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NAHR-mediated copy-number variants in a clinical population: mechanistic insights into both genomic disorders and  Mendelizing traits
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I. Identification of novel genomic disorders in 2q12.2q13

[bookmark: SECTION00031000000000000000]Patients

2q12.2q12.3 deletion
Patient 1 is a 4-year-old girl with a history of developmental delay. She had bilateral cataracts with deep set asymmetrical palpebral fissures and a right microphthalmia, temporal hollowing, and hypoplastic distal phalanges of the fifth fingers. 

Patients 2 and 3 are fetuses, in whom the deletions were inherited from the reportedly healthy father and mother, respectively.

2q12.3 deletion
Patient 4 is a 6.5-year-old Caucasian female with global developmental delay and absence seizures. She was born to a 35-year-old mother who had a history of hyperprolactinemia requiring suppression with Cabergoline for conception. Injectable fertility agents were employed but in vitro fertilization was not performed and Cabergoline was discontinued when conception was confirmed. Maternal hypothyroidism was detected at 6 weeks gestation and was treated with Levothyroxine. At 12 weeks gestation, fetal reduction was employed to reduce the number of embryos from three to two. Preterm contractions began at five months gestations and were treated with bed rest and oral albuterol as a tocolytic. Delivery was at 36 weeks gestation via C-section for breech-breech presentation and evidence of decreased intrauterine fetal growth. Birth she birth weight was 2,350 g (25-50th centile); her fraternal twin sister weighed 2,130 g (10-25th centile). During the postnatal course, she received supplemental oxygen and was noted to have abnormal eye movements concerning for a possible seizure. An EEG performed on day-of-life 1 was within normal limits. She was discharged at 11 days of age. At approximately three months she was noted to have difficulty feeding and was diagnosed with reflux that was treated medically.  At this time, her parents noted that she was lethargic compared to her twin sister and often had abnormal posturing with her shoulders abducted and her elbows and wrists flexed bilaterally. Her gross motor, fine motor, and speech development were all delayed. Specifically, she rolled over at 10 months, sat at 13 months, crawled at 20 months, and walked at approximately 33 months of age.  At three years of age, she still used a raking grasp. She began to babble at 11 months but still had no words at 5 years of age. Hearing evaluation was normal.  At 5 years of age, her parents noted staring spells and EEG monitoring confirmed that she was having absence seizures. A physical exam completed at 5 year 10 months of age revealed a height of 108.8 cm (19th centile), weight of 16.6 kg (9th centile), small simple ears with over-folded upper helices similar to her mother’s, long eyelashes, midface hypoplasia, and an accessory nipple on the left.  Head circumference (OFC) measured at three years of age was 46.2 cm which is approximately two standard deviations below the mean. Brain MRIs at 2.5 years of age revealed prominent CSF spaces which appeared less prominent on repeat MRI at 6.5 years of age. Other findings included borderline low periventricular white matter volume and a small stable focus of nonspecific T2 and flair hyperintense signal in the right frontal periventricular white matter. Additional tests included brain MRI spectroscopy at 6.5 years of age, MECP2 sequencing,  Angelman syndrome region methylation, plasma amino acids, urine organic acids, ammonia, lactate, carbohydrate deficient transferrin testing, an acylcarnitine profile, homocysteine level, creatine/guanidinoacetate levels, chromosome analysis, and Fragile X testing, all of which were normal.  

Patient 5 was born at 37 weeks gestation via twin gestation. Birth weight was 5 pounds and 10 ounces (percentile 5). He sat between 8 to 10 months, crawled at 12 months, and walked at 18 months of age. First words were spoken at 18 months and he was putting two words together by 2.5 years. At 5 years of age he entered kindergarten and stuttering was identified which improved after speech therapy. At school, he manifested language impairment, problems with concentration, short attention span, and learning disabilities. He also had difficulties with handwriting, reading, and reading comprehension. Physical examination at age 10 years revealed no abnormalities. On the school educational assessment, he scored at the 27th percentile on the fluid reasoning cluster and 4th percentile on the working memory cluster of the WISC-IV. Long-term retrieval on WISC-IV also documented some narrowed capabilities to produce names for concepts. Crystallized abilities were at the 13th percentile. He is currently in the 4th grade and working at grade level with accommodations in place for his attention deficit disorder.  The results of MRI and EEG studies were normal. He has not tolerated well Focalin XR 10 mg and Vyvanse 20 mg due to side effects and suboptimal symptomatic control. Current drug therapy includes Stattera 36 mg. His family history is significant for similar academic and developmental struggles in his twin brother, as well as a maternal uncle, who struggled at school.

