SUPPLEMENTARY METHODS

Yeast Microarray Normalization and Quantification

Normalization of the raw spot intensities was performed using Linear Models for
Microarray Data, LIMMA (Smyth & Speed, 2003). Three different array platforms
were used in this study. Samples were imported in three batches according to
their array platform. For each batch, background correction was performed using
the LIMMA function backgroundCorrect with the method type normexp and an
offset of 50. Print-tip loess normalization was performed using the LIMMA
function normalizeWithinArrays. After print-tip correction, all batches were
merged into a single MAList object, and treated in a platform independent
manner. For each array, M and A values for duplicate probes were averaged.
Individual mutants were hybridized against one of three wild type RNA samples
(2 from BY4741 and 1 from S288C). Each mutant had a minimum of two
biological replicates, although the replicates were often hybridized against
different wild type samples. We handle this differently than (Reimand,
Vaquerizas, Todd, Vilo, & Luscombe, 2010) by constructing a linear model which
relates all mutants to one of the BY4741 samples using the LIMMA functions
modelMatrix and ImFit. The coefficients returned by ImFit, which correspond to
the log-ratio of each gene’s expression in each mutant relative to the BY4741
wild type, were saved as the table of gene expression used by all subsequent
network inference analyses. Differential expression of each deletion strain was
assessed relative to the wild type strain (BY4741) using an empirical Bayesian

moderated t-test (Smyth, 2004) implemented with the LIMMA function eBayes,



which yielded p-values (corrected for multiple testing) and log-odds statistics for

differential expression.

Characterizing Direct and Functional Regulation in S. cerevisiae

To identify regulated genes in S. cerevisiae, microarray data from studies in
which transcription factors were either disrupted (Hu, Killion, & lyer, 2007) or
overexpressed (Chua et al., 2006) were normalized as described above.
Differential expression was assessed for each TF mutant relative to wild type. A
total of 6,258 genes (97.5% of all yeast genes) were significantly differentially
expressed (corrected p-val < 0.05) in one or more TF mutants. Genes that were
both differentially expressed in response to a TF perturbation and bound by the
TF in curated ChIP studies were considered direct and functional targets of the
TF. 6,078 direct and functional interactions were identified between 152 TFs and

2,850 genes (45% of all yeast genes).

Yeast Network Inference

TF network inference was performed on the yeast microarray data set described
above using three algorithms: Inferelator, GENIE3, and NetProphet. We used
the same Inferelator pipeline (CLR + Inferelator +MCZ ) that was applied to the
DREAM4 data to infer the yeast transcriptional network. This pipeline was
modified to restrict the set of allowed regulators to be transcription factors.
Because the data do not include time courses, regular CLR was used instead of

mixed CLR. For GENIE3 and Inferelator, the table of expression data for all



mutants was moved out of logs-space by exponentiation. Each gene’s expression
was then normalized (divided by its maximum over all measurements). This
treatment conforms to the DREAM4 data standards on which Inferelator and
GENIE3 were originally tested. For NetProphet, the values were left as log
ratios, which were scaled in such a way that genes with low variance would be
given less priority but genes with exceptionally high variance would not dominate
the LASSO solution. The maximum scaling factor A was computed from the

distribution of gene-wise standard deviations in the unnormalized data:
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where Y; is the set of log, fold changes for gene j over all measurements, N is the
number of measurements; o(X) and p(X) are functions that map a set of real

values to the population estimated standard deviation and mean respectively.

Each gene j's log ratios were scaled (multiplied) by either A or v Y, jo_l,

whichever was smaller.

To learn evidence weights for NetProphet, we estimated optimal region weights
using five rounds of two-fold cross validation, partitioning the training data
(interactions labeled as true or false by ChlP evidence) by regulator, and an
additional five rounds of two-fold cross validation partitioning the training data by
target. The region weights w were allowed to take on the following values: [1e-3,

1e-2, 1e-1, 1, 2, 3]. The offset coefficients c, and ¢, were allowed to take on the



values: [1e-2, 1e-1, 1]. Weights and offsets were selected so as to maximize the
average AU-PRC (area under the precision recall curve) over all rounds of cross
validation. The weights selected by cross-validation were: w; =3, w; =1, wy =

1, wy =1, weg =2, wp = 2; and the offset coefficients were ¢, = 0.1 and c4= 0.01.

