
SUPPLEMENTARY METHODS 

Yeast Microarray Normalization and Quantification 

Normalization of the raw spot intensities was performed using Linear Models for 

Microarray Data, LIMMA (Smyth & Speed, 2003). Three different array platforms 

were used in this study. Samples were imported in three batches according to 

their array platform.  For each batch, background correction was performed using 

the LIMMA function backgroundCorrect with the method type normexp and an 

offset of 50.  Print-tip loess normalization was performed using the LIMMA 

function normalizeWithinArrays.  After print-tip correction, all batches were 

merged into a single MAList object, and treated in a platform independent 

manner. For each array, M and A values for duplicate probes were averaged.  

Individual mutants were hybridized against one of three wild type RNA samples 

(2 from BY4741 and 1 from S288C). Each mutant had a minimum of two 

biological replicates, although the replicates were often hybridized against 

different wild type samples.  We handle this differently than (Reimand, 

Vaquerizas, Todd, Vilo, & Luscombe, 2010) by constructing a linear model which 

relates all mutants to one of the BY4741 samples using the LIMMA functions 

modelMatrix and lmFit.  The coefficients returned by lmFit, which correspond to 

the log-ratio of each gene’s expression in each mutant relative to the BY4741 

wild type, were saved as the table of gene expression used by all subsequent 

network inference analyses. Differential expression of each deletion strain was 

assessed relative to the wild type strain (BY4741) using an empirical Bayesian 

moderated t-test (Smyth, 2004) implemented with the LIMMA function eBayes, 



which yielded p-values (corrected for multiple testing) and log-odds statistics for 

differential expression. 

 

Characterizing Direct and Functional Regulation in S. cerevisiae 

To identify regulated genes in S. cerevisiae, microarray data from studies in 

which transcription factors were either disrupted (Hu, Killion, & Iyer, 2007) or 

overexpressed (Chua et al., 2006) were normalized as described above.  

Differential expression was assessed for each TF mutant relative to wild type. A 

total of 6,258 genes (97.5% of all yeast genes) were significantly differentially 

expressed (corrected p-val < 0.05) in one or more TF mutants.  Genes that were 

both differentially expressed in response to a TF perturbation and bound by the 

TF in curated ChIP studies were considered direct and functional targets of the 

TF.  6,078 direct and functional interactions were identified between 152 TFs and 

2,850 genes (45% of all yeast genes). 

 

Yeast Network Inference 

TF network inference was performed on the yeast microarray data set described 

above using three algorithms: Inferelator, GENIE3, and NetProphet.  We used 

the same Inferelator pipeline (CLR + Inferelator +MCZ ) that was applied to the 

DREAM4 data to infer the yeast transcriptional network. This pipeline was 

modified to restrict the set of allowed regulators to be transcription factors.  

Because the data do not include time courses, regular CLR was used instead of 

mixed CLR.  For GENIE3 and Inferelator, the table of expression data for all 



mutants was moved out of log2-space by exponentiation. Each gene’s expression 

was then normalized (divided by its maximum over all measurements). This 

treatment conforms to the DREAM4 data standards on which Inferelator and 

GENIE3 were originally tested.  For NetProphet, the values were left as log 

ratios, which were scaled in such a way that genes with low variance would be 

given less priority but genes with exceptionally high variance would not dominate 

the LASSO solution. The maximum scaling factor λ was computed from the 

distribution of gene-wise standard deviations in the unnormalized data:  

 

 

 

where Yj is the set of log2 fold changes for gene j over all measurements, N is the 

number of measurements; σ(X) and µ(X) are functions that map a set of real 

values to the population estimated standard deviation and mean respectively. 

Each gene j’s log ratios were scaled (multiplied) by either λ or , 

whichever was smaller.  

 

To learn evidence weights for NetProphet, we estimated optimal region weights 

using five rounds of two-fold cross validation, partitioning the training data 

(interactions labeled as true or false by ChIP evidence) by regulator, and an 

additional five rounds of two-fold cross validation partitioning the training data by 

target.  The region weights ω were allowed to take on the following values: [1e-3, 

1e-2, 1e-1, 1, 2, 3]. The offset coefficients cb and cp were allowed to take on the 



values: [1e-2, 1e-1, 1]. Weights and offsets were selected so as to maximize the 

average AU-PRC (area under the precision recall curve) over all rounds of cross 

validation.  The weights selected by cross-validation were: ωI = 3, ωII = 1, ωIII = 

1, ωIV = 1, ωB = 2, ωD = 2; and the offset coefficients were cb = 0.1 and cd = 0.01. 

 

Assessing gene expression with Quantigene 

After cell lysis, gene expression was assessed using the QuantiGene 2.0 Plex 

Assay kit.  Samples were prepared according to kit manufacturer’s instructions.  