2q12.3q13 deletion
Patient 6 was born at 38 weeks via Cesarean section to a 27-year-old G2P1 mother. His mother was induced at 38 weeks due to reported fetal weight of 3.92 kg, which is between the 50th and the 75th percentile. The pregnancy was uncomplicated and exposures to alcohol, tobacco, and medications were denied. Onset and quality of fetal movements were reported as normal. Birth weight was reported at 3.85 kg, the 25th to 50th percentile; birth length was 55.9 cm (90th to 97th centile). Patient 6 is, presently, a 6-year-7-month-old boy with developmental delay, hypotonia, dysmorphic futures: macroglossia, polydactyly, and mild facial changes. Autistic tendencies and speech delay predominate the clinical gestalt. On his last visit his mother reported that he was improving his delays, displayed autistic tendencies, continued to be clumsy and fell regularly, and was having some sleep disturbances. He has had speech therapies twice a week and occupational therapy once a week. According to the mother, he has shown significant progress, especially in speech, and he was talking in full sentences and with improved clarity. He was able to say his ABCs and count to 20 without difficulty. He is in the 1st grade and is doing well. He is in mainstream classes with general assistance with speech. Mother reported that he is using an herbal treatment (Focus Factor) and he seems to respond to the natural supplement. He had an adenoidectomy at age 2 years and continues having recurrent sore throats. At age 6 years and 7 months: mild hypotonia, mild astigmatism, prominent forehead, bilateral epicanthal folds, posteriorly rotated ears, flattened nasal bridge, prominent upper lip (Likert scale 1), everted lower lip, smooth philtrum (Likert scale of 5), shallow palate, macroglossia, mild receding of the mandible were noted on physical exam. Hypertrophic tonsils, hyperemic, and with a mild plaque formation were also noted. Toes appear to overlap, the third toe on the right foot; has mild clinodactyly of the second toe on the left foot. He has Mongolian spots on the back and buttocks, a cafe au lait spot on the left buttock, and linear pigmentation on the back of the leg. Deep tendon reflexes are +2 and symmetrical.  He has mild generalized hypotonia. Genetic studies revealed normal male karyotype (46,XY) and normal subtelomeric FISH analysis. Other laboratory studies showed normal carnitine, acylcarnitine, lactate, serum plasma aminoacids, MPS profile. The mother, a carrier of deletion is reportedly healthy. 

Patient 7 is a 15 month old white male with global developmental delay. He was born to a 36 year-old mother with moderate intellectual disability of unknown etiology. The mother was gravida 5 with two spontaneous early pregnancy spontaneous abortions. The cause for these abortions was undetermined. Preterm contractions began at 34 weeks gestations with vaginal bleeding.  During labor, obstetrician detected birth canal obstruction due to HPV genital warts and cervical cancer. Delivery was performed via emergency C-section. At birth, his weight was 2,450 grams (25-50th centile); there was no history of perinatal asphyxia. During the postnatal course, he initially received supplemental oxygen and was noted to have respiratory distress syndrome on day two. He received intra tracheal surfactant and remained on ventilator support for 11 days. There were no other complications. He remained in the NICU for total three weeks before discharge. At about 3 months of age, he had episodes of right leg and right facial twitching lasting 5 second each. An EEG performed at that time was within normal limits. MRI of the brain revealed nonspecific findings of underopercularization and generous extra-axial fluid spaces likely representing mild paucity of white matter. These events self-resolved over next two months. At approximately six months, he was noted to have difficulty feeding and was diagnosed with reflux that was treated medically. His gross motor, fine motor, and speech development were all delayed. Specifically, he rolled over at 7 months, sat at 9 months, pulled to stand at 14 months, and cruising around furniture at approximately 15 months of age. He is able to transfer objects from one hand to another but no pincer grasp yet. He began to babble at 13 months but still had no words till now. Hearing evaluation was normal. A physical exam completed at 15 month of age revealed a length of 79 cm (67th centile), weight of 11.1 kg (45th centile). There was no dysmorphic features and otherwise unremarkable. On his last visit, his guardian reported that he is significantly improving with all modalities of milestones.

