,0} (20} ) Mowa= 1 | 2 . i
VPREB1 2 1+ 2.
Case A:
BCHE SNPs — Forward: yi=2x;
Gsnes = (V, E, @) Yi=2Xi
gj)zgf whersé: : Ba_Ck";lﬁ=(_2Xr')_51 t
V = {anc, het, hom): A Xa= Xp= Xc= Xg= 1 step
EZH2 E={a, br e, d, e, f}, n“ ,)S,C,= &: 2 steps
PI3KR1 _ a b c d e f _
¢ = ({aﬂc,het} {het,hom} {hom,het} {het,anc} {anchet} {hom,anc} ) anc het hom anc  het hom
Case B: anc | . 2 4
KRAS Msxps= het [ 10 . 2
R81 hom | 20 10 .
SFRS11
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Supplemental Table 7. Jackknife analyses within the parsimonious trees of patient A

and B employing three different percentages of character deletion

% Characters Deleted 12.5 25 50
Case A
1 node 100 | 100 92
2 node 85 74 49
Case B
Tree B1: 1 node 100 96 81
Tree B1: 2 node 87 77 50
Tree B1: 3 node 88 75 48
Tree B1: 4 node 51 49 40
Tree B1: 5 node 75 54 21
Tree B2: 1 node 100 96 79
Tree B2: 2 node 87 74 48
Tree B2: 3 node 86 74 49
Tree B2: 4 node 51 48 41
Tree B2: 5 node 73 54 24
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SUPPLEMENTAL APPENDIX

Basic terms and concepts in phylogenetics applied to cancer evolution

Clade—a monophyletic group, which includes all the descendants of an ancestor.
Character—an attribute of a cell (or group of cells); it may be a morphological attribute,
a nucleotide position, a chromosomal insertion/deletion etc.

Phylogeny—evolutionary history of a group of cells or clones.

Phylogenetic tree—a mathematical structure depicting the evolutionary history of a
group of cells.

Node— a branching point on a phylogenetic tree. Internal nodes represent inferred or
observed ancestors.

Branch—connections between nodes representing a process of evolution in which
mutations inherited by descendants accumulate.

Root—the ancestor of all taxa include in the tree.

Taxon—a group of related cells or clones.

In the figure below, A-D represent related taxa as indicated by the branches. A
represents also the root. C and D are sister taxa and are thus a clade; B, C and D form
a larger clade Each node, or internal branching point, represents an ancestor of the
clade that lies “above” it. The node indicated by the arrow is the common ancestor of

taxa C and D.
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