In brief, using an Affymetrix hybridization plate, 60µl of working bead mix and 

40µl of lysed sample were added. The plate was incubated in a VorTemp 56 

shaking incubator (Labnet International) at 54°C at 600rpm overnight. 

Afterwards, samples were transferred to a Magnetic Separation Plate 

(Affymetrix). The plate was placed on a Hand-Held Magnetic Plate Washer 

(Affymetrix), the beads were allowed to settle, and the working bead mix was 

removed. The plate was washed with Wash Buffer (Affymetrix) three times. Pre-

Amplifier (Affymetrix) was added and allowed to bind to the sample. The plate 

was incubated at 50°C for 1hr and washed as before. The Label Probe 

(Affymetrix) was added to the beads, incubated, and washed as before. Then 

SAPE Working Reagent (Affymetrix) was added and samples were incubated at 

room temperature for 30 minutes. The plate was washed with SAPE Wash Buffer 

three times and then the beads were re-suspended in 130µl SAPE Wash Buffer. 

Finally, the plate was read on a Luminex instrument with the following 

specifications: Sample size 100µl, DD Gates 5000-25000, Bead Event/Bead 



Region 100. 

 

Analysis of DREAM4 expression data 

Inference of the DREAM4 networks was performed using our method, 

NetProphet, and publicly available versions of Inferelator 

(http://err.bio.nyu.edu/inferelator/) and GENIE3 

(http://www.montefiore.ulg.ac.be/~huynh-thu/software.html).  Datasets for the 

DREAM4 in-silico 100 networks were obtained from 

http://wiki.c2b2.columbia.edu/dream/index.php/D4c2. These datasets covered 5 

networks each containing 100 genes.  The individual datasets for each network 

contained single measurements for wild type, all single knockouts, all single 

knockdowns (50% expression) and 10 time courses (each with 21 time points), 

for a total of 411 measurements.  All expression data is provided in a normalized 

format such that each gene’s expression lies on the interval [0,1].  We applied 

Inferelator to this dataset as described, using the CLR + Inferelator + MCZ 

pipeline .  Similarly for GENIE3 we inferred the network structure using the 

GENIE3 functions: read.expr.matrix and get.weight.matrix and their default 

parameterizations.  

 

To properly handle the time course data, a spline was fit to the expression values 

for each gene.  For each time point the derivative of the spline was used to 

estimate the rate of change for each gene, and the transcription rate of each 

gene was estimated by adding the gene’s concentration to the rate of change at 



each time point (assuming a unit degradation rate constant).  These estimated 

transcription rates were used instead of the expression measurements as the 

response matrix, Y, for LASSO regression.  Note that a mixture of steady state 

and time course measurements in the response matrix is compatible under this 

formulation, because steady state concentrations are equal to transcription rates 

assuming a unit degradation rate constant.  In addition to modifying the response 

variable to allow for a mixing of steady state and time course data, the covariate 

matrix, X, is also modified.  Gene expression measurements for time course 

measurements in the covariate matrix are replaced with protein concentration 

estimates for each time point (which are effectively lagged expression 

measurements).  We estimated a gene’s protein concentrations using the spline 

fit to mRNA measurements, and integrated an ODE which defines a protein's rate 

of change as a function of the mRNA concentration, minus the protein 

concentration times a degradation rate constant.  The degradation rate constant 

which we set to 0.01 for all genes defines the lag between the mRNA and protein 

species to be roughly one time point. Finally, a log2 transformation was 

performed on both the response matrix Y and covariate matrix X before applying 

LASSO regression. 

 

Differential expression analysis of the knockout measurements was used to 

compute the DE rank scores Dij.  LIMMA was used to compute these scores by 

comparing each knockout (which consisted of a single measurement) to 11 

measurements of wild type (one for each time 0 point of the 10 time courses, 



which was a steady state wild type measurement, and one which was provided 

separate of the time courses). 

 

Investigation of the effects of having smaller datasets 

To investigate the effects of data set size, we carried out a number of 

experiments in which we ran NetProphet 4 times, each using a different set of TF 

deletion profiles (Hu, et al., 2007), and extracted the NetProphet scores of 25% 

of the TFs from each run. These scores were then combined, predictions were 

ranked according to score, and evaluation was carried out as before using the 

curated PWMs from the UNIPROBE database (Gordan et al., 2011; Robasky & 

Bulyk, 2011). To investigate the effects of data set size on targets of TFs for 

which no deletion profile was available, we ran NetProphet on subsamples 

consisting of 25% (66-67), 50% (135), or 75% (202-203) of the TF deletion 

profiles. For each data set size, NetProphet was run 4 times and scores for 25% 

of TFs whose deletion profiles were not included in the run were extracted, 

combined, and evaluated. To investigate the effects of data set size on targets of 

TFs for which a deletion profile was available, we carried out the same procedure 

but extracted the scores of 25% of TFs whose deletion profiles were included in 

the run. 
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