Patient 8 was suspected of Albright phenotype and secondary to clinical findings and brachydactyly.

FISH analyses
The presence of the 2q12.3q13 deletions was confirmed by FISH with BAC clones RP11-787P8 (2q12.2q12.3), RP11-471N11, RP11-153E6, and RP11-116C5 (2q12.3). Parental studies revealed that the 2q12.2q12.3 deletion arose de novo in patient 1 and was inherited from the reportedly healthy father in patient 2, while the 2q12.3 deletion in patients 4 and 5 arose de novo and was inherited from the reportedly healthy mother in patient 6.

Control samples
For analysis of the 2q12.2q12.3, 2q12.3, and 2q12.3q13 regions, we used 1,656 parental samples from the CMA database as controls. In addition, we analyzed the publicly available control data sets: 2,792 individuals (Kirov et al. 2009), 2,493 individuals (Itsara et al. 2009), 1,152 individuals (Zogopoulos et al. 2007), 450 individuals (Conrad et al. 2010), 2,025 individuals (Shaikh et al. 2009), 269 individuals (Locke et al. 2006), and DGV (Zhang et al. 2006). We found one 2q12.3q13 deletion in subjects from Itsara et al. (2009) and one deletion involvingSLC5A7 in subjects from Locke et al. (2006). We also found gains in 2q12.3q13 in two patients with DD in the ISCA (www.iscaconsortium.org) database and a gain in 2q12.3q13 in a patient with autism and DD in DECIPHER. There was one large duplication in the control set reported by Kirov et al. (2009) involving both the 2q12.2q12.3 and 2q12.3q13 regions and several duplications harboring SLC5A7 in the Database of Genomic Variants (DGV) (Zhang et al. 2006). No duplication for the ST6GAL2 gene was found in the control cohort. We conclude that the clinical consequences of the reciprocal duplications are unknown at this time and more patients need to be studied for better genotype–phenotype correlations.
   
