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1 Crosstalk phenomena

We hypothesized that pathways can consistently affect each other’s p-values in significant ways
through crosstalk. Identifying such effects in any number of specific real experiments would con-
stitute only anecdotal evidence since the true amount of crosstalk between two given pathways in
any given condition is not known. In order to demonstrate the existence and assess the extent
of crosstalk effects, we designed and conducted the following systematic exploration of this phe-
nomenon. We first constructed a reference set of genes from the union of all genes present on
at least one KEGG signaling pathway (2963 genes at the time). Then, for each pathway P;, we
ran experiments as follows. We first calculated the number n; of DE genes that would make P,
significant at least at o = 0.01 after a Bonferroni correction for multiple comparison. Henceforth,
we will refer to this pathway as the “bait”. We then used the reference set to pick n; random genes
from P; and 100 — n; genes that are not on F;, and calculated the Fisher Exact Test significance of
all other “prey” pathways, P;. This essentially models a situation in which 100 genes are found to
be DE, and these genes are such that the Fisher Exact Test will find the bait pathway P; significant
at 1% after the correction for multiple comparisons. Since the 100 — n; genes that are not on
P; are randomly chosen among the reference set, no other pathway P; should have more genes
than expected by chance. Under these circumstances, the research hypothesis is true for the bait,
while the null hypothesis is true for all other pathways. We repeated this selection 1,000 times
for each pathway P;, and each time we computed the Fisher Exact Test, SPTA (impact analysis),
and GSEA p-values for all pathways in the set S including all the pathways from KEGG. With
these results, we constructed the distributions of the FDR-corrected p-values corresponding to each
prey P;. Under the null hypothesis, the p-values are expected to follow an uniform distribution,
and to be independent between different pathways. In fact, the distributions of the p-values (see
Fig. S1) are significantly different from the uniform distribution (Kolmogorov-Smirnov goodness of
fit p-values of the order of 10716 in all cases). The distributions for all three methods are severely
skewed towards zero, showing that all methods produce a large number of false positives.

Furthermore, we observed much stronger crosstalk effects for specific pathway pairs (i, j): every
time one of them is used as a bait, the p-value of the other one is pulled to values much lower
than expected by chance, many times well below the significance threshold. All crosstalk effects
can be represented in a crosstalk matrix (left panel in Fig. 1). In this matrix, the elements [i, j]
represent the mean of the distribution of p-values for 1,000 random trials using pathway i as bait
and pathway j as prey. This matrix is not symmetrical since the influence of pathway ¢ on pathway
j can be different from the influence of pathway j on ¢. The matrix shows strong crosstalk between
several pathways (e.g. row 3 and columns 57 through 70).

We hypothesized that this crosstalk is due mostly to the genes that are in common between
pathways. If this were true, we would expect to see a strong coupling between pairs of pathways
that have many genes in common and a weak coupling between pathways that do not share any

genes. In order to test this hypothesis, we calculated the Jaccard simﬁlath index between all pairs
PN P;

nOR
overlap between two sets, relatively to the size of their union. Pathways that share many genes
will have a large Jaccard index. The right panel in Fig. 1 in the main text shows the relationship
between the Fisher Exact Test p-values and the Jaccard index for all pathway pairs. The data shows
a very strong correlation between the two (Pearson correlation index of 0.87), which confirms our
hypothesis that the crosstalk can be explained by the presence of genes that are involved in more
than one pathway. Very similar results have been obtained for FCS analysis (GSEA) and for the
impact analysis (SPIA) (see Fig. 2 in the main text). The Pearson correlation between the p-values
provided by GSEA and the Jaccard indices of all KEGG pathways was 0.62, while in the case of

of signaling pathways from KEGG. The Jaccard index is defined as and characterizes the




SPIA the correlation was 0.83.

2 Supplementary results

Fat remodeling in mice. The results discussed here were obtained from the comparison between
expression levels of genes at days 7 and 0 in the same fat remodeling experiment discussed in the
main text. Genes were ordered by p-values and the top 5% were selected as differentially expressed
(DE). The results of the classical ORA are shown in Fig. S3a (only the top 20 pathways are shown).
The top pathways are Parkinson’s disease, Alzheimer’s disease, and Huntington’s disease, diseases
that have little to do with the tissue remodeling phenomenon. The Cell Cycle pathway is likely
to be related to tissue remodeling (Lee et al., 2012), and p58 Signaling is known to be a central
pathway in the response to cellular stress, including inflammation, and related to processes like
cellular senescence and cell cycle (Hussain and Harris, 2006). With four false positives in the top
five pathways, the results of the classical ORA are distorted by pathway crosstalk phenomena to
the point of being useless.

In order to identify and eliminate the crosstalk effects we computed the crosstalk matriz de-
scribed in the Materials and Methods section. Fig. S2 represents a detail of the entire matrix.
The areas marked with a highlight the same phenomenon present in the matrix corresponding to
the comparison between days 3 and 0 of the same experiment. The significance of the pathways
Parkinson’s disease, Huntington’s disease, Alzheimer’s disease, and Cardiac Muscle Contraction is
entirely due to the same mitochondrial activity pathway shown in Fig. 5 in the main text. The
greatly enhanced mitochondrial activity in the treated tissue was validated in vivo by in-situ hy-
bridization (see Fig. 6 in the main text). This shows additional evidence towards the activation of
this independent pathway in this condition.

