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1. SUPPLEMENTAL METHODS 
 
1.1 Bulk cell analysis 

1.1.1 SNP array analysis for REH and the DS-ALL sample 

To define copy number alterations and SNPs for the REH cell line and the DS-ALL 

sample we used the Affymetrix® Genome-Wide Human SNP Array 6.0 (Affymetrix®, 

Santa Clara, CA, USA). Remission DNA was not available for the DS-ALL case so 

controls for both samples were 20 HapMap Caucasian samples 

(hapmap.ncbi.nlm.nih.gov). Briefly, according to manufacturer’s guidelines, 500ng of 

sample DNA was digested using restriction endonucleases NspI and StyI, ligated to 

an adaptor, and then PCR amplified with adaptor-specific primers. The PCR 

products were digested using DNaseI and labelled with a biotinylated nucleotide 

analogue. The resulting labelled DNA fragments were then hybridized to the 

microarray, stained using streptavidin-phycoerythrin conjugates and washed using 

the Affymetrix® Fluidics Station 450. The GeneChip® scanner 3000 7G was used to 

scan the arrays and the image was acquired using Affymetrix® GeneChip® Operating 

Software (GCOS version 1.4). Genotyping was performed in the Genotyping 

Console 4.0 software (Affymetrix®) using the Birdseed clustering algorithm. Contrast 

QCs and call rates are displayed in Supplemental Material Table 1B. Copy number 

analysis was completed using Partek® Genomics Suite Software (Partek Inc, 

Missouri, US) and the Hidden Markov Model default settings in the Copy Number 

Workflow. 

 

1.1.2 Whole exome sequencing – additional information 
 
The in house-variant caller CaVEMan (Cancer Variants through Expectation 

Maximisation) uses a naïve Bayesian classifier to estimate the posterior probability 
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of each possible genotype (wild-type, germline SNP, somatic SNV) at a given base, 

accounting for the effects of observables such as base quality (measuring 

signal:noise ratio), read position, sequencing lane, and read orientation. CaVEMan is 

configured to incorporate knowledge of copy number and normal cell contamination 

in the posterior probability calculations. Several post-processing filters were applied 

to the set of initial CaVEMan SNV calls in order to increase the specificity of the 

output. Initially, at least 1/3 of mutant alleles in tumour reads are of quality ≥ 25. At 

least 1 mutant allele in a tumour read must fall in the middle third of the read, unless 

the tumour read depth is less than 10, when a mutant allele the first third is 

acceptable. There is no more than 1 high quality (≥ 20) mutant allele in a normal 

read.  

To call insertions and deletions, split-read mapping was implemented as a 

modification of the pindel algorithm 1. The search for indels included read-pairs in 

which one or both ends map to the genome, but allow one of the pair to have 

mismatches, insertions or deletions. Pindel searches for reads where one end is 

anchored on the genome, and the other end can be mapped with high confidence in 

two (split) portions, spanning a putative indel. As completed for the CaVEMan 

output, we applied several post processing filters to the pindel output in order to 

improve specificity. Two classes of indel were identified: >4bp and <4bp. For both 

classes the following filters were applied to the raw output; >3 tumour reads must 

report putative indel variant; <5% of calls must occur in germline sequencing data 

and when no wild-type coverage in BAM; Pindel must not call an event in the wild-

type. For small events the following filters were applied; tumour with BAM depth of 

<200 reads must have variant call in ≥8% of reads; tumour with BAM depth of ≥200 

reads must have variant call in ≥4% of reads; germline BAM must have >5 reads 
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spanning the region; Pindel calls in germline reads must be ≤5% of the germline 

BAM depth; if the tumour BAM depth > wild-type BAM depth normalise the Pindel 

wild-type calls against this; discarding if new value is ≥5% reference; apply poly-

nucleotide tract filter for events with repetitive region >9 repeats; germline BAM 

depth must be ≥8% of tumour BAM depth; tumour BAM must have <8% BWA 

reference calls vs BWA variant calls. Furthermore, for large events no germline 

sequencing reads should be called as part of an event by Pindel and exome data 

results must annotate to coding regions of the genome.  

Copy number analysis was performed using ASCAT (version 2.2) 2 taking into 

account non-neoplastic cell infiltration and tumour aneuploidy, and resulted in 

integral allele-specific copy number profiles for the tumour cells. Allele-specific copy 

number estimates for point mutations and indels were obtained by integrating copy 

number and sequencing data. In a sample containing only tumour cells, the number 

of reads, r, with a mutation can be expressed as: 

Equation (1.1) 

  
     

      
 

 

In equation (1.1), nlocus is the copy number of the locus, nmut is the number of 

mutated copies and R is the total number of reads from that locus. In case of a 

tumour sample consisting of a fraction of tumour cells ρ, infiltrated with a fraction of 

normal cells 1 − ρ (assumed to have two copies), equation (1.1) becomes equation 

(1.2): 

 Equation 1.2 

  
      

         (   )
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Hence, allele-specific copy number estimates for point mutations and indels can be 

described as: 

 Equation 2 

       
 

 
(         (   )) 

 

In equation (2), ƒs = r/R is the frequency of mutated reads observed in the 

sequencing data, and ρ and n locus can be obtained from the ASCAT copy number 

analysis. These copy number estimates of mutations were used to determine which 

mutations are likely sub-clonal: if nmut ≥ 0.8, the mutation is called likely clonal and if 

nmut < 0.8, the mutation is called likely sub-clonal. 