Clinical discussion
Patients 4, 5, and ISCA nssv1415476 with the 2q12.3 deletion as well as patients 6, 7, and ISCA nssv576371 with the 2q12.3q13 deletion, all harbor SLC5A7 (Choline transporter, Solute carrier family 5, member 7) (English et al. 2009). Homozygous Slc5a7-/- mice were described as perinatal lethal with decreased mobility, irregular respirations, and cyanosis. They had defects in synaptic acetylcholine availability with abolished choline uptake and subsequent impairment of acetylcholine synthesis in the brain and showed a time-dependent loss of spontaneous and evoked responses at the neuromuscular junctions, as well as developmental changes in neuromuscular junction morphology reminiscent of changes in mutant mice lacking acetylcholine synthesis. Adult heterozygous Slc5a7+/- mice, however, overcame reduction in Slc5a7 protein level and sustained choline uptake activity at wildtype levels through posttranslational mechanisms (Ferguson et al. 2004). Recently, Barwick et al. (2012) reported heterozygous truncating point mutation in SLC5A7 identified in patients with autosomal dominant distal hereditary motor neuropathy VII (dHMN-VII, MIM 158580). Patients with dHMN-VII develop distal muscular atrophy and unilateral or bilateral vocal cord paralysis in the second decade of life and typically and do not present with neurodevelopmental abnormalities. Patients 4-7 are too young to manifest the dHMN-VII; however, the 38-year-old mother of patient 6, who is a carrier of the deletion encompassing SLC5A7 does not have any feature of dHMN-VII. Thus, it is possible that genomic deletions of SLC5A7 could contribute to the described neurodevelopmental phenotypes. In support of this notion, SLC18A3, that encodes vesicular acetylcholine transporter, and maps to the first intron of CHAT encoding choline acetyltransferase, was recently reported deleted in patients with various neurodevelopmental and neurobehavioral abnormalities (cis-genetics effect) (Stankiewicz et al. 2012). Interestingly, these clinical features are not dissimilar from those observed in patients with deletions involving the acetylocholine nicotinic receptor CHRNA7 in chromosome 15q13.3. In addition, three other SLC family genes, SLC9A9, SLC6A4, and SLC25A12, are well-established autism genes, and most recently, deletion of SLC16A7 has been described in a patient with mild DD/ID, autistic behavior, and speech delay (Wiśniowiecka-Kowalnik et al. 2012). The presence of SLC5A7 deletion in the patient 6’s healthy mother and in a DGV, suggests incomplete penetrance for this gene deletion. More cases are necessary for better phenotypic delineation of 2q12.3 deletion, but it is tempting to speculate that patients with SLC5A7 deficiency might benefit from high dose choline supplementation. 
An ~ 1.5 Mb deletion in 2q12.3q13 mediated by a 29.2 kb LCR with 97.53% sequence identity and containing the EDAR (Ectodysplasin A receptor) (Monreal et al. 1999) and RANBP2 genes has been detected in a patient 8 with skeletal anomalies. Heterozygous mutations in EDAR have been reported in patients with ectodermal dysplasia (MIM# 129490) and heterozygous mutations in RANBP2 (Ran-binding protein 2) have been reported in patients with necrotizing encephalopathy (MIM# 608033, Neilson et al. 2009). Interestingly, Griggs et al. (2009) described an ~ 11 Mb heterozygous deletion of EDAR and RANBP2 in a patient with features of ectodermal dysplasia with hypodontia, microcephaly, and cognitive impairment and an associated de novo balanced translocation t(1;6)(p22.1;p22.1) and a 2.5 Mb deletion 6q22.3 and concluded that the deletion of EDAR may be responsible for the observed features of ectodermal dysplasia. We found two patients in the ISCA database with a deletion similar to that in patient 8: patient nssv579951 had delayed puberty, facial dysmorphism, global DD, microcephaly, psoriasis, and short stature and patient nssv583228 had DD. In the SGL database, there are four patients with deletions in this region. Interestingly, one of them, patient 6 with polydactyly, harbored EDAR. Therefore, we suggest that rearrangements in 2q12.3q13 may result in skeletal anomalies. 
	An ~ 1.7 Mb deletion in 2q12.2q12.3 mediated by the DP-LCRs 18.4 kb in size of 98.98% DNA sequence identity was found in a patient with DD and dysmorphic features. This genomic region harbors the ST6GAL2 gene (ST6 Beta-galactosamide Alfa-2,6-sialyltransferase 2), previously associated with schizophrenia (Ikeda et al. 2010, Lehoux et al. 2010). In addition, three ISCA patients with similar deletions: nssv580154 (abnormality of the extremities, agenesis of corpus callosum, facial dysmorphism, and global DD), nssv580155 (DD and additional significant developmental and morphological phenotypes), and nssv580156 (global DD), all three had DD. The presence of this deletion in the reportedly healthy parents of patients 2 and 3 and in the control data set of 2,493 apparently healthy subjects from Itsara et al. (2009), suggests incomplete penetrance for ST6GAL2 deletion.

[bookmark: SECTION00010000000000000000]II.  DP-LCRs pairs 

[bookmark: SECTION00011000000000000000]Parameters 
The following parameters were used for identification of the DP-LCRs pairs:
- longer than 8 kb – here we relaxed the criteria used previously (Sharp et al. 2005, 2006, Liu et al. 2012), which allowed us to find regions on chromosome Xp22.31 and Xq28; the final threshold chosen meets the criteria of the vast majority of experimentally investigated rearrangements for known NAHR-mediated syndromes and strikes a balance between the number of analyzed DP-LCRs and the minimal length of LCR element (see also the Supplemental Fig. S11 for the analysis of the relationship between these two parameters). 
- mapping between 50 kb and 10 Mb from each other (including length of the smaller copy) – these parameters correspond to the lengths of the substrates used for known recurrent NAHR syndromes (Supplemental Table 2); we analyze only long CNVs that, due to disrupting substantial parts of genome, are likely to manifest  abnormal phenotypes
- not spanning centromeres – to avoid considering obviously lethal CNVs, 
- with fraction matching > 95% - this parameter was also used in the literature (Sharp et al. 2005, 2006, Liu et al. 2012).

Notably, some measures of the sequence identity calculation, e.g. fraction matching excluding indels, allow for significant discrepancies between the lengths of the paralogous LCR copies. However, the alternative measure of fraction matching with indels also has a weakness. For example, one of the NAHR regions, 7q22.1 described by Liu et al. (2012) is flanked by two DP-LCR copies: chr7:99,811,598-99,819,526 and chr7:99,938,536-99,951,975 with fraction matching 96.36% (fraction matching with indels equals to 95.94%); however, the first element is almost 8 kb in size whereas the second is greater than 13 kb, thus these elements are less similar than suggested by the fraction matching parameters. Other limitations to this bioinformatics approach include the unsequenced regions of the human genome, and personal inter-individual CNV and repetitive sequence information (e.g. LINE dimorphisms) (Lupski 2010; Beck et al. 2010; Huang et al. 2010b; Iskow et al. 2010; Ewing and Kazazian 2010), as well as structural variations within the LCR themselves (Carvalho and Lupski 2008) not captured in the current reference haploid build, that may contain DP-LCRs and therefore can be susceptible to NAHR events, e.g. the gaps in the 1q21.1 region (Brunetti-Pierri et al. 2008; Mefford et al. 2008; Dumas et al. 2012).

