
1 Quality assessment of strand-specific RNA-
seq

To test whether the amplification step preserves gene expression levels, we com-
pared the expression levels of all protein coding genes in the unsorted whole
root library without amplification to the libraries with amplification. Although
aligned reads tend to be enriched towards the 3′ ends of transcripts after am-
plification, we found high linear correlation of the expression levels between the
amplified libraries unWR2/unWR3 and the unamplified library unWR1 (aver-
age R2 = 0.945). This result suggests that the linear amplification protocol
used to generate unWR2 and unWR3 faithfully retains relative gene expression
levels at the genome scale.

We further compared the gene expression levels of the sorted libraries (WR1,
WR2 and WR3) to the unsorted libraries (unWR2 and unWR3); we found a
mere 6.5% of all protein coding genes in the Arabidopsis genome to be up-
regulated by the sorting process (> 2 fold change, FDR adjusted p−value < 0.01
using DESeq [1]). This is consistent with the previous observation that most
genes are not affected by the cell-sorting process [2]. The high quality of our
RNA-seq data is also supported by the strong pairwise correlation between
biological replicates (average R2 > 0.97 for all 9 pairwise comparisons). We
further compared gene expression levels from our RNA-seq data to published
cell type-specific expression levels using Affymetrix microarrays [3]. For each
protein coding gene that is on the ATH1 22K microarray, we calculated the
average expression level of that gene from the replicates of the microarray and
from the replicates of the RNA-seq data. For both CORT and ENDO libraries,
we found high reproducibility of the gene expression levels across platforms
(linear regression, R2 = 0.79 and 0.71 respectively).

2 Statistical model of antisense transcription.

2.1 Derivation of the sense only model M0

Because our method is evaluated on one locus at a time, we drop the index i for
genes and j for replicates in this section to simplify the model notation and the
explanation. We denote read count from the forward strand as N+ and read
count from the reverse strand as N−. Given the observed number of reads from
forward strand and reverse strand (N+ and N−, N = N++N−), the goal of our
inference is to compare two possible models that can explain the observed read
counts. If we assume only one gene is transcribed in the locus of interest on the
forward strand, the probability of the observed read counts can be calculated
by the sense only model (M0):

Pr
(
N+, N−

)
= Pr

(
N−, N

)
= B(N−|N, pe)×NB(N |µ, σ) (1)

Because the strand-specific protocol generates a certain percentage of reads
from the unexpected strand of a gene, N− is not always equal to zero. We sup-
pose that theN− is distributed according to a binomial distribution (B(N−|N, pe)),
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where pe represents the probability of observing reads from the unexpected
strand (called protocol error rate or PE in the main text), and is estimated as
the average PE across all genes. The pe equals 0.5 if the reads generated from
the sense strand gene have equal probability to be mapped to the sense strand
or antisense strand. For a strand-specific protocol, pe should always be smaller
than 0.5. The parameters for the negative binomial part of the equation is esti-
mated in the same way as in DESeq package [1]. In DESeq, the expected count
(µ) was estimated by averaging the normalized read counts. The variance (σ)
was estimated by fitting a generalized linear model.

2.2 Derivation of the antisense model M1

When a pair of antisense genes are transcribed in one locus, all the reads
that mapped to the sense strand are generated from two sources. Some of
the sense reads are from the sense strand gene; others are from the antisense
strand gene but mapped to the sense strand due to the non-perfect strand
specificity. We introduce Ns and Na to denote the number of reads originated
from sense transcription and antisense transcription respectively. We also use
N+

s , N
−
s , N

+
a andN

−
a to denote the read counts from forward and reverse strands

for sense and antisense transcriptions respectively. These variables are not ob-
served but are related to the observed read count N+ and N− by the following
equations:

Ns = N+
s +N−s (2)

Na = N+
a +N−a (3)

N+ = N+
s +N+

a (4)

N− = N−s +N−a (5)

The probability of the observed data (N+andN−) given the antisense model
(M1) is expressed as (M1 is dropped for clarity):

Pr(N+, N−) =
∑

Pr(N+
s , N−

s , N+
a , N−

a ) over all possible N+
s , N−

s , N+
a , N−

a (6)

=
∑

Pr(N−
s , Ns, N

+
a , Na) over all possible N

−
s , Ns, N

+
a , Na (7)