We then applied the proposed Maximum Impact Estimation (fully described in Materials and
Methods) to the data set. The ranking obtained with the p-values corrected for crosstalk is shown
in Fig. S3b and is greatly improved. The most significant pathway is the mitochondrial pathway,
showing that greatly enhanced mitochondria activity continues to be the most important difference
between the treated and untreated cells even after 7 days. This in turn suggests that the tissue
underwent a long-lasting remodeling phenomenon, in addition to a number of transitory phenomena
such as cellular death and phagocytosis (note that the Phagosome pathway, significantly impacted
after 3 days is not significant anymore after 7 days). The pathway ranked second is Arrhythmogenic
Right Ventricular Cardiomiopathy. While this pathway was treated here as a false positive due to
lack of literature evidence linking it specifically to tissue remodeling, the module reported by the
method includes genes related to desmosomes, cell structures responsible for certain types of cellular
adhesion (Klessner et al., 2009) which may also be relevant here. Fourth and fifth pathways in rank
are, respectively, the PPAR Signaling pathway and the Cell Adhesion Molecules pathway, both
closely related to the phenomenon of fat remodeling (Granneman et al., 2005).

Estrogen treatment on post-menopausal women. The second data set analyzed was pro-
duced by an experiment investigating the effect of various types of hormones on the endometrium of
healthy, post-menopausal women who underwent hysterectomy (Hanifi-Moghaddam et al., 2007).
Hormone therapy has been used for the treatment of conditions associated with menopause (Nel-
son et al., 2002). Estrogen replacement therapy has been proven useful against the insurgence
of collateral effects of the post-menopausal syndrome (Campbell and Whitehead, 1977; Hender-
son et al., 1986; Weiss et al., 1980). However, the administration of estrogens only has been
shown to increase the incidence of endometrial carcinoma (Ziel, 1982). Therefore, in addition to



estrogen, progestins are now given to menopausal women. Although the risk of endometrial can-
cer is reduced with the addition of progestins, the incidence of other forms of cancer seems to
increase when progestin is administered with estrogen. Initiatives like the Million Women Study
(http://www.millionwomenstudy.org/) and the Women Health Initiative (http://www.nhlbi.nih.gov
/whi/) showed that hormone replacement therapy can increase the risk of lung and breast can-
cer (Chlebowski et al., 2010, 2009b). In this context, it is interesting to compare the effects of
various combinations of hormones at the transcriptome level (Hanifi-Moghaddam et al., 2007).

Here, we illustrate our analysis method on the comparison of the expression levels of genes from
samples treated with estrogen (E2) plus medroxyprogesterone acetate (MPA) versus normal sam-
ples. The classical over-representation analysis (ORA) finds the following pathways significant at
the 5% level after FDR correction: ECM receptor interaction, Focal Adhesion, Pathways in Cancer,
Small Cell Lung Cancer, Azon Guidance, Prostate Cancer, and Jak-STAT Signaling. These results
are shown in Fig. S4a.

The E2+MPA is known to be associated with certain type of cancer including non-small-cell lung
cancer (NSCLC) (Chlebowski et al., 2009a). Hence, the presence of Pathways in Cancer is justified,
even though its identification as significant does not help understand the specific mechanism that
might be active here. However, the set of significant pathways include small-cell lung cancer (SCLC)
which is not known to be associated with this treatment and fail to include the NSCLC which has
been linked to it (Chlebowski et al., 2009a). Prostate Cancer is also unlikely to be related to this
specific treatment given that this treatment is administered to women, rather than men. Like in
the previous case, the presence of false positives and the presence of pathways describing general
cellular adhesion processes (focal adhesion and ECM-receptor interaction) does not help with the
understanding of the underlying phenomenon.

After applying our analysis method to the dataset, the results are more helpful in providing
insights about the specific underlying mechanisms, as shown in Fig. S4b. The first pathway in the
ranked list is the Jak-STAT signaling pathway. Indeed, there is evidence that estrogen treatments
impact such pathway through interaction with the suppressor of cytokine signaling (SOCS2) (Le-
ung et al., 2003). The second pathway is a new pathway, based on the module common between
Focal Adhesion, ECM-receptor Interaction, and Pathways in Cancer (see the left panel of Fig. S5).
In this figure, within the significant quadrant, the symmetric pattern that can be observed between
the three pathways above and Pathways in Cancer indicate the presence of a functional module
that responds specifically to the hormone treatment. Interestingly, this pathway is the same path-
way that has been shown to be active in a completely different phenotype, the cervical ripening
experiment described in the main text, the Integrin-Mediated ECM Signaling described in Fig. 8.
This pathway is responsible for the significance of the top four pathways in Fig. S4a.

As in the experiment studying cervical ripening, this novel pathway is composed of genes present
in the interaction between the cellular transmembrane protein integrin and three important ECM
components, collagen, laminin, and fibronectin, all of which appeared as differentially expressed
in hormone treatment compared to the control. This is interesting because the ECM-receptor in-
teraction carries two major functions: the first is to transduce extracellular signals into the cell
for regulation of downstream pathways possibly through focal adhesion complex, and the second
function is to provide structural support to resident cells; the binding between integrins and col-
lagen, laminin, fibronectin is involved in the second process. Collagen, a major component of the
ECM, forms fibers and attaches to the cell surface through binding with integrins and fibronectins.
Collagen is also present in the basement membrane with laminin, forming a thin sheet of fibers
that underlies the epithelium (Alberts et al., 2002). Previous studies have shown that collagen,
laminin, and fibronectin participate in regulating normal development of mammalian mammary tis-
sues (Berry et al., 2003). They also play an important role in cancer progression possibly through



ECM remodeling, which leads to alterations in cell adhesion and tumor cell motility. Consis-
tent with this, enhanced attachment of estrogen-dependent breast cancer cells to the substrate
containing ECM components (collagen I and IV, laminin, fibronectin) was observed with E2 treat-
ment (Millon et al., 1989). More evidence was provided in recent studies using mouse mammary
epithelial cells, where the expression of estrogen receptor alpha (ESR1) was greatly down-regulated
by integrin-mediated interaction with collagen-IV and laminin, rather than effects of growth factors
such as insulin (Novaro et al., 2003). Consistently to the previous findings, our method finds that
it is the module describing the interaction between integrin and collagen, laminin, and fibronectin
(rather than the interaction between ligands and their receptors) that is affected specifically by
the hormone treatment, a striking pattern unlikely to be detected by classical over-representation
analysis.