[bookmark: SECTION00012000000000000000]Comparison with Sharp et al. (2005, 2006) and Liu et al. (2012)
Ideogram in Supplemental Fig. S2 shows the comparison between three sets of NAHR-prone regions: 
· 190 NAHR-prone regions described in this manuscript 
· 89 regions from Liu et al. (2012): hg19, >10 kb in length, >95% in identity, directly oriented, with intervening sequence between 50 kb and 10 Mb, not spanning the centromere (coordinates by courtesy of Dr. Pengfei Liu) 
· 92 regions successfully lifted to hg19 from 130 regions identified by Sharp et al. (2005, 2006); original parameters: hg16, >=10 kb in length, >=95% sequence identity, separated by  50 kb-10 Mb sequence 
Due to similar parameters (we additionally excluded gene free regions) and the same genome build we observe the high overlap with 89 regions by Liu et al. (2012) (see also main manuscript). In contrast,  likely due to changes between LCR set in genome builds hg16 and hg19 (Li et al. 2012) we observe poor overlap between our set of DP-LCRs and the one by Sharp et al. (2005, 2006). To further investigate the differences we ran our algorithm for finding DP-LCRs on both hg16 and hg19 for the following parameters: 
· >95% fraction matching; 
· 8 kb; 
· between 50 kb and 10 Mb estimated NAHR length (distance between elements plus length of the smaller DP-LCR element).

For simplicity in the comparison we resigned from additional restrictions used in the manuscript, i.e. not spanning centromeres and intersecting with genes. We identified 672 such pairs of DP-LCRs on hg19 and 1,354 on hg16. These sets reveal different coverage of human genome (Supplemental Fig. S3). 
By analyzing 89 regions from Liu et al. (2012), we identified one region (chr7:99,811,598-99,951,975) that is not found in our dataset because its one LCR is slightly smaller than 8 kb.  In addition, we have identified eight novel regions non-overlapping the 89 regions: chr1:25,585,373-25,751,819, chr11:67,431,844-67,790,251, chr4:69,370,648-70,450,210, chr5:99,381,641-99,736,930, chr7:29,669,354-29,791,539, chr7:61,310,513-62,031,118, chrX:6,445,602-8,149,387, and chrX:153,444,157-155,270,560. However, only the chr1:25,585,373-25,751,819, chr7:61,310,513-62,031,118, and chrX:6,445,602-8,149,387 regions were also completely distinct from the regions (92 successfully lifted to hg19) described by Sharp et al. (2005, 2006). 
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Defining LCR clusters 
For creating clusters we used hierarchical clustering with single linkage as agglomeration method. Distance between two “LCR seeds” was calculated as follows: 
a) if both “LCR seeds”  belong to the same chromosome, then base pair distance between their closer ends was taken 
b) in other case maximal value (longer than the longest chromosome size) was set 

At the beginning we considered 7,453 seeds on 22 chromosomes (only chromosomes with DP-LCRs were considered, i.e. all chromosomes without chr18 and chr20). Then we built a cluster tree with seeds as leaves. As we wrote in the main text, this tree can be arbitrary cut on the level that depends on the accuracy that needs to be considered. It can be even locally pruned on different levels for different chromosomes of their regions. However, for the purpose of the manuscript, we have chosen the threshold (i.e. the height of the clustering tree) based on the following parameters (Supplemental Fig. S6): 
· region number; 
· minimal LCR seeds content in the cluster; 
· lower quartile of LCR seeds content in the cluster; 
· median value of LCR seeds content in the cluster. 