In the case of indels, reads with an insertion or deletion may not map as well 

as reads without insertions and deletions. Therefore, a procedure was followed to 

estimate ƒs for indels that was independent of ease of mapping. Reads were 

obtained by matching flanking sequence (10 bp on each side) around the indel, 

further filtered to exclude spurious matches. The mutated read frequency was 

subsequently calculated, accounting for the difference in sequence lengths with and 

without the indel: 

Equation 3 
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In equation (3), rindel and rnormal are the respective numbers of reads with and without 

the indel, ls is the read length (76 bp), and lindel and lnormal are the respective lengths 

of the matching fragment in sequences with and without the indel. 

For validation all putative somatic indels were confirmed by capillary 

sequencing on the tumour and germline DNA from that patient. In <10% of calls, the 

capillary sequencing gave noisy traces, and we report variants where there was 

convincing evidence for the mutation on exome data (high coverage; good quality 

sequencing and mapping; high fraction of reads reporting the variant in the tumour; 

no reads reporting variant in matched germline sequencing. Validation of putative 

somatic substitutions was performed via Roche pyrosequencing of both tumour and 

remission samples. Primers were designed to generate 275-425 bp fragments 

suitable for Roche 454 pyrosequencing. Pyrosequencing data were evaluated for the 

presence of the mutant allele in the tumour sample. SNVs were annotated as 

somatic only when mutant alleles were present in the tumour sample. Mutant allele 

burden estimates were derived from the fraction of reads reporting the mutant allele 

over the total read depth at each genomic location and confidence intervals were 

derived using the binomial distribution. 

 
 

1.2 Single cell analysis  

 
1.2.1 Single cell labeling and flow sorting 

Patient samples were thawed from liquid nitrogen stored cryovials by gentle warming 

in lukewarm water followed by resuspension in 9ml RPMI-1640 medium 10% FCS. 

Cells were pelleted and washed in PBS (1x106 cultured cells were pelleted prior to 

washing). The cells were resuspened in 5ml PBS containing 10µM carboxyfluorescin 

diacetate, succinimidyl ester (CFSE) and incubated at 37C for 15 minutes. The cells 
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were then pelleted, resuspended in RPMI-1640 medium 10% FCS and incubated at 

37C for 30 minutes. Finally, the cells were pelleted and resuspended in 100l PBS 

prior to sorting. CFSE is an in vivo cell viability tracer that passively diffuses into cells 

and only fluoresces once intracellular esterases cleave the acetyl groups from the 

compound.  

Single cell sorting was performed on a BDFACSAria1–SORP instrument 

(BD®, Franklin Lakes, NJ, USA) equipped with an automated cell deposition unit 

using the following settings: 100micron nozzle, 1.4bar sheath pressure, 32.6KHz 

head drive and a flow rate that gave 1-200 events per second. These flow settings 

allow an average time between events (at worst) just less than 100 times larger than 

the window used to select the event; therefore with a monodispersed sample the 

chances of selecting two events in one sort window is small. Cell selection by 

forward-scattered light (FSC) and side-scattered light (SSC) accounted for cell size 

and internal complexity allowing accurate selection of single cells avoiding doublets 

and clumps (Supplemental Figure 1). 

To further assess the efficiency of single cell sorting Beckman Coulter Flow-

check beads (Beckman Coulter Inc®, CA, USA) were sorted singly onto an Ampligrid 

slide (Beckman Coulter Inc®) and counted using a Nikon Eclipse 50i fluorescence 

microscope (Nikon Corporation®, Japan) to confirm one particle per sorted droplet. 

Once labelled with CFSE as previously described, cell suspensions were sorted and 

assessed in the same way to confirm single cells by microscopy. If success was 

achieved on 98% of occasions we proceeded with single cell sorting. This was 

completed prior to each experiment. 
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1.2.2 Single Cell Q-PCR analysis 

The BioMark HD generates a CT value for each reaction (this is the PCR cycle at 

which the concentration of free emitter dye fluorescence is detected by the 

instrument). The CT value therefore indicates the amount of DNA after the 

amplification phase and confers the DNA copy number or the presence of a SNV or 

fusion. DNA copy number (CDKN2A and MX1) and EPOR SNP assay amplification 

curves in a single REH cell can be found in Figure 2a and Supplemental Figure 2 

respectively. A heterozygous mutation was considered to be present if the signals 

from the mutant and wild-type sequence probes (FAM and VIC respectively) had a 

CT value <28 in a single cell. A homozygous mutation was considered to be present 

if there was no wild-type sequence signal. 

The ∆∆CT method (Applied Biosystems) was employed to determine a copy 

number for each locus with modifications to incorporate data from multiple Taqman® 

assays targeting the same genome region. This method determines the mean ∆CT 

value of quadruplicates from an endogenous reference gene, in this case B2M 

(diploid), and a target gene of interest for both a calibrator cell (diploid) and the cell 

of interest (REH/ALL - unknown ploidy). Normalising the result of each target gene 

by a reference gene corrects for experimental variations. The corrected mean ∆CT 

value for each target gene of the calibrator cell is then subtracted from that of the cell 

of interest generating a ratio referred to as the ∆∆CT. This ratio is an estimated copy 

number and represented by the following equation: 

Copy number  cnc2
   CT 

 

where cnc is the copy number of the target gene in the calibrator cell and ∆∆CT is the 

difference between ∆CT of the cell of interest and the calibrator cell.  