A similar pattern was observed between pathways Prostate Cancer and Focal Adhesion, where
the removal of a common submodule caused loss of significance in both pathways. A close investi-
gation of the Focal Adhesion pathway revealed that its downstream signaling cascade is regulated
by two types of extracellular signals, the ECM components that interact with integrins, and the
growth factors (EGF) that bind to the transmembrane GF receptor (EGFR). Although a number
of DE genes belong to the ECM-Receptor Interaction pathway, it is the EGFR-induced signal-
ing cascade that is involved in both Prostate cancer and Focal adhesion, which contains at least
two downstream pathways that responded specifically to the E24+MPA treatment. The first one
is the canonical Wnt cascade, during which the transcription factor beta-catenin gets activated
by PIBK-AKT (phosphatidylinositol 3 kinase-V-Akt murine thymoma viral oncogene homolog)
mediated signals, and translocate into the nucleus for downstream gene regulation (Naito et al.,
2005). The other is the classical MAPK (Mitogen-Activated Protein Kinase) pathway, also known
as the RAF-MAP2K-MAPK pathway, where RAF, MAP2K, and MAPK represent the three key
serine/threonine-specific protein kinases present in the cascade (Zhang and Liu, 2002). What is also
noticeable is that in both cases, while Wnt Signaling pathway and MAPK Signaling pathway both
contain sub-pathways other than the two highlighted here, such as the Wntj-induced non-canonical
Wnt pathway or JNK-p38-mediated MAPK pathway, only the canonical Wnt cascade and the clas-
sical MAPK cascade are associated with both Prostate Cancer and Focal Adhesion, among which
a number of important genes are DE under the hormone condition, such as PTEN (phosphatase
and tensin homolog), a tumor suppressor that regulates PI3K-AKT signaling pathway, MAPK,
one of the three key protein kinases in the MAPK pathway, and AR (androgen receptor), an onco-
gene that plays an important role in MAPK-regulated cell proliferation (Han et al., 2005; Peterziel
et al., 1999). Indeed, estradiol has been shown to activate beta-catenin-mediated Wnt pathway
through inhibition of its partner GSK3 in the rat hippocampus, which releases beta-catenin and
allows its nuclear translocation (Cardona-Gomez et al., 2004). More functional evidence was pro-
vided using human colon and breast cancer cells, in which estrogen receptor (ER) and beta-catenin
were found to participate in the same multi-protein complex, whose interaction gets enhanced
with the presence of estrogen (Kouzmenko et al., 2004). Since both beta-catenin and ER function
as transcription factors, it is possible that the role of beta-catenin in this complex is to recruit
additional co-activators and chromatin remodeling factors that interact with ER for downstream
transcriptional regulation (Kouzmenko et al., 2004). Estrogen has been demonstrated to induce
cell proliferation through increased phosphorylation of MAPK cascade, with the mechanistic link
between estrogen and MAPK signaling lying in a partner of ER, the PELP1 (proline, glutamate and
leucine rich protein 1, the modulator of non-genomic activity of estrogen receptor) protein (Wong
et al., 2002). PELP1 forms a complex with ER and Src family of tyrosine kinases as a scaffold
protein, which is enhanced by E2, further induces activation of MAPK kinases and affects ER-
mediated transcription (Wong et al., 2002). Consistent with these studies, our method detected



a module shared between Prostate cancer and Focal adhesion, the EGFR-induced canonical Wnt
and classical MAPK cascade, which is responsible for significance of both pathways.

Another interesting case is shown in the right panel of Fig. S5. Here, the Graft-Versus-Host
Disease pathway gains significance when the crosstalk of various other pathways is removed. This
happens because all shared genes between Graft-Versus-Host Disease and the others are all non-
DE genes in this condition. In other words, the DE genes present in Graft- Versus-Host Disease
pathway are specific to the pathway itself. Among those, two particularly interesting ones are
PRF1 (perforin 1) and GZMB (granzyme B), both of which play important functional roles in the
natural killer (NK) cell-mediated cytolysis. Consistent with this, the Graft-Versus-Host Disease
pathway is highlighted as being significantly affected by the E24+MPA treatment in the crosstalk
matrix, not due to other interactions but due to genes specific to NK cell-mediated cytotozicity.
It is remarkable that the results of this type of analysis allowed the identification of a module,
composed by genes belonging to the Graft-Versus-Host Disease pathway, that is impacted by the
hormone treatment, and whose importance was masked by crosstalk effects with other pathways.
This module is relevant in the condition studied, and treating it separately would provide a more
accurate understanding of the underlying biological phenomenon. However, since the activity of
this module was not identified yet in another condition, nor do we have an independent in vivo
validation for this phenotype, we are not proposing this as an independent pathway at this time.

Crosstalk matrix for the cervical ripening experiment. The crosstalk matrix for the cervi-
cal ripening experiment indicates the presence of an independent functional module among the top
three pathways in the ranking. The module is the same module found in the hormone treatment
experiment, although in this experiment it is found from the interaction of different pathways. A
detail of the crosstalk matrix is shown in Fig. S6.