Finally, a threshold giving a total number of 3,000 clusters was chosen as for this value the investigated parameters seem to meet the “break-even point” (i.e. lower threshold will result in more clusters with smaller LCR content – especially visible for minimal LCR content). For each pair of DP-LCRs the flanking cluster was chosen, which gave 198 unique pairs of clusters (in 93 cases both DP-LCRs belonged to the same cluster, in remaining 105 regions there is a intervening sequence between clusters) defining, together with intervening sequence, NAHR-prone regions. 
It should be mentioned that this number may vary for different criteria used for the threshold choice. For example if we would like to have all regions with LCR seeds content over 40% we should choose threshold ~4,500, for at least half of clusters with LCR seeds content above 50% we should choose threshold ~2,000, etc. 
The selected threshold for number of clusters is automatically associated with height of dendrogram at which we may cut it to obtain clusters as leaves (in our case it is 168,229) (Supplemental Fig. S7 presents this for chromosome 22). 
	We then took a closer look at the LCR clusters which were obtained. We select only those which contained DP-LCRs (Supplemental Fig. S8). As a way to validate our clustering we identified five clusters of DP-LCRs mediating known pathogenic syndromes: four clusters associated with DiGeorge/VCFS syndrome McDermid et al. (2002), we will call them left, middle1, middle2, and right DG/VCFS: L-DG/VCFS, M1-DG/VCFS, M2-DG/VCFS and R-DG/VCFS (the first two are associated with small variant 1.4 Mb, first and third with small variant 2.1Mb, and first and fourth with  common variant). Another syndrome on this chromosome, 22q11.2 distal deletion, duplication Ben Shachar et al. (2008), uses two clusters: left is the same as R-DG/VCFS, while right will be called R-22q11.2. Finally, we obtain nine LCR clusters on chromosome 22, which gives 20 regions (four regions composed of single LCR cluster) (Supplemental Fig. S9). Of note, two manually defined clusters (M1-DG/VCFS, M2-DG/VCFS) fall into the same LCR cluster. As mentioned in the main manuscript, the hierarchical clustering in this region may be pruned at the lower level to obtain more detailed classification. 
Remarkably, the ‘internal’ architecture of the LCR clusters (subunit structure, orientation, etc.) as well as the DNA sequence homology between LCR clusters flanking NAHR-prone regions often revealed extensive complexity, in contradistinction to the concept of a ‘segmental duplication’ and more consistent with ‘complex LCR clusters’ and with current accepted models for generating duplications and complex genomic rearrangements (e.g. Fork Stalling and Template Switching, FoSTeS, Lee, et al. 2007; Microhomology-Mediated Break-Induced Replication, MMBIR, Hastings et al. 2009; Supplemental Fig. S1).

[bookmark: SECTION00030000000000000000]NAHR-prone regions 
In the Supplemental Fig. S10 we can observe subset of NAHR-prone regions on chromosome 16p13.2p12.2.  We can observe two NAHR-prone regions (red) with known pathogenic recurrent syndromes: 16p13.11 small deletion, duplication (id 61) and 16p13.11 large deletion, duplication (id 65). However, other (black) potentially NAHR-prone regions in this fragment of chr16 suggest that new syndromes may be revealed. We can observe different possible configurations of two overlapping syndromes: 
1. One region is a subset of another, but they share one LCR cluster (e.g. 16p13.11 small and large del, dup; ids 61 and 65) 
2. As above, but smaller region is just a single LCR cluster (regions with ids 62 and 61) 
3. One region is a subset of another and they do not share any LCR cluster (regions ids 69 and 66) 
4. Two regions overlap, but there is no inclusion between them (regions ids 65 and 66) 
5. Two regions are adjacent/they overlap, but the only common fragment is a LCR cluster (regions ids 61 and 66); compare also with point 2

If two overlapping NAHR-prone regions can be differed by the set of RegSeq genes (what is a common situation among examples listed above), they may be potentially associated e.g. with two syndromes or two variants of the same syndrome. The final classification should depend on the observed phenotypes, and could not be predicted without medical counseling. 

[bookmark: SECTION00040000000000000000]LCR features influencing NAHR rate
To analyze genomic features related to the frequency of de novo recurrent rearrangements, we selected a set of de novo deletions from our CMA database. For each deletion, we assigned at least one pair of flanking DP-LCRs (i.e. left and right breakpoints of deletion should be located within left and right paralogous copies, respectively). Subsequently, for each pair of DP-LCRs we counted the number of corresponding deletions, in order to estimate the frequency of NAHR events mediated by this segmental duplication. Then we used this data to test correlations between NAHR rate and various architectural features of DP-LCRs including: length of homology, distance between paralogous copies, fraction matching (percent of sequence identity) and GC content.
Due to the uncertainty of breakpoint locations (caused by limited resolution of CGH array design), for large fraction of rearrangements we assigned more than one pair of DP-LCRs. Of note, before testing correlations we filtered out five events with the largest uncertainty of ends locations (> 1.5 Mb). We believe that obtaining more accurate coordinates of breakpoints would significantly decrease the noise in our data and would strengthen the statistical significance of correlation results.
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Supplemental Table S1. 198 NAHR-prone regions.