 11 

To ensure robust data from a system that can be influenced by assay 

efficiency and experimental variability we used three distinct assays to target B2M 

and the region of interest and calculated the DNA copy number estimates as 

described above. Normalising every target gene assay by each reference gene 

assay generated nine estimated copy number results for a region of interest. A 

confidence metric was assigned to the estimated copy number. For example a 

confidence value of 90% indicates that there is a 10% chance that the true copy 

number differs from the estimated copy number (according to ABI CopyCaller 

Software v2). The inferred confidence is a function of the estimated copy number 

and replicate mean and is calculated as: 

Confidence ( 
r
,cnestimated)  [1 ∑

 cn

 cna

e  

cn cna

]

 1

 

 

where a (subscripted) = estimated, μr = replicate mean for the sample, cnestimated = 

copy number given to the sample, cn = probability of copy number cn,  is 

calculated as: 

  
 

  log(   )
 log (

  

   
) (( ̂   )  

log(     )

 log(   )
) 

where 2 = standard deviation of the sub-distributions, E = PCR efficiency of the 

target assay, K = constant in the function relating the sub-distribution mean (μcn) to 

copy number (cn) calculated as: 

      
 

   (   )
   (  ) 

 

To calculate the actual DNA copy number for the region of interest taking into 

consideration all nine estimates (where they were deemed to be reliable), we then 
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calculated the weighted mean of the estimated copy numbers according to the 

confidence metric attributed to each. This reduced the contribution of less reliable 

estimated DNA copy number results to the final DNA copy number result. Estimated 

copy number results were not considered if the confidence value was less than 50% 

or the estimated copy number was greater than four (with only quadruplicates per 

assay the results are not robust enough to accurately determine DNA copy numbers 

greater than four 3 or only one of the nine DNA copy number results for a given 

region was deemed reliable. 

 The weighted standard error was also calculated in conjunction with the 

weighted mean and the weighted mean only finally accepted for a cell of interest if 

the attributed weighted standard error did not exceed the maximum weighted 

standard error value generated from the control plate of 48 cord blood cells.  

 

1.3 Single cell method validation  
 
1.3.1 Assay validation 

The correlation coefficient of each DNA copy number assay according to the 

manufacturer is at least 0.98. To assess the efficiency of each assay in our single 

cell system we used the standard curve method and data from single, two and three 

collectively sorted cells; 18 data points per group. As expected the correlation 

coefficient was not always above 0.98 in our system. However, only assays that 

presented curves with correlation coefficients of 0.90 and higher were used for DNA 

copy number analysis. 

A control experiment was completed in a panel of 48 diploid cord blood cells 

to determine the frequency of false positive calls for SNVs and DNA copy number 

assays. The number of wells that presented a fusion gene, SNV or CNA indicated 
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the reliability of each assay and this was used as a threshold to estimate the error 

rate in sub-clonal population frequencies and define a cut-off for accepted 

populations (Supplementary Tables 2 and 3). 

 

1.3.2 Detection of duplicate cells in a single well 

Whilst it is not possible to identify the number of wells with two or more cells visually 

or by copy number analysis it is possible to estimate the amount of DNA in each well 

for each reference gene. With this information it is possible to identify those wells 

with above average amounts DNA indicating the presence of two or more cells and 

remove the data from further analysis. Briefly, one, two, three or four cells were 

sorted into consecutive wells of a 96 well plate for Q-PCR analysis and DNA 

quantification; eighteen for each group. We used the control gene assay B2M-1 to 

quantify the amount of DNA for each well and then considered the range for each 

cell number (Supplemental Figure 3). The results indicate a significant difference in 

average CT between the eighteen wells containing one and two cells and two and 

three cells; the assay reaches saturation with DNA from four cells. Using this data 

cells sorted with the aim of obtaining a single cell but with a raw B2M-1 CT value 

lower than the upper quartile obtained in this control experiment when two cells are 

sorted were removed from the final analysis as potentially two cells have been sorted 

into the same well. This ensures that only data from single target cells is used for 

phylogenetic analysis. The rate was approximately one well per 96 well plate but 

given our single cell visual assessment prior to sorting it was felt that this was an 

over estimation; however an acceptable loss to ensure robust data from single cells.  
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1.3.3 Data exclusion from Q-PCR and phylogenetic analysis 

Data from single cells that were removed from the Q-PCR analysis included those 

wells that showed no data (no cell), those wells in which all B2M assays did not have 

a strong signal (<28 CT) and wells in which all CNA assays for a target region of 

interest did not produce CT results within one CT. Data from suggested minor sub-

clonal populations that did not exceed assay error rates was removed from further 

phylogenetic analysis. On average 75% of interrogated single cells generated 

complete comprehensive results. Supplemental Table 4 provides details and 

explanations of cell removed from each case experiment. 

 

1.4 Phylogenetic analysis and clonal evolution 

 
1.4.1 Phylogenetic characters and motifs 

In order to analyse the clonal expansion and to infer the evolution of ALL we have 

associated the experimental observed data with a signature or a motif to label each 

cell. Each examined cell shows, for each unit assayed (i.e. gene), a determined 

genotype or a copy number alteration which can be concatenated in a linear array of 

n characters in length where n is the number of units assayed; each character (c) 

represents the observed unit state.  

This array of n characters represents the genomic state of each cell, encloses 

signatures of the evolutionary history and thus, we can consider it as a phylogenetic 

motif: 

            

 

where C is the observed finite motif of each cell and ci represents each observation. 
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All cells with the same motif are then grouped together to form a clone or a 

taxon. Each character state of the motif may be phylogenetically informative and can 

be assumed as a phylogenetic character state; a set of mutually exclusive states 

with a fixed order of evolution. Each state directly evolves from another and a set of 

the observed character states can evolve from one ancestor character state known 

as  the nearest common ancestor 4. According to parsimonious analysis each 

character state, either observed or inferred, is assigned to a node or tip of an 

evolutionary tree 5. 

 

1.4.2 Character state graph 

Phylogenetic analysis is governed by assumptions given to each character state that 

determine its evolution5. For discrete characters with a limited number of possible 

states we can describe these assumptions using a visual representation adopted 

from the graph theory 6. 