Alzheimer’s disease. We analyzed the data set produced by an experiment investigating the
correlation between gene expression values “with MiniMental Status Ezamination (MMSE) and
neurofibrillary tangle (NFT)” in subjects with Alzheimer’s disease (Blalock et al., 2004). Fig-
ures S7a and S7b show the comparison between the results of the classical ORA and the results
of the crosstalk analysis. At the top of the results of the ORA we find Huntington’s, Alzheimer,
Parkinson’s, Glutamatergic Synapse, and Arrhythmogenic right ventricular cardiomyopathy. In
this list, Alzheimer’s is the obvious true positive, Huntington’s, Parkinson’s, and Glutamatergic
Synapse are definitely related to the phenomenon, being involved in neurodegenerative diseases,
while Arrhythmogenic Right Ventricular Cardiomyopathy is clearly a false positive. The cross-talk
analysis reports, as only significant pathway, the module composed by the intersection between the
Alzheimer’s, Parkinson’s, and Huntington’s pathways.

The DE genes in this module consist are related to the phenomena of oxidative phosphorylation
and cytochrome oxidation. There is evidence (Mecocci et al., 1994; Parker et al., 1990; Zhu et al.,
2004) that these mechanisms are indeed central in Alzheimer’s, and the crosstalk analysis was able
to pinpoint the functional sub-pathway that is responsible for the phenotype, eliminating the false
positive present in the classical analysis list.

Alzheimer’s Disease - Reactome database. We analyzed the dataset produced in (Blalock
et al., 2004) against the set of pathways from the Reactome database (Joshi-Tope et al., 2005).
The results of the crosstalk analysis are shown in Figures S8a (for the ORA) and S8b (for the
crosstalk analysis). In this case, the crosstalk analysis compacts the pathways that are at the top
of the ORA result. Those pathways are all related to Alzheimer’s disease (Marczynski, 1998; Parker



et al., 1994), and the crosstalk procedure of building the functional module that is involved in the
phenomenon highlights the close interaction among them. The only false positive of the ORA result
is Regulation of Insulin Secretion. This pathway describes signaling involving pancreatic beta cells
and it is not related to brain cells. This pathway is not significant anymore after the correction
for crosstalk. It has to be noted that there is no Alzheimer’s specific pathway in the Reactome
database. However, the crosstalk analysis was able to identify highly related pathways, providing
a more concise result list with no obvious false positives.

3 Materials and methods

The maximum impact estimation: an expectation maximization technique for the
assessment of the significance of signaling pathways in presence of crosstalk. The
crosstalk matrix is a useful tool for the interpretation of the effect of crosstalk between pathways.
However, the ultimate goal of the analysis of signaling pathways is to provide a meaningful ranking
among pathways, as well as a p-value quantifying the likelihood that a certain pathway is involved
in the phenomenon in analysis. Here, we developed a correction method for the ranking of pathways
that takes into account the overlaps between pathways.

The main idea is that if there is no crosstalk, then there is no ambiguity in the ORA significance
calculations. In such a case, if genes in a pathway are over-represented, it cannot be a false positive
caused by crosstalk. Our approach is therefore to infer an underlying pathway impact matrix
where each gene contributes to one and only one pathway, hence is devoid of crosstalk, and then
to perform the ORA using that impact matrix. Since this underlying pathway impact matrix is
not observed directly, it is inferred through likelihood-based methods, and estimated using the EM
algorithm. The corrected ranking is computed using ORA with the underlying pathway impact
matrix, shown as follows.

Let us consider the DE indicator vector Y, representing the differential expression of genes,
and the membership matrix X describing the membership of each gene in each one of k pathways
Py ... P;,. The vector Y is defined as follows:

v — 1 if g; is DE
10 if g; NDE

and each cell X; ; of the matrix X is defined as follows:

Y. 1 if g; belongs to P;
Y1 0 if g; does not belong to P;

The matrix Y| X obtained by combining the vector Y with the X matrix is shown in the example
in Fig. S9.

In many analysis methods, the membership matrix X is also interpreted as the impact matriz:
if X;; = 1, then gene g; impacts pathway P;. In ORA, for example, each gene is considered to have
the same full impact on all pathways the gene belongs to. Crosstalk effects result from the fact that
a gene can belong to more than one pathway, but in principle, it can potentially have a different
biological impact on each such pathway. Our aim is to identify the pathway where the biological
impact of such a shared gene is maximum. We do so by estimating the maximum impact pathway
using an expectation maximization approach as described in the following.

Assuming that in a specific biological condition each gene distributes its impact differently
to each pathway, we will consider the pathway to which each gene distributes the greatest frac-
tion of its impact. We define a binary matrix Z that indicates, for each gene, the pathway that



receives the biggest fraction of that gene’s impact. For each gene g;, the corresponding row
Zi = [Zn, Zso, ..., Zit)|, where Z;; € {0,1}, will have Z?:l Zi; = 1, i.e. there is only one col-
umn in each row that has a non-zero element. This matrix Z is the unknown underlying pathway
impact matrix referred to above; our goal is to estimate it.

Let us consider one row Z; having a one in an unknown column j and zeros elsewhere. Since
we don’t know j, we compute the probability of each pathway to be the one where gene g; gives
the greatest fraction of its impact. To do this, we assume a non-negative vector of multinomial
probabilities II = (7q,...,7) with Zle mj = 1, defined by 7; = p(Z;; = 1|Y; = 1). In other
words, given a gene g; that is DE, 7; is the probability that g; gives the greatest fraction of its
impact to P;. Similarly, we also define © = (61,...,60), where 6; = p(Z;; = 1|Y; = 0) for the NDE
genes.