=

N−∑
N−

s =0

N+∑
N+

a =0

Pr(N−
s , N+

a , Ns, Na) (8)

The probability of the observed data (N+ andN−) equals the sum of proba-
bilities of missing data over all the possible values of the missing data (equation
6). Because of the linear constraints (equations 2 and 3), we can write the the
probability in equation 6 as the probablity in equation 7. In fact, only two
non-complementary missing data N−s and N+

a are needed to calculate the val-
ues of the other two missing data (Ns and Na). One can choose other pairs of
missing data, for example, N+

s and N−a , for the optimization process. However,
because pe is always smaller than 0.5, the expected values of N−s and N+

a are
smaller as compared to other possible pairs. Therefore, we decide to optimize
the model using N−s and N+

a . These steps are similar to the derivation of the
sum of Poisson random variable with the total count as a constant: one first

2



decides the joint distribution of all random variables and then substitutes some
of the random varibles using the known constraints.

Following the model assumption in 1, we can write the joint distribution of
the missing data (N−s , N

+
a , Ns and Na) under an antisense model as:

Pr(N−s , N
+
a , Ns, Na) = B(N−s |Ns, pe)×NB(Ns|µ1, σ1)

× B(N+
a |Na, pe)×NB(Na|µ2, σ2) (9)

We call this model as the antisense model (M1). To determine the signifi-
cance of antisense transcription, we compare the sense only model (M0) to the
antisense model (M1). The parameters for the Binomial and Negative Bino-
mial distributions are estimated as described above and treated as known in the
model comparison. In an ideal situation, one would calculate the sum in (8),
and compare the two models using Bayes Factor, which is the ratio of probabil-
ities of the data given two models (Pr(N+, N−|M1)/Pr(N+, N−|M0)). When
working on actual RNA-seq data sets, however, thousands of reads could map
to one gene; the summation of many small probabilities is slow to calculate and
may cause numerical error. Instead of calculating the summation, we approxi-
mate the probability of the observed data using maximum likelihood estimation
of N−s and N+

a . This is essentially using Bayesian information criterion to ap-
proximate the Bayes Factor by treating the two missing data N−s and N+

a as
parameters. We call this summary statistics the NASTI score.

NASTIscore = log(Pr(D|N̂−s , N̂+
a ,M1))− log(Pr(D|M0))

− 1

2
× (d1 − d0)× log(n) (10)

We performed simulation studies to compare the difference between log(BF)
and NASTI score using model M1. In the simulations, we first set N+ =
20, 50, 100, 200 and pe = 0.01, 0.02, 0.05, 0.10, 0.20. We then choose N− such
that the ratio N−/N+ = 1%, 2%, 5%, 10%, 20%, 50%, 100%, and 200%. We
found that both log BF and NASTI score increase very fast as the number
of reads on the reverse strand increases (Figure 1). The value of log BF and
NASTI score are similar; the absolute value of the difference is very small as
compared to the magnitude of log BF or NASTI score (Figure 2).

The simulations were performed over a wide range of parameters, and we
found that the differences are small in all simulations (Figure 3).

2.3 Model formulation with multiple genes and replicates

We denote the number of mapped reads in replicates i, gene j and strand k as
Nijk, where i = 1, · · · , I, j = 1, · · · , J and k = 0 or 1. We use k = 0 to indicate
that the reads are mapped to the expected strand, whereas k = 1 indicates
the reads are mapped to the unexpected strand. Because in the commonly
used read mapping data format (bam files [4]), the direction of a read is always
represented according to the strand of the genome. When counting reads using
bam files, the value of k is determined by 1) which strand of the genome the
reads mapped to and 2) the strand of the gene of interest. For one example,
given a gene on the forward strand, Ni,j,k=0 is equvilent to N+ and Ni,j,k=0 is
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Figure 1: Comparison of the full Bayes Factor and the NASTI score
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Figure 2: Difference between the full Bayes Factor and the NASTI score
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Figure 3: Difference between the full Bayes Factor and NASTI score over a
range of parameters. The simulations were performed by varying N+ and pe.
N−s were choosen according to the ratio N−/N+

equvilent to N− in the simplified model in section 2.1. For another example, if
a gene ”g” is on the reverse strand of the genomic DNA, and we found 10 reads
mapped to the forward strand of the genomic DNA of gene ”g” in replicate ”r”.
In this situation, we assign Ni=r,j=g,k=1 = 10, because for an antisense gene,
the unexpected strand is the forward strand of the genomic DNA. We denote
Nij =