Assessing gene expression with Quantigene

After cell lysis, gene expression was assessed using the QuantiGene 2.0 Plex
Assay kit. Samples were prepared according to kit manufacturer’s instructions.
In brief, using an Affymetrix hybridization plate, 60ul of working bead mix and
40ul of lysed sample were added. The plate was incubated in a VorTemp 56
shaking incubator (Labnet International) at 54°C at 600rpm overnight.
Afterwards, samples were transferred to a Magnetic Separation Plate
(Affymetrix). The plate was placed on a Hand-Held Magnetic Plate Washer
(Affymetrix), the beads were allowed to settle, and the working bead mix was
removed. The plate was washed with Wash Buffer (Affymetrix) three times. Pre-
Amplifier (Affymetrix) was added and allowed to bind to the sample. The plate
was incubated at 50°C for 1hr and washed as before. The Label Probe
(Affymetrix) was added to the beads, incubated, and washed as before. Then
SAPE Working Reagent (Affymetrix) was added and samples were incubated at
room temperature for 30 minutes. The plate was washed with SAPE Wash Buffer
three times and then the beads were re-suspended in 130ul SAPE Wash Buffer.
Finally, the plate was read on a Luminex instrument with the following

specifications: Sample size 100ul, DD Gates 5000-25000, Bead Event/Bead



Region 100.

Analysis of DREAM4 expression data

Inference of the DREAM4 networks was performed using our method,
NetProphet, and publicly available versions of Inferelator

(http://err.bio.nyu.edu/inferelator/) and GENIE3

(http://www.montefiore.ulg.ac.be/~huynh-thu/software.html). Datasets for the

DREAM4 in-silico 100 networks were obtained from

http://wiki.c2b2.columbia.edu/dream/index.php/D4c2. These datasets covered 5

networks each containing 100 genes. The individual datasets for each network
contained single measurements for wild type, all single knockouts, all single
knockdowns (50% expression) and 10 time courses (each with 21 time points),
for a total of 411 measurements. All expression data is provided in a normalized
format such that each gene’s expression lies on the interval [0,1]. We applied
Inferelator to this dataset as described, using the CLR + Inferelator + MCZ
pipeline . Similarly for GENIE3 we inferred the network structure using the
GENIES functions: read.expr.matrix and get.weight.matrix and their default

parameterizations.

To properly handle the time course data, a spline was fit to the expression values
for each gene. For each time point the derivative of the spline was used to
estimate the rate of change for each gene, and the transcription rate of each

gene was estimated by adding the gene’s concentration to the rate of change at



each time point (assuming a unit degradation rate constant). These estimated
transcription rates were used instead of the expression measurements as the
response matrix, Y, for LASSO regression. Note that a mixture of steady state
and time course measurements in the response matrix is compatible under this
formulation, because steady state concentrations are equal to transcription rates
assuming a unit degradation rate constant. In addition to modifying the response
variable to allow for a mixing of steady state and time course data, the covariate
matrix, X, is also modified. Gene expression measurements for time course
measurements in the covariate matrix are replaced with protein concentration
estimates for each time point (which are effectively lagged expression
measurements). We estimated a gene’s protein concentrations using the spline
fit to MRNA measurements, and integrated an ODE which defines a protein's rate
of change as a function of the mRNA concentration, minus the protein
concentration times a degradation rate constant. The degradation rate constant
which we set to 0.01 for all genes defines the lag between the mRNA and protein
species to be roughly one time point. Finally, a log, transformation was
performed on both the response matrix Y and covariate matrix X before applying

LASSO regression.

Differential expression analysis of the knockout measurements was used to
compute the DE rank scores D;. LIMMA was used to compute these scores by
comparing each knockout (which consisted of a single measurement) to 11

measurements of wild type (one for each time 0 point of the 10 time courses,



which was a steady state wild type measurement, and one which was provided

separate of the time courses).

Investigation of the effects of having smaller datasets

To investigate the effects of data set size, we carried out a number of
experiments in which we ran NetProphet 4 times, each using a different set of TF
deletion profiles (Hu, et al., 2007), and extracted the NetProphet scores of 25%
of the TFs from each run. These scores were then combined, predictions were
ranked according to score, and evaluation was carried out as before using the
curated PWMs from the UNIPROBE database (Gordan et al., 2011; Robasky &
Bulyk, 2011). To investigate the effects of data set size on targets of TFs for
which no deletion profile was available, we ran NetProphet on subsamples
consisting of 25% (66-67), 50% (135), or 75% (202-203) of the TF deletion
profiles. For each data set size, NetProphet was run 4 times and scores for 25%
of TFs whose deletion profiles were not included in the run were extracted,
combined, and evaluated. To investigate the effects of data set size on targets of
TFs for which a deletion profile was available, we carried out the same procedure
but extracted the scores of 25% of TFs whose deletion profiles were included in

the run.
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