Row ¢ of the membership matrix X is denoted by Xj;; this vector tells us which pathways gene
1 belongs to. Within the context of the probabilistic model described above, each row X; can be
interpreted as an observation of a gene with a given expression state Y that gives the greatest
fraction of its impact to one of the pathways it belongs to. Therefore, for DE genes we have
p(X; = x;|Y; = 1,1I) = II - . We further assume that the hidden matrix Z is consistent with the
observed X, i.e., Z;; can be 1 only when X;; = 1; if X;; = 0 then we must have Z;; = 0 (a gene
cannot contribute most to a pathway that it does not belong to). With this notation:

p(Z; = 2z, X = x;]Y; = 1,10)
p(Xi = z;|Y; = 1,1I)

13 (3
= 1
T 1)

p(Zi = z|Xs =2, Y; = 1,1I) =

where I(.) is the indicator function. For example, if x; = (11001) and g¢; is a DE gene, then the
conditional distribution of Z; is given by:

p(Zi = (10000)|X; = 24, Y; = 1,11) = m /(1 + 72 + 75)

p(Z: = (01000)|X; = 25, Y; = 1,1I) = 7r2/(7r1 + 7y + 75)

p(Z; = (00100)|X; = 3, Y; = 1,11 =

p(Z; = (00010)| X; = x;,Y; = 1,11) =

p(Z; = (00001)| X; = x;,Y; = 1,11) = 7r5/(7r1 + 79 + 75) (2)

This yields a vector of conditional probabilities ¢; = (¢1,¢i2, ..., ¢ii) for each row Z; of DE
genes, where ¢;; = p(Z;; = zij\ X; = x;) as defined above. Once those probabilities are estimated,
we can produce a most likely matrix Z by assigning each gene to the pathway with the highest
probability of receiving the biggest fraction of the impact of the gene. Specifically, z;; = 1 when
maxs{cis} = ¢ij; 2ij = 0 otherwise.

If there were no crosstalk, each gene would contribute to a single pathway, the matrix X and
the matrix Z would be equal, and they would have only one element equal to 1 in each row. In
this case, m; could be estimated as the number of DE genes belonging to the pathway divided by
the total number of DE genes. The probabilities 7 and € could be estimated as follows:

D e Tij

M= (3)
~ Ty
- g



In the presence of crosstalk, however, it is not possible to compute II and © directly from X.
A likelihood-based estimation can be used instead.

The log-likelihood of observing the membership matrix X given the gene expression vector Y
is then:

n—+m
logL = Z log(p(X;|Yi;m, mo, w3 ... T, 01, 02,65 ...6k)) (5)
i=1
Equation 5 is written under the assumption of conditional independence of rows of X; i.e.,
under the reasonable assumption that the pathway to which a gene ¢ gives most of its impact does
not depend on the pathway to which another gene j impacts the most. In other words, the split of
the fractions of the impact of a gene does not depend the splits of the impact of other genes.
This assumption, together with the observation that the DE genes do not depend on 6’s and
that the NDE genes do not depend on 7’s, allows us to compute the likelihood by separating the
matrix in two sub-matrices: X|Y = 1, representing the sub-matrix of the DE genes, and X|Y =0,
representing the sub-matrix of the NDE genes:

n m—+n
logL = log(p(Xi|Y; = 1,1)) + Y log(p(X;i|Yi = 0,0))
i=1 i=n-+1
n m+n
= Zlog(H X0+ Z log(© - X]) (6)
i=1 i=n+1

In this formula, the (row) vector II represents the probability of the i — th DE gene to give the
greatest fraction of its impact to a specific pathway, X; is the i — th row of the membership matrix
X, and X/ represents its transpose. The dot-product II - X} produces a scalar representing the
probability P(X; = z;|]Y = 1,1I), i.e. the probability of observing the i-th row of the matrix X;
given the fact that gene i is DE. The same notation has been used for the dot-product © - X.

In the following, we will only work with the first term to illustrate how to estimate II. © can
be estimated from X|Y = 0 in a similar fashion.

There is no closed form solution for the maximization of Eq. 6. However, we can use the Z
matrix as a hidden variable for the estimation of the parameters II. The log joint conditional
likelihood for the DE part of the matrix can be written as:

logJLPE = log(p(X, Z|Y = 1,10))

= Zlog(p(XhZiD/i = 1’H))
=1

= 3 log(r(ZPE - (XPEY = 1) ZPF 1)

i=1
n k
= Z log(I(ZiDE (XDE ZZIDJE log(my)
; =
k
Z o358 - 4PF) + 30 log(r) 228 (7)
i=1 j=1 i=1 j=1



We use an expectation maximization (EM) approach to maximize the log likelihood in Equa-
tion 5 by maximizing the joint log likelihood defined in Equation 7. The EM is an iterative algorithm
that starts with an initial guess for II, denoted with II%; each iteration is a mapping between IT*
and IT**1 . The superscript indicates the index of the iteration. We choose to initialize each element
of the vector as follows:

n
nd = n2i=1,f” cje{l.. .k} (8)
D ic1 2oh=1 Tish

This initializes each value m; with the ratio between the number of DE genes in pathway j and
the sum over the matrix X . This initialization is consistent with the model described in Equation 3.
Each iteration of the EM algorithm is composed by two steps: the expectation step and the max-
imization step; during the expectation step we compute the expectation of the log joint conditional

likelihood in Equation 7 with respect to the posterior p(Zl%E\XiD E T10ld).