Consider a graph: 

G = (V, E,  ) 

 

where: 

(1) V is a n empty finite set called vertices of G (singular vertex); 

(2)  E is a consecutive set of e-elements of G called edges of G where the 

marginal e-elements are subsets of V; 

 

(3) V ∩ E ≠ ø; 

 

(4)    is a function with domain E and codomain P (V) such that: 
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  (e) = {Vi,Vj} ∀ e ∈ E, ∀ Vi,Vj ∈ V. 

Given a graph G, we denote it pictorially by drawing a dot (•) for each vertex 

in V (G), and lines or arcs for each e ∈ E (G) connecting the dots that represent 

vertices in   (e). 

We can, therefore assign an order to each vertex and a graphical direction to 

each edge to model a directional graph where each edge is a path carrying a 

direction from one vertex to the other; both directions can be allowed. To illustrate 

this principle consider the following graph:  

G = (V, E,  ) 

where: 

V = {V1, V2}; 

E = {e1, e2}; 

   (               
                

). 

 

This is a graph formally represented by a set of two vertices (V1, V2) 

connected by two edges (e1, e2). Each has a direction from V1 to V2 for the first and 

from V2 to V1 for the second:  

 

 

This directional graph can be expanded to a set of n vertices where the main 

vertices represent the source or the origin of the graph while all others constitute the 

vertices of each edge. Assuming the vertex V1 is the source, two different examples 

are given below: 
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1) Ordered and bidirectional graph: 

G = (V, E,  ) 

where: 

V = {V3, V1, V2}; 

E = {e1, e2}; 

   (               
                

). 

where the source vertex V1 is ordered in the central position and is connected 

to the remaining vertices V2 and V3 by two edges (e1, and e2,). The only two paths 

are from V1 towards V2 or V3. 

 

 

2) Ordered and unidirectional graph: 

G = (V, E,  ) 

where: 

V = {V1, V2, V3}; 

E = {e1, e2}; 

   (               
                

). 

 

where the source vertex V1 is ordered at the left of the linear graph. In this 

case only one direction is allowed starting from V1 and ending with V3 but via V2. 

 

We then applied the graph theory to each unit assayed (i.e. gene). Each edge 

represents a character state transition or a step (e.g. DNA copy number loss) and 
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each vertex corresponds to a character state (e.g. one, two or three DNA copies). 

Therefore each graph can model the assumptions made for each gene. The source 

vertex (V1) represents the ancestral state of 2 copies, while the other vertices 

represent copy number alterations. For example, suppose the experimental data 

from a gene indicates that single cell DNA copy number alterations range from 0 to 

4, if we assume that reverse alterations are not possible, the directional graph can 

be drawn as: 

Ggene1 = (V, E,  ) 

where: 

V = {4, 3, 2, 1, 0}; 

E= {a, b, c, d}; 

    (                                 
                         

). 

 

The graph is linear and bidirectional where the ancestral state occupies the 

centre. The direction allowed is that which leads to DNA copy number loss (edges a 

and b) or DNA copy number gain (edges c and d); the reverse direction is not 

allowed. The graph is as follows: 

 

 

In the case of SNVs, there are only three possible character states: ancestral 

(anc), one mutation (heterozygous) and two mutations (homozygous). Although the 

environment in which the clonal expansion arises is under selection7  we cannot 

exclude back mutations and thus, we need a graph that considers multidirectional 

character states:  
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Ggene2 = (V, E,  ) 

where: 

V = {anc, het, hom}; 

E={a, b, c, d,}; 

   (                                                                               
                                          

). 

 

The graph is linear and multidirectional where the ancestral state occupies the 

left of the graph. All paths are allowed except the from the ancestor to homozygous 

and back, which are assumed to be impossible: 

 

 

1.4.3 Step Matrix 

Once a character state graph has been defined which imposes an order and 

direction upon each phylogenetic assumption, we can use a matrix to represent the 

evolutionary cost for each transition or step from one character state to another. 

Consider a set of numbers arranged in a rectangular array containing n rows and m 

columns. If n, m ≥ 1, a matrix of size n × m is a map of {1, . . . , n } × {1, . . . , m } 

values. Each entry or component of the matrix is designed as mij indicating the 

position of the element at the intersection of the ith row and the jth column. Therefore, 

if M is the matrix of order n by m the Mnxm matrix is denoted as follow: 

  [

       

   
       

] 

When m = n the resulting matrix is a matrix of order n (Mn), and is called n-

square matrix8. 
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We can use an n-square matrix to describe the evolutionary distances 

between each character state. Distances within this matrix represent the “cost” of 

each genetic alteration; the higher the cost the less likely an alteration will occur. We 

can then assign a cost to each edge. In order to optimize this step-cost approach for 

each criteria, we expressed the cost using an algebraic equation that describes each 

cost as a function of the step. As the character state graph is linear the cost of each 

step is given by the linear equation: 

       

 

where xi represents the step of the i edge and yi represents the cost for that 

step; m is a constant (the slope). We assigned the natural number two to m as it 

allows the smallest total cost; therefore the above equation becomes: 

       

 

We did not assign the natural number of zero to m as zero this would suggest 

no step. For the first evolutionary step (initiating leukaemia specific fusion ETV6-

RUNX1) we assumed m=1 paired with x=1 (one step). Therefore, the following 

smallest natural number to be assigned to m is two and consequent steps are 

described by the equation yi=2xi. This criterion programs the matrix with an order 

and the first triggering evolutionary event.  