Supplemental Table S2. Known NAHR-mediated CNVs on autosomes and chromosome X.

Supplemental Table S3. A set of 2,145 RefSeq genes (excluding chromosome Y) overlapping or between the DP-LCRs and therefore potentially disrupted by recurrent deletions and/or duplications with indicated subset of 232 genes that have been associated with phenotype in OMIM.

Supplemental Table S4. The frequencies of known recurrent NAHR syndromes in CMA database of 25,144 patients. Note, that for Charcot-Marie-Tooth disease type 1A (CMT1A, MIM# 118220)/Hereditary Neuropathy with Pressure Palsies; such adult onset (CMT1A) and reduced penetrant (HNPP) traits may be underrepresented in our clinical population that consist of mostly a pediatric cohort.

Supplemental Table S5. Known NAHR sites plus two new cases in chromosome 2q12.2q13.
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Supplemental Table S6. Deletion CNVs in chromosome 2q12.2q13 detected in patients 1-8 and flanking LCRs in chromosome. 

	Pt
	CMA
	LCR 
cluster
	CNV
(ST6GAL2)
	LCR 
cluster
	CNV
(SLC5A7)
	LCR 
cluster
	CNV
(EDAR, RANBP2)
	LCR 
cluster
	Other findings

	
	
	106,832,289-107,131,493
(299 kb)
	2q12.2q12.3

(1.7 Mb)
	108,442,330-108,540,538
(98 kb)
	2q12.3

(0.6 Mb)
	109,109,757-109,388,194
(278 kb)
	2q12.3q13

(1.2 Mb)
	110,488,974-110,852,754
(360 kb)
	

	1
	BCM
V8.1
	
	106,950,767-108,439,209
	
	
	
	
	
	

	2*
	BCM
V8.1
	
	106,950,767-108,439,209
	
	
	
	
	
	dup 4q31.3 (151,673,450-152,069,395)mat

	3*
	Illumina
300K
	
	106,886,935-108,438,922
	
	
	
	
	
	

	4
	BCM
V8.1.1
	
	
	
	108,543,583-109,106,402
	
	
	
	

	5
	BCM
V8.2
	
	
	
	108,604,734-109,106,402
	
	
	
	dup 16p12.1 (21,950,080-22,430,193)dn

	6
	SGL V3.1
	
	
	
	
107,910,568-109,818,870 (hg18)
	
	del 7q11.21 (chr7:62,512,111-64,942,418)
	

	7
	BCM
V9.1.1
	
	
	
	108,602,886-110,463,099
	
	47,XXY
	

	8
	
	
	
	
	
	
	109,223,338-110,463,099
	
	



*The same deletion was also detected in patients 2 and 3’s reportedly healthy father and mother, respectively.
The 2q12.2q12.3 deletion is flanked by DP-LCRs 18.4 kb in size with 98.98% DNA sequence identity.
The 2q12.3.Mb deletion is flanked by 25.1 kb DP-LCRs with 97.62% sequence identity.
The ~ 1.2 Mb deletion in 2q12.3q13 is flanked by 29.2 kb DP-LCRs with 97.53% sequence identity.
The ~ 1.9 Mb deletions in 2q12.3q13 is flanked by 72.1 kb DP-LCRs of 98.33% sequence identity.