n k
Z log(z leJE i )+ Z Z log(m;) J
i=1 j=1

=1 j=1

k

n
=F Zlog(szjE ZC%E +E ZZZOQ () U
i=1

7j=1 =1 j=1

=F ZZlog ) ’] (9)

i=1 j=1

The term E (Zl llog(zj 1 ZD]E a:f)jE)) is equal to 0 because the term Z] 1 Z%E : x%E is

equal to 1 for the consistency of Z with X.
The derivation of the non zero term of the expectation is as follows:

n k
ZZlog(ﬂj) 7] ZZlog (75) (zil?j ]XZDJE,H"M)

i=1 j=1 i=1 j=1

n k
= ZZlog(wj) : ” = 1|XPE 11°1)
i=1 j=1
p(zPF, X PE|11od)

n k
- ZZZOQ(%‘) : ZT:HJ( 2P E X DE|[old)

i=1 j=1

DE old

n k
= Z ZZOQ(WJ') e ng old (10)
i=1 j=1 Zr 1L Ty

The maximization of the expectation with respect to II, subject to the constraint that Z?Zl T =
1, is obtained with the Lagrange multiplier method as follows:

10



e
d[y°h_ log(m;) S0 W + ANy 75) = 1)

dmy,

=0,YVhe{l...k}
xz 7.‘.old

Th
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We can write a systems of equations over all the possible values of h in order to compute A.
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Summing left and right sides we obtain:

:c” »d
Z Z : ﬂold -\ Z T (12)

7j=11i=1 r 11'17“
Since 25:1 mj = 1, we can write:

old
€Ty 7T

k
7j=11i=1 r 1%'17« TrOZd

We substitute A in 11 and use an iterative process in which a new 7 value is calculated at each

step:

11



n xi,j'ﬂ-;?ld
D i1 SF ayemold
r=ll T 4 AN=0,Vhe{l...k}

new
Th
i .,ﬂqld
Z?:l Sk ;Jm.J.Trgld ko Lig T
r= 2,7 > _
L - L =ovhe (L. k)

=1 fo i memold Tij- T
eSS T he (1. k)

=1 kigld
phew — D L /AP S

(14)

Since the sum over each row is 1, if we invert the order of the summations at the denominator
in the last row of Equation 14, the value of the denominator becomes n. This, in other words,
means that each value 7" is the sum of column A over the number of DE genes.

The algorithm stops when the distance between two consecutive vectors ||[TI®) — II¢=D]| is less

than the quantity w, i.e. the distance between the first two vectors divided by 100. At
the end of the steps of the EM algorithm we obtain the matrix C from which we can obtain the
most probable Z given the condition under study: for each row, we assign the value 1 to the cell
with the highest probability, and 0 to all the others. This is equivalent to saying that each gene

gives its full impact to the pathway with the highest = value.

Module Detection. The module detection procedure uses an iterative approach for the identifi-
cation of independent functional modules. At each iteration, only one module is tested, for example
the module in common between pathways P; and P;. The set of pathways over which we perform
the correction for multiple comparison is the set of original pathways, without the two pathways
P; and P;, and with the inclusion of the pathways Py ;, Pj\;, and the module P;n ;. If the original
list of pathways contained k pathways, the correction of the significance of the module is computed
on a list that contains k£ + 1 pathways.

It has to be noted that the goal of the module detection process is not to compute the exact
significance of each module, but to estimate the change of the significance of a pair of pathways
when the intersection among them is removed. If this change is big enough, and the intersection’s
significance is comparable to the one of the original pathways, we assume that the module is the
responsible for the significance of the two parent pathways, and we modify the list of pathways
accordingly. When the list of pathways is modified with the addition of the newly discovered
modules, the correction for multiple comparisons is performed on the new augmented list, estimating
the significance of pathways and modules appropriately. If there are n new modules added to the
original list of k£ pathways, there will be k+n tests and we do correct for k+mn multiple comparisons.

Choice for the threshold for the module detection procedure. The value 0.25 for the

module selection procedure was selected by calculating all modules for all data sets with different
thresholds in the [0,0.4] range (with a difference of 0.025 between thresholds). The results are

12



shown in Figure S10. As it can be seen in the figure, the number of modules found in all data sets
shows a plateau in the [0.1,0.375] range.

The false negative rate of the crosstalk correction method. We ran the crosstalk correction
method on the simulations described in Section 1 and we computed the number of times that the
crosstalk correction considers the bait pathway as significant, giving an estimation of the detection
power of the method. In simulations that were designed to yield 100% power for the Fisher Exact
Test, the crosstalk correction reported the bait as significant 91.5% of the time (yielding a 8.5%
false negative rate). This loss of power is not excessive, and is the trade-off for eliminating cross-
talk effects. Furthermore, the 91.5% power is well above the practical threshold of 80% commonly
used in randomized clinical trials (Cohen, 1988; Ellis, 2010; Hulley et al., 1998).

Pathway size bias analysis. To evaluate the possible effect of the pathway size on the results
of the crosstalk correction, we produced histograms of the p-values for different ranges of pathway
sizes, as well as scatter plots representing the crosstalk corrected p-values versus pathway size.

Figure S11 shows the histograms. The pathways have been divided into quartiles by the size of
the pathways. The quartiles are shown from the top (first quartile) to the bottom (last quartile).
The cyan bars (to the left in each interval) represent the p-values yielded by the crosstalk correction,
the red bars represent the p-values yielded by the Fisher Exact Test. The data shows that the cross-
talk p-values are distributed very similarly to the Fisher Exact Test p-values. Furthermore, there
are no major differences between the groups of pathways with different sizes.