The character graph approach for modelling the step and cost is extremely 

powerful. If higher cost was attributed to a step and the number of steps increased 

an exponential relationship may also be employed instead of a linear one. This is 

expressed by the following equation: 
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where xi represents the step of the i edge and yi represents the cost for that 

step; 2 is the constant for the point slope. The first two steps for both the linear and 

exponential equations yield the same cost. Once a cost is assigned to each step of 

the character graph, a step matrix is built.  

G = (V, E,  ) 

 

where: 

V = {4, 3, 2, 1, 0}; 

E= {a, b, c, d, e, f}; 

   (                                                      
                                      

). 

 

 

 

where each vertex represents the observed copy number and each edge the 

step or character change from one condition state to the other. The character graph 

is ordinate and bidirectional. 

The 5-square matrix of 5 rows and 5 columns (M) is follows: 
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The cost for changing from one state to another is denoted by cj where j 

represents the edge; each cost will result from the equation yi=2xi. The character i in 

the matrix indicates infinity, representing an infinite cost and an impossible 

evolutionary change or disallowed transformation. The dot character represents no 

evolutionary changes. 

Within this matrix we cannot ignore reverse mutations, which restore the 

previous ancestral conditions, especially when deleterious mutations occur. Reverse 

mutations for an SNV occur at a very low rate but for some types of DNA alterations, 

such as large deletions, reversal is nearly impossible 9. In the case of SNV we could 

not ignore the potential for reverse mutations and a 1:5 (forward:reverse) cost was 

used indicating that each reverse mutation costs five times more than a forward 

mutation.  

 

Estimating branch length s under parsimony criterion: Sankoff algorithm 

In order to infer the phylogeny of the clonal expansion, given the step matrix, we 

needed an algorithm that considered the number of character changes required by 

any given tree. The Sankoff’s algorithm10, 11, is an algorithm that  counts the number 

of evolutionary changes for a specific site in a phylogenetic tree and evaluates all 

possible character reconstructions. Given a cost matrix C = [cjz], in which the cost for 

changing from state j to z can be read, the Sankoff algorithm computes the total cost 

of the combinations of η events for each character. For each node ( ) of the tree, a 

character state j is assigned and the cost vector    ( ) is computed. This reflects the 

minimum cost of events (state changes) from   to the root of the tree. Sankoff 

algorithm calculates this at each node starting from the tips of the tree moving 

towards to the root. Initially, the    ( ) at the inner nodes are unknown while those at 
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the tips are computed assigning the cost 0 to the observed state j and infinity 

(outlined as i) to the rest (Supplemental Figure 4). If a copy number of 1 is an 

observed character state for a specific cell or cub-clone, the cost would be   (0)= i, 

  (1)= 0,   (2)= i, assuming three character states (0, 1, and 2) are observed within 

the sample. Then for the node α representing the immediate common ancestor Sα
4 is 

calculated according to the following equation: 

  ( )     
 

[      ( )]     
 

[      ( )] 

where Sα is the actual node in state j, Sl(z) is the left descendant in state z and Sr(k) 

is the right descendant in state k. This means that the cost of the character state j for 

the node α is the cost cjz of changing from character state j to z in the left descendant 

lineage plus the cost Sl(z) of having reached state z at the node l. Character z is 

selected to minimize this sum. The same procedure is then applied to character k in 

the right descendant lineage. The sum of the minimum z and minimum k is the 

smallest possible cost for the sub-tree above node α, given the node α in state j. The 

equation is applied to all nodes of the tree, up to the root (node 0): 

     
 

  ( ) 

 

where S represents the minimum number of evolutionary changes for a given tree 

with character state j at the root. 

 

Searching for optimal trees: heuristic search  

Felsestein (1993) suggests applying heuristic approaches, when trees are 

constructed on the basis of ten or more sequences12, 13. Alternatively, when the data 

set is smaller, an exhaustive search can be applied. In this study we analysed two 

datasets, a smaller set of four taxa (Case A) and a larger one of seven taxa (Case 
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B).  In order to infer the most parsimonious tree, we employed a heuristic search to 

find optimal trees, using branch swapping of trees constructed by stepwise addition 

of taxa. This searching algorithm is capable of generating all possible tree topologies 

within an efficient computation time and negates the computational hardness of 

exhaustive searches 14. However, as our data sets were small we also employed the 

branch and bound algorithm used in exhaustive searches 15 to phylogenetically 

analyse our data. The results generated were the same as those achieved using the 

heuristic search.  

The step wise addition algorithm begins joining three taxa in an initial tree of 

three branches representing the taxa and one internal node representing the 

common ancestor 16. Each remaining unplaced taxon is then added to the tree one 

at a time. The algorithm stops when all taxa have been joined to the tree. The 

algorithm needs to be instructed as to how to determine which three taxa will be 

initially joined and which one of the unplaced taxa will be connected to the tree 

during each step. In order to search for the largest number of possible trees, the best 

approach is to allow the algorithm to test as many tree topologies as possible using 

random addition of taxa. This approach may not be very effective in terms of 

stepwise addition but is extremely appropriate in obtaining different starting points for 

branch swapping. All heuristic algorithms are susceptible to the problem of 

entrapment in local optima but a tree topology search from a variety of starting points 

increases the probability of escaping from the local optimum. In particular, stepwise 

addition, is an extremely greedy algorithm and is highly susceptible to local-optima 

problems; by initiating branch swapping repeatedly from different starting trees we 

increase the probability of the heuristic search finding the optimum tree 5, 17. 
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Branch swapping 16 is a tree perturbation method that involves cutting off one 

or more pieces of a tree (sub-trees) and reassembling them in a way that is locally 

different from the original tree. This increases the effectiveness of searching the 

global optimum. Different studies have shown that a non-branch swapping approach 

yields significantly lower support estimates than analyses using some kind of branch 

swapping approach 18-20. The phylogenetic package, PAUP*, implements the branch 

swapping method using different algorithms. We employed the tree bisection and 

reconnection (TBR) algorithm which is the most extensive rearrangement strategy 

available in PAUP*.  