∑
kNijk as the total number of reads mapped to gene j under condition

i, which is equivalent to N in the simple model 2.1. We model this number
using a negative binomial distribution (Nij ∼ NB(µij , σij)) [1]. We also model
Ni,j,k=1 according to a binomial distribution (Nij1 ∼ B (Nij , peij)), where peij
represents the protocol error rate. The peij for each gene is calculated as the
fraction of unexpected reads from that gene, and the average PE across all genes
under one condition is used as the estimated pei for each gene (peij = pei). For
any strand specific protocol, pei would always be smaller than 0.5 by definition.

For the sense only model (M0), the likelihood of the observed read count is
the following.

Pr(Nijk) = B(Nij1|Nij , pei)×NB(Nij |µij , σij) (11)

The binomial term in this equation can also be written as B(Nij0|Nij., 1−pei)
because of complementarity. For the antisense model (M1), we introduce Nijks

to denote the unobserved read counts, with s as an indicator variable for the
strand of the underlying gene that generates the read counts. If the reads are
from the sense strand gene, then s equals 0, otherwise, s equals 1. For example,
N−s in the 2.1 is equivalent to Ni,j,k=1,s=0, where s = 0 indicates the gene is
from sense strand and k = 1 indicates the reads are from the unexpected strand
(reverse strand). The likelihood of the unobserved data is then written as:
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Pr(Nijks) =
∏

s=0,1

B(Nij1s|Nij.s, pei)×NB(Nij.s|µij.s, σij.s) (12)

The likelihood in (12) is maximized by iteratively estimating the unobserved
data Nijks and the parameters for the negative binomial distribution. The
expected number of antisense reads coming from the sense gene was initialized
as ˆNij10 = Nij.0×pei. ˆNij11 is initialized in a similar fashion. At each iteration,

new ˆNij1s(s = 0, 1) were found as one of the closest integers to the ˆNij1s in
the previous step such that the likelihood increases. The algorithm converges
very fast (usually less than 10 steps, when the improvement of the likelihood is
smaller than a given threshold (σ = 1e − 20)). After the algorithm converges,
the NASTI score is calculated based on (10).

To demonstrate the effectiveness of our method in identifying cis-NAT pairs,
we made use of an existing annotation of natural antisense pairs [5], in which
more than 2000 pairs of anti-sense genes were identified by analyzing EST
databases. Among these pairs, we found 874 cis-NAT pairs that are still sup-
ported by the latest Arabidopsis annotation (TAIR10) as overlapping and anti-
sense transcripts. These 874 cis-NAT pairs were used as the positive training set.
Newly annotated natural antisense pairs in TAIR10 were kept as an independent
validation set for the downstream analyses. To generate a negative training set,
we scanned the TAIR10 annotation for pairs of genes that are unlikely to form
natural antisense pairs. We first identified all groups of four genes such that
the four genes are located next to each other along the genome. For each group
of four genes, we require that either end of the second and third genes are at
least 500 base pairs away from each other and are at least 500 base pairs away
from the ends of the first gene and the fourth gene. We found 3972 groups that
satisfied our criteria, and we used each second gene and third gene as negative
training pairs. Both positive and negative training pairs were required to have
at least 5 reads from each gene. The criteria for selecting training sets are also
listed in Supplemental Table 3.

The model was first trained on data from all loci to calculate the NASTI score
for each locus, and then the maximum NASTI score for each pair of locus was
used as a score to classify positive training pairs against the negative training
pairs. Ten-fold cross validation was carried out and the model was evaluated
by receiver operation characteristic curve (ROC curve, Figure 1B) and the area
under the ROC curve (auROC, Figure 1C) in the main text.

3 Logistic regression

A logistic regression model was fitted to the read count data to predict antisense
transcription, using the following equation: Pr(Yi = 1|Xi) = logit−1(Xi)

For each sense strand gene i, the numbers of the sense strand reads and
the antisense strand reads from each replicate were used as predictor variables
(represented by the vector Xi). The indicator variable, Yi, equals one if the
gene is in the positive training set, and equals zero if the gene is in the negative
training set. Model parameters were estimated using R (www.cran.org). In the
classification step, for each pair of genes in the training set, the final score is
the maximum score ( logP (Yi = 1|Xi) ) of the two genes.
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