Figure S12 shows the scatter plots. The top two panels in this figure show the crosstalk corrected
p-values (panel (a)) and the p-values of the Fisher Exact Test (panel (b)). The empty spaces
between the curves outlined by the points are due to the discrete nature of the hypergeometric
distribution. Since the number of DE genes only takes natural values, the p-values of any pathway
will have discrete values for any given pathway size (going vertically for any value of x). In order to
illustrate this, we colored the points corresponding to a number of DE genes in the interval [1,9].
Since there are many points close to 0 and many points close to 1, a potential size bias may not
be apparent. Hence, we calculated the Pearson correlation between the p-values and the sizes of
the pathways. The correlation between the crosstalk corrected p-values and the pathway sizes is
—0.052; the correlation between the the Fisher Exact Test p-values and the pathway sizes is —0.079.
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Figure legends

Figure S1: The distributions of the p-values obtained from the three analysis methods under the null hypothesis:
Fisher’s Exact Test (left), SPIA (middle), and GSEA (right). All three exhibit a significant departure from the
expected uniform distribution (Kolmogorov-Smirnov p-values of the order of 107 in all cases). Notably, all methods
yield a much higher than expected number of pathways with p-values lower than 0.1, i.e. false positives.

Figure S2: Detail of the crosstalk matrix for the comparison between days 7 and 0 in the fat remodeling experiment.
The areas marked with a correspond to the Mitochondrial activity pathway shown in Fig. 5, the same pathway that

was found to be activated in the dataset associated with the comparison of expression levels at days 3 and O.
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(a) The top 20 pathways resulting from classical ORA (b) The top 20 pathways after the correction for crosstalk
before correction for crosstalk. Four out of the top effects. The mitochondrial activity pathway (validated in
five pathways are not related to the fat remodeling phe- vivo) is reported as the most significant pathway even af-
nomenon (false positives). ter 7 days, suggesting permanent tissue remodeling. The
Phagosome pathway, significantly impacted after 3 days
(see Fig. 3b) is not significant anymore after 7 days, con-
sistent with the transitory nature of cellular death and
phagocytosis. The four false positives in the left table
have been removed. The ARVC is reported as a false
positive but the DE genes located on this pathway are
involved in cell adhesion which may be relevant here.

Figure S3: The results of the ORA for the fat remodeling experiment for the comparison between days 7 and 0,

before (left) and after (right) the correction for crosstalk effects. All p-values are FDR~corrected. The lines show the
significance thresholds: blue - 0.01, yellow - 0.05.
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(a) The top 20 pathways reported by the classical ORA
before correction for crosstalk. The NSCLC, known to
be linked to this treatment (Chlebowski et al., 2009a) is
not identified by the classical method, while the SCLC,
which showed no increase in incidence in the treatment
group (Chlebowski et al., 2009a), appears as significant.
The significance of Pathways in Cancer is consistent with
the putative link between hormone treatments and higher
incidence of some types of cancer but offers no explanation

(b) The top 20 pathways reported by ORA after the
correction for crosstalk effects. The correction method
removed Pathways in Cancer, SCLC, and Prostate Can-
cer from the list of significant pathways, increasing the
significance of pathways offering more insights such as
Jak-STAT signaling pathway and the new Integrin me-
diated ECM signaling module. A star before the name
of the pathway means that a module overlapping with
other pathways has been removed from the pathway.

or insight into the underlying mechanisms.

Figure S4: Results of ORA for the estrogen treatment experiment, before (left) and after (right) the correction for
crosstalk effects. All p-values are FDR-corrected. The lines show the significance thresholds: blue - 0.01, yellow -
0.05.

Figure S5: Detail of the crosstalk matrix of the estrogen treatment. Left panel: the circle highlights an example
of a common module that is responsible for the significance of an entire group of pathways. The common module
between the pathways ECM-Receptor Interaction, Focal Adhesion, Pathways In Cancer, and Small Cell Lung Cancer
describes the interaction between integrin and collagen, laminin, and fibronectin. Henceforth, we will refer to this
module as the Integrin-mediated ECM signaling pathway (see Fig. 8). Right panel: row corresponding to the pathway
Graft- Versus-Host disease. The pathway becomes significant after the removal of specific pathways, highlighted by the
yellow circles. The set of pathways includes Phagosome, Cell adhesion molecules (CAMs), Leishmaniasis, Intestinal
immune network for IgA production, Systemic Lupus Erithematosus, and Asthma. This indicates a situation in which
the genes specific to Graft- Versus-Host disease are related to the phenomenon in analysis, but their significance is
masked by the presence of crosstalk with other pathways.

Figure S6: Details of the crosstalk matrix of the cervical ripening experiment. The circle highlights the evidence
for an independent module involving pathways Focal Adhesion, ECM-Receptor Interaction, and Amoebiasis. This
module is exactly the Integrin-mediated ECM signaling previously identified in the hormone treatment experiment
(Fig 8) from a different set of crosstalk interactions. The bright green loss of significance of Small-Cell Lung Cancer
in columns 1-3, shows that this pathway was a false positive in the ORA since its significance was due only to the
crosstalk from the first 3 pathways.

(a) Results of the ORA analysis of the GSE1297 data set using
KEGG as a reference database. While related to neurodegen-
erative diseases, the pathways Huntington’s and Parkinson’s
are not true positives. The pathway Arrhythmogenic right
ventricular cardiomyopathy is not related to the phenomenon.

(b) Results of the crosstalk analysis of the GSE1297 data set
using KEGG as a reference database. The crosstalk analysis
is able to extract a functional module from the three neurode-
generative disease pathways that rank at the top of the ORA
list. Genes found in this module are related to the phenomena
of oxidative phosphorylation and cytochrome oxidase, highly
related to Parkinson’s disease. The pathway Arrhythmogenic
right ventricular cardiomyopathy is not significant anymore.