Exhaustive explanations of the above algorithms are described in many 

phylogenetics treatises and will not be explained here. 

 
 
 

Evaluating the reliability of inferred trees 

Phylogenetic reconstruction can determine the evolutionary history of taxa based on 

characters states. However, different ways of assembling data such as taxon 

sampling, alignment and data concatenation may bias the phylogenetic 

reconstruction. A reliable phylogenetic tree is a tree where a small modification in the 

data should not drastically change the phylogeny inferred or at least if it does, it 

should only do so with a small probability. An inferred phylogeny without this 

property is weak and inefficient. How can we estimate the reliability of the trees we 

have inferred? 

In the context of parsimony analyses two basic types of re-sampling methods 

are used to assess the reliability of the inferred phylogenetic tree: bootstrap 21-23 and 

jackknife 24, 25 which are both re-sampling statistical methods for error estimation 26. 

Re-sampling procedures are considered to be an essential component of rigorous 
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parsimonious phylogenetic analysis, offering support to any branch node of the tree. 

Both bootstrap and jackknife can be used to quantifying any tree branch reliability.  

The bootstrap approach is one of the most popular re-sampling methods to 

place confidence in phylogenies but recently Simmons and Freudenstein (2011) 

indicate that jackknife re-sampling should be used rather than bootstrap re-sampling 

27. Because of the step matrix method employed where for each unit (or gene) the 

proper matrix is applied, a bootstrap analysis cannot be computed for our data set. 

However, we did not want to ignore this approach and wrote an R in house script 

that mimics the bootstrap re-sampling. Due to the short length of the data (only eight 

characters) and aiming to keep the informative, complete data set, the script 

samples without replacement, generating eight character replicas of the observed 

clones but with units in another order. This approach, therefore has allowed us to 

test if data concatenation could mislead the inferred phylogeny. Each replica 

obtained using this script, has then been used in PAUP* to infer the replica 

phylogenetic tree. We conducted this approach for each sample and the results were 

the same for all replicas; a single tree found for case A and two identical trees found 

for case B. These results support the evidence that the order of the concatenated 

character does not bias our approach. 

In order to evaluate the stability of the inferred phylogenetic trees and to 

support each node, we applied a jackknife re-sampling approach. Jackknifing 

repeatedly calculates the statistics of interest, missing out one or more characters in 

turn and preserving their orders in the original data. This procedure does not conflict 

with the step-matrix as bootstrap does. However, this approach has been criticised 

as single character deletions from large dataset would produce very similar trees 

from the respective replicates and would not provide any effective measure of 
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support. Deleting a larger proportion of the characters has consequently been 

adopted to increase the performance of the jackknife algorithm to that of the 

bootstrap 28. However, Farris et al., (1996) investigated jackknifing further and 

concluded that deleting 50% of the characters was too severe.  

Both Cases investigated consist of eight characters generating four sub-

clones for Case A and seven sub-clones for Case B; both are small datasets. 

Considering the small size of our datasets and to keep as much data as possible we 

chose to delete 12.5% of characters at random within each iteration. We then 

jackknifed both datasets which resulted in a jackknife 50% majority rule consensus 

tree 29. We also tested our dataset with jackknifing at 25% and 50%. Considering the 

size of our dataset we agree with Farris et al., (1996) that 50% jackknifing may be 

too severe but a 25% jackknifing is still robust. Results are shown in Supplementary 

Table 7. 

 

PAUP* 

The program PAUP* 17 is one of the most widely used software packages for 

inferring evolutionary trees. The program is particularly proficient in inferring 

phylogenies using parsimony. PAUP* also implements jackknife to support tree 

nodes. 

 

The problem of multiple Equally Parsimonious Reconstructions 

In many situations, competing equally parsimonious reconstructions can result from 

the inferred phylogeny. These trees may have different implications for the 

evolutionary hypothesis under investigation and discharging one or more alternative 

equally parsimonious reconstructions can strongly affect the conclusions. 
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Consequently in this manuscript we have kept all parsimonious trees; one most 

parsimonious tree for the case A and two equally parsimonious trees for the case B. 
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SUPPLEMENTAL FIGURES 

 

Supplemental Figure 1. Fluorescence-activated cell sorting plots illustrating gating 

approaches to efficiently isolate single cell. (A) This figure shows all events collected 

by the BDFACSAria1. Propidium iodide staining distinguishes dead and live cells; 

the P4 gate encompasses live cells that lack staining. (B) This figure displays gating 

(P1) for single cells only avoiding clumps identified by lower forward-scattered light 

height (FSC-H) and broad forward-scattered light area (FSC-A); these events were 

gated from the P4 population. (C) This figure displays only events gated by P1 but 

A B 

C D 



 30 

confirms cell isolation by size and internal complexity (FSC-A and side-scattered 

light (SSC)); P2 gate. (D) Fluorescein isothiocyanate (FITC) marks those cells that 

successfully take-up the viability marker carboxyfluorescin diacetate, succinimidyl 

ester (CFSE). Viable single cells were sorted according to the P3 gate ensuring 

random sampling of the leukaemia; P3 was gated from P2. 
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A                                     B 

 

 

Supplemental Figure 2. EPOR SNP assay amplification curves generate by Q-PCR 

for a single REH cell. (A) Amplification curve generated from the probe labelled with 

VIC and complementary to the SNP sequence. (B) Amplification curve generated 

from the probe labelled with FAM and complementary to the wild-type sequence.  
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Supplemental Figure 3. Box and whisker plots to illustrate the range of raw CT 

values generated by Q-PCR from wells that contained either one, two, three or four 

cells with a normal diploid karyotype. The upper and lower quartiles and minimum 

and maximum values are displayed. The median values for the groups with either 

one and two or two and three cells were significantly different (p≤0.05); three and 

four were not indicating assay saturation.  
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Supplemental Figure 4. Example of Sankoff’s algorithm. Possible character states 

are bold, those infered or observed are blue. Each rectangle represents a node or a 

tip and the digit within represents the cost of being in state 2, 1 or 0. The step matrix 

is shown on the left. Each character state transition cost is indicated by a number; i 

stands for infinite cost. 
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SUPPLEMENTAL TABLES 

Supplemental Table 1A. QC metrics for Affymetrix® Cytogenetics Whole Genomic 

2.7M arrays. 