Supplemental Table S7. PCR primers used to amplify and sequence 2q deletion breakpoints.
Deletion region

Forward primer
Reverse primer
Sequencing primers
Amplicon size
2q12.3q13
2q12.3q13F4: 5’ATTTTCTTTCTGAGCTGGAGAACTGGCTTT3’
2q12.3q13 Rzewn: 5’CAGCTGAATGGAACTTACCTTCTGTACCTAAT3’
2qF21:
5’AGTGGATGAGGGAAAGTTCTTTAGAGGTAAGA3’
14 kb
2q12.1q12.3
2q12.1q12.3 F8: 5’AAAGCAGGTTCTGAAGTTCACTCTTGATTGC3’
2q12.1q12.3 Rzewn: 5’GGGGAGTCTATATCAAGAGTATCCTCCCATTT3’
2qF33:
5’AGGTGGGCTACGATTTCTACTTCTTTTATCAC3’

2qF34:
5’TACCATTGTGGTTAGAGAGGATACTTTGTGTG3’
9 kb




Supplemental Table S8 Novel NAHR-prone potentially pathogenic CNV.
Supplemental Table S9. Seventy six cases with two NAHR-flanked CNVs: 75 cases of two known recurrent CNVs and one case of 2q13 NPHP1 deletion and atypical DGS/VCFS deletion. 

Supplemental Fig. S1. Miropeats showing the complexity and homology of LCR clusters flanking the 190 NAHR-prone regions. 
[image: ]
Supplemental Fig. S2. Chromosome ideogram with the previously defined sets of 130 NAHR hotspot regions (Sharp et al. 2005, 2006) (orange) and 89 regions (Liu et al., 2012) (light blue) together with our newly defined 190 NAHR-prone regions (burnt orange). We additionally marked the known pathogenic NAHR-mediated syndromes (purple) and novel syndromes in 2q12.2q13 described in this manuscript (red). Note these three regions are adjacent, and thus are collapsed into one.
[image: ]
Supplemental Fig. S3. Sizes of chromosome coverage by (A) DP-LCRs greater than 8 kb in size of 95% sequence identity and mapping 50 kb - 10 Mb apart from each other in hg16 (violet) and hg19 (orange). (B) NAHR-prone regions flanked by DP-LCRs, representing potential genome instability in hg16 (red) and hg19 (black). In both cases DP-LCRs are greater than 8 kb in size of 95% sequence identity and mapping 50 kb - 10 Mb apart from each other. For simplicity, in the comparison we resigned from additional restrictions used in the manuscript, i.e. not spanning centromeres and intersecting with genes. Note the difference on both panels between two versions of human genome builds.
[image: ]
Supplemental Fig. S4. Average distribution of recombination hot spot motif 5’-CCNCCNTNNCCNC-3’ (red line) and other (randomly selected) 13-mer motifs (blue lines) in the 10 kb neighborhood of 64 known NAHR site regions (Supplemental Table S5).



A
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Supplemental Fig. S5. NAHR site microhomologies in chromosome regions (A) 2q12.3q13 and (B) 2q12.2q12.3.
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Supplemental Fig. S6. Multiple parameters characterizing LCR clusters as function of different LCR clusters number. Among parameters, we analyzed statistics of LCR content (total percentage of LCR clusters covered by LCR “seeds”, i.e. LCRs itself or unsequenced gaps), and number of NAHR-prone regions. We clearly see how the arbitral choice of cluster number (resulted from pruning hierarchical cluster tree at given length) result in given number of NAHR-prone regions. In pink there is a selected cluster number (3000), yielding 190 NAHR-prone regions. 
[image: ]
Supplemental Fig. S7. Hierarchical LCR clustering on chromosome 22. We colored 51 LCR clusters obtained by cutting the dendrogram at height 168,229.

[image: ]
Supplemental Fig. S8. Nine LCR clusters that contain DP-LCRs on chromosome 22. In black-green scale, we show coordinates of start and end of seeds. In addition, we show also five manually selected LCR clusters associated with known pathogenic syndromes (DGS/VCFS and 22q11.2 distal deletion/duplication).
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Supplemental Fig. S9. Twenty DP-LCRs-flanked NAHR-prone regions (four of them composed of single LCR cluster) on chromosome 22. In red there are marked three known pathogenic syndromes: DGS/VCFS (small and common) and 22q11.2 distal deletion/duplication.
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Supplemental Fig. S10. Different configurations of DP-LCRs-flanked NAHR-prone regions on chromosome 16p12.2p13.2. In red there are marked regions associated with known pathogenic syndromes: 16p13.11 deletion/duplication syndromes, small, 16p13.11 deletion/duplication syndromes, large, 16p11.2p12.2 deletion syndrome (7.1 Mb to 8.7 Mb), and 16p12.1 deletion syndrome (520 kb). 
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Supplemental Fig. S11. Number of DP-LCRs pairs in relationship with the minimal length of the LCR element.
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