Figure S7: The results of the ORA analysis in the GSE1297 experiment before (left) and after (right) correction
for crosstalk effects. All p-values are FDR-corrected. The blue line shows the 0.05 significance threshold.
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(a) Results of the ORA analysis of the GSE1297 data set (b) Results of the crosstalk analysis of the GSE1297 data set
using Reactome as a reference database. The top pathways using Reactome as a reference database. The crosstalk analysis
are related to Alzheimer’s Disease. The pathway Regulation groups the pathways related to Alzheimer’s Disease. The path-
of Insulin Secretion describe the signaling events involving way Regulation of Insulin Secretion is not significant anymore.
pancreatic beta cells, and it is not related to brain cells.

Figure S8: The results of the ORA analysis in the GSE1297 experiment using Reactome as reference database,
before (left) and after (right) correction for crosstalk effects. All p-values are FDR~corrected. The blue line shows
the significance thresholds of 0.05.

Figure S9: Example of a DE/membership matrix; the column Y represents the indicator of differential expression
of the various genes (1 for the n DE genes and 0 for the m NDE). Column P; represents the membership indicator for
pathway j. Row g; describes gene i in terms of its differential expression and its membership to the various pathways.

Figure S10: Number of modules obtained when changing the threshold distance under which two modules are
considered similar enough to be joined. All data sets showed a plateau in the [0.1,0.375] range indicating that the
number of modules found does not depend on the choice of the threshold for a wide range of threshold values.

Figure S11: Histograms showing a comparison of the frequencies of p-values between the crosstalk and Fisher’s
Exact test. The pathways have been divided into quartiles by the size of the pathways. The quartiles are shown
from the top (first quartile) to the bottom (last quartile). The cyan bars (to the left in each interval) represent the
p-values yielded by the crosstalk correction, the red bars represent the p-values yielded by the Fisher Exact Test. The
histograms are normalized such that the area under each of them is 1. The data shows that the cross-talk p-values
are distributed very similarly to the Fisher Exact Test p-values. Furthermore, there is no evidence of any size bias
(no major difference between the groups of pathways with different sizes).

Figure S12: The scatter plot showing the p-values (vertical axis) versus pathway size (horizontal axis) for crosstalk
(panel a) and Fisher Exact test (panel b). The empty space is due to the fact that there are no pathways with sizes
between 365 and 984. The p-values yielded by a number of DE genes from 1 to 9 have been colored.
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rank pathway p(FDR) rank pathway p(FDR)

8  Gap junction 0.0920 7  Vascular smooth muscle contr. 0.080
9 Progest. mediated oocyte matur. 0.0995 8 pb53 signaling pathway 0.125
10  Oocyte meiosis 0.1327 9 Pathways in cancer 0.562
11  Salivary secretion 0.1442 10 SNARE inter. in vesicular transp. 0.562
12 Cell adhesion molecules (CAMs)  0.2390 11 Chagas disease 0.575
13 SNARE inter. in vesicular 0.2969 12 Long-term potentiation 0.575
transp. 13 Phagosome 0.588

14  Prostate cancer 0.3837 14  Vasopressin-reg. water reabs. 0.765
15 Vasopressin-reg. water reabs. 0.5111 15 Hedgehog signaling pathway 0.765
16 Arrhythm. right ventr. card. 0.5111 16  Dorso-ventral axis formation 0.765
17 Hedgehog signaling pathway 0.5174 17  Intest. imm, netw. for IgA prod. 0.784
18 Prion diseases 0.5420 18 Wnt signaling pathway 0.984
19  Melanogenesis 0.5432 19 ECM-receptor interaction 0.984
20 Pathways in cancer 0.5432 20  Phototransduction 0.984

(a) (b)
Figure S3
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rank pathway p(FDR)  rank pathway

5  Aldosterone-reg. Na reabs. 0.0190

Nat. killer cell med. cytotox. 0.0344
8 Progest.-med. oocyte mat. 0.0951 8 Regulation of actin cytosk. 0.1403
9 Adipocytokine signaling 0.0951 9 Compl. and coag. cascades 0.3413
10 Melanoma 0.1208 10  Adherens junction 0.3413
11 Graft-versus-host disease 0.1291 11 SNARE interac. in ves. trans. 0.4842
12 Reg. of actin cytoskeleton 0.2020 12 Circadian rhythm - mammal 0.5074
13 Aldosterone-reg. Na reabs. 0.2020 13 Lysosome 0.6552
14  Oocyte meiosis 0.2168 14  Protein proc. in endopl. ret. 0.7182
15 Long-term depression 0.2174 15 Vibrio cholerae infection 0.7182
16 mTOR signaling pathway 0.3048 16 * * * Focal adhesion 0.9844
17  Nat. killer cell med. cytotox. 0.3185 17  Type I diabetes mellitus 1
18  Vibrio cholerae infection 0.3225 18 Phagosome 1
19 SNARE inter. in vesicular trans.  0.3699 19  Huntington’s disease 1
20 Salivary secretion 0.3699 20  Cell cycle 1
(a) (b)
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Rank Title p-value(fdr) Rank Title
1 Huntington’s disease 3.49 .10~

— 2
3 Parkinson’s disease 3.49-10~ 3
4 Glutamatergic synapse 0.00342933 4

5
6 Circadian rhythm - mammal 0.0995 6
7 Dopaminergic synapse 0.1322 7
8 Long-term depression 0.1625 8
9 Calcium signaling pathway 0.1922 9
10  Retrograde endocann. signaling 0.1922 10
(a)
Figure S7
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