  QC SNPQC MAPD Antigenomic Ratio 
Waviness 
seg count 

CaseAdiagnosis.cychp true 2.376 0.17 0.25 52 

CaseAremission.cychp true 2.316 0.18 0.23 3 

CaseBdiagnosis.cychp true 2.658 0.16 0.23 567 

CaseBremission.cychp true 2.502 0.17 0.21 4 

 

 

Supplemental Table 1B. QC metrics for Affymetrix® Genome-Wide Human SNP 

Array 6.0. 

File Computed Gender Call Rate Contrast QC 

DS-ALL.birdseed-v2.chp female 98.98 2.27 

REH.birdseed-v2.chp female 99.45 2.83 
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Supplemental Table 2. Custom and designed assays for each sample specific 

mutation used in this study 

  Mutation Custom Assays 
Error Rate in 
diploid cells 

IL7R 

Forward Primer TGCATGGCTACTGAATGCTC  
Reverse Primer  CCCACACAATCACCCTCTTT  

Probe1  ATGGATGGCTGTCTGGTCAT 
Probe2  CTGATGGTTAGTAAGATAGGATCCATC 

0% 

EPOR SNP assay rs318720 ( Life Technologies) 0% 

PIK3R1 

Forward Primer  AGAACAGTGCCAGACCCAAGAG  
Reverse Primer  CAAGGGAAACACCAACCTTTGT  

Probe1  AGGCAATCAGAAAGA  
Probe2  AGGCAATGAGAAAGA  

0% 

DAXX 

Forward Primer  GGAAATGTCCGTCTCCACAGA  
Reverse Primer  CTGACCCTGGAGGAAGAAAGC  

Probe1  AAGAGCTAAGACACAG  
Probe2  TCAAAGAGCTGAGACAC  

0% 

EZH2 

Forward Primer  AGCGGCTCCACAAGTAAGACA  
Reverse Primer  TGCAAAGCACAGTGCAACAC  

Probe1  TAGCACAGGCACTG  
Probe2  TAGCACGGGCACTGC  

2% 

BCHE 

Forward Primer  GCCAGAAACTTGCCATCATAAAC  
Reverse Primer  ACCTAAACCAAAAAATGCCACTGT  

Probe1  ACCACCATAAGTCC  
Probe2  CCACCATAAATCCA  

0% 

BAZ2A 

Forward Primer  AAGGAAGTCCCCAAGGTGAAA  
Reverse Primer  GTCTTGTTCAATAGCTCAGTGATTTTG  

Probe1  TCGAGGTCGGCTAC  
Probe2  TCGAGGTCGGCCAC  

2% 

RB1 

Forward Primer  CCTAGTTCACCCTTACGGATTCC  
Reverse Primer  TGTTGGCAGACCTTCTGAAATTT  

Probe1  CCCTGAACAGTCCAT  
Probe2  CCCTGAAGAGTCCAT  

0% 

KRAS 

Forward Primer  TGGTCCTGCACCAGTAATATGC 
Reverse Primer  AAGGCCTGCTGAAAATGACTGA 

 Probe1 CTACGCCACCAGCT  
Probe2  TACGCCACAAGCT 

0% 

SFRS11 

Forward Primer  AATCAAGCTTTGTATTTTAGCGAACA 
Reverse Primer  ACACACAAAAACACCCAGAAAATG  

Probe1  TACTTTCAACAAACTGAG  
Probe2  TTCAACAAACTCAGGTGG  

0% 

P2RY8-CRLF2 
Forward Primer CTCTGAGCTCCATGGTTCGT                          
 Reverse Primer CAAGCCACCCTTCCTTTAAT                              

Probe1 TCTCGAACTCCTGACCTCGT 
0% 

ETV6-RUNX1 REH 
Forward Primer TGGAGGTTGTAATGAGCCAAGA 

Reverse Primer  CCCACCCCGACATAAATTCA 
Probe1  AGCCTGGGCAACAGAGTGATACTCTCCC 

REH: 0%                                                                             

ETV6-RUNX1 Case A 
Forward Primer GTGTATACACATATAGTGTATGTGCGTGTAC 

Reverse Primer  CCTCCTGCCATTGCTTTCTC 
Probe1  AAGAGTCTGGAGGCATA 

Case A: 0% 

ETV6-RUNX1 Case B 
Forward Primer TCACTCCCAACCTCTAGAACA 

Reverse Primer  TGTGTGCATGTGTGTAAGATGGA 
Probe1  ACACTAATTTTCTCAGGTTGC 

Case B: 0% 
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Supplemental Table 3. Copy number assays for each sample specific alteration in 
this study 
 

  
Copy Number 

Assays 

Error Rate  
(% loss/gain in diploid 

cells) 

B2M -1 Hs 00128408 

- B2M -2 Hs 00112422 

B2M -3 Hs 03896400 

CCNC -1 Hs 02941667 

+/- 6.6% CCNC -2 Hs 02942602 

CCNC -3 Hs 06148409 

CDKN2A -1 Hs 03724208 

+/- 4.5% CDKN2A -2 Hs 03700684 

CDKN2A -3 Hs 03704181 

DPF3 -1 Hs 07066526 

+/- 7.1% DPF3 -2 Hs 07074482 

DPF3 -3 Hs 0795788 

MX1 -1 Hs 05557497 

+/- 4.5% MX1 -2 Hs 02954936 

MX1 -3 Hs 05528846 

PAX5 -1 Hs 01885952 

+/- 4.3% PAX5 -2 Hs 02165423 

PAX5 -3 Hs 06837891 

TBL1X -1 Hs 05633780 

+/- 4.7% TBL1X -2 Hs 05614341 

TBL1X -3 Hs 02806412 

VPREB1
§
-1 Hs 06690444 

+/- 6.3% 
VPREB1 -2 Hs 02879734 

 
§Only two VPREB1 assays were used as only a small number of commercial assays 
were available in this region. 
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Supplemental Table 4. Details and explanations of cell data removed from each individual case single cell experiment 
 

 REH - 2x96 plate DS-ALL - 2x96 plate ALL Case A - 4x96 

plate 

All Case B - 4x96 

plate 
Total number of single cells sorted 190 190 380 380 

Total number of control cells sorted (11 per plate) 22 22 44 44 

Total number of target cells sorted 168 168 336 336 

     

Number of wells that were blank - no cell 6 9 10 6 

Number of wells with data that suggested the cell was damaged 25 24 31 28 

Number of wells with high DNA levels suggesting two cells 2 1 5 2 

Number of cells constituting minor sub-clones below error rates 12 25 35 53 

     

Successful data collected from target cell 126 115 261 254 

Successful data collected from experiment 145 133 299 291 

     

Percent of data removed because of failure 17.37 17.89 12.11 9.47 

Percent of data removed as part of sub-clonal populations below 

error rates 
7.14 14.88 10.42 15.77 

Percent of successful data collected form experiment 76.32 70.00 78.68 76.58 
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Supplemental Table 5. FISH probes and scoring frequencies for each sample 
specific alteration in this study 
 

Gene/Chromosome 
region 

BAC clone 
Nuclei with normal 
signal pattern  (%) 
(expected signals) 

Number of gene copies in each 
sample tested 

MX1 WI2-2208G5 100 (2C) 
REH: 4C-5%, 3C-39%, 2C-49%, 1C-

7% 

CDKN2A W12-1034K10 99 (2C) 
REH: 1C-2%, 0C-98%                                 

DS-ALL: 2C-8%, 1C-78%, 0C-14%             
Case B: 2C-21%, 1C-79% 

P2RY8-CRLF2 
RP13-309C18,  
RP11-309M23 

98 (0F) DS-ALL: 1F-96% 

ETV6-RUNX1 

Vysis LSI 
ETV6(TEL)/R
UNX1(AML1) 

ES Dual 
Colour 

Translocation 
Probe Set 

98 (0F) 
REH: 1F-100%                                             

Case A: 1F-96%                                         
Case B: 1F-91% 

TBL1X RP11930D21 98 (2C) Case B: >2C-3%, 2C-7%, 1C-90% 

CCNC RP11-484P14 97 (2C) Case A: 2C-10%, 1C-90% 

PAX5 WI2-500F8  99 (2C) Case B: 2C-19%, 1C-81% 

DPF3 RP11-73K12 97 (2C) Case B: 2C-27%, 1C-73% 

VPREB1 RP11-24N11 100 (2C) 
Case B: 2C-8%,  

1C(minor signal)-8%, 0C-84% 

 
§C=copy number 
 F= gene fusion 
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Supplemental Table 6. Character states graphs and corresponding matrices employed in this manuscript 
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Supplemental Table 7. Jackknife analyses within the parsimonious trees of patient A 
and B employing three different percentages of character deletion 
 

% Characters Deleted 12.5 25 50 

Case A 

1 node 100 100 92 

2 node 85 74 49 

Case B 

Tree B1: 1 node 100 96 81 

Tree B1: 2 node 87 77 50 

Tree B1: 3 node 88 75 48 

Tree B1: 4 node 51 49 40 

Tree B1: 5 node 75 54 21 

Tree B2: 1 node 100 96 79 

Tree B2: 2 node 87 74 48 

Tree B2: 3 node 86 74 49 

Tree B2: 4 node 51 48 41 

Tree B2: 5 node 73 54 24 

 

 



41 
 

SUPPLEMENTAL APPENDIX 

 

Basic terms and concepts in phylogenetics applied to cancer evolution 

 
Clade—a monophyletic group, which includes all the descendants of an ancestor. 

Character—an attribute of a cell (or group of cells); it may be a morphological attribute, 

a nucleotide position, a chromosomal insertion/deletion etc. 

Phylogeny—evolutionary history of a group of cells or clones. 

Phylogenetic tree—a mathematical structure depicting the evolutionary history of a 

group of cells. 

Node— a branching point on a phylogenetic tree. Internal nodes represent inferred or 

observed ancestors. 

Branch—connections between nodes representing a process of evolution in which 

mutations inherited by descendants accumulate. 

Root—the ancestor of all taxa include in the tree. 

Taxon—a group of related cells or clones. 

In the figure below, A–D represent related taxa as indicated by the branches. A 

represents also the root. C and D are sister taxa and are thus a clade; B, C and D form 

a larger clade Each node, or internal branching point, represents an ancestor of the 

clade that lies “above” it. The node indicated by the arrow is the common ancestor of 

taxa C and D. 
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