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Figure S1. Promoter variants and expression levels. Shown are the promoter variants
used in this study and the median YFP expression of each variant, as measured by flow
cytometry. Note the increase in expression with both the lengthening of poly(dA:dT) tracts
(upper two promoter sets) and the strengthening of transcription factor binding sites (four
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Figure S2. Higher affinity binding sites result in lower promoter dynamics. Shown
is the average autocorrelation of normalized YFP production rates across thousands of
different cell traces for each of three different promoter variants that differ only in the
affinity of the Gal4 site. Bars denote standard errors.
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Figure S3. Increasing the affinity of a transcription factor binding site results in a
lower rate of transitions between high and low expressing states. Same as Figure
3B and Figure 3D, but for three promoter variants with differing affinities for the Gal4
binding site. The bar graph shows the fraction of cell cycle traces of each variant in
which the number of transitions between high and low expressing states was at most 2
(slow transitions, left bar graph) or at least 5 (fast transitions, right bar graph). The
comparison of these different promoter variants was done at a threshold in which the
fraction of all low expressing states in each variant was 70% (since absolute expression
levels vary across variants, the absolute threshold value is different for each variant).
The left heatmap shows a visual illustration of the cell cycle traces from the bar graphs
where for each promoter variant, shown are 200 rows that each correspond to a time
trace of one cell cycle of one cell with colored entries representing high (red) or low
expressing states (green) at a threshold in which 70% of all states were low expressing.
Rows are sorted according to the number of transitions between high and low
expressing states, and the 200 rows were sampled from all cell cycle traces such that
they accurately represent the same probability distribution of number of transitions
across all cell cycle traces.
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Figure S4. Lengthening poly(dA:dT) tracts and strengthening transcription factor
binding sites have opposing effects on the rate of promoter transitions between
high and low expressing states. For every promoter variant, we extract each cell cycle
of every one of its cells, and classify for each cell cycle the trace of normalized YFP
production rate into high and low expressing states according to whether they are above
or below a predefined arbitrary threshold, respectively. From these numbers, we can
then compute the probability of transitioning between high and low expressing states for
every variant. For promoter variants that differ in the length of a poly(dA:dT) tract, the left
graph shows the probability of transitioning between high and low expressing states (y-
axis) across a broad range of thresholds (x-axis) on the fraction of all low expressing
states in every promoter variant. The right graph shows the same computation but for
three promoter variants that differ in the affinity of a Gen4 binding site. Note that across
the broad range of thresholds examined, lengthening a poly(dA:dT) tract (left graph)
results in a higher rate of transitioning between states, whereas strengthening a
transcription factor binding site (right graph) results in a lower transition rate.
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Figure S5. The static distribution of YFP fluorescence accurately fits a Gamma
distribution Promoter activity histograms measured by flow cytometry for two
representative variants and their relative fits to several distributions: gamma, lognormal
and Gaussian. For all promoter variants, the Gamma distribution best fit the data and
thus justify the calculations of promoter dynamics.



Supplemental Experimental Procedures

Image acquisition

To ensure monolayer growth of cells and to keep a stable focal plane, cells were imaged
in a yeast microfluidic plate (CellASIC). This plate enables constant flow of media
throughout the experiment and thus provides “chemostst-like” growth. Images were
acquired by a fully automated inverted fluorescence microscope. Raw images were

segmented and objects were tracked to yield a single track of fluorescence intensity over
time (Fig. S6).

Microfluidic Time-lapse

Segmented # Data tracks # Lineage
platform MiCroscopy
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Figure S6. Image analysis pipeline.

Image analysis pipeline

In order to obtain high quality data on the cells imaged in the microscopy system, the
images were analyzed in a modular framework (Fig. S7), with six modules that deal with
image corrections, cell segmentation and tracking of the cells , segmentation and
tracking post processing , analysis of the cell lineage, masking and filtering the
data, and dilution correction and production rates. The main components of the
module framework are the flat field correction module which first deals with removing
image artifacts, followed by the background correction module that removes cell
fluorescence that did not originate from the respective cell. The cells are then
segmented and tracked using a modified version of CellProfiler(Carpenter et al. 2006) .
Problems in the segmentation and tracking and several other issues in the image area
are then corrected using the post processing modules. The Cell Lineage module is
used to obtain cell lineage assignments for each cell born. The Masking and filtering
module is used to filter problematic or low quality cell data tracks. Finally, the dilution
correction and production rates module is used to create tracks corrected for dilution

effects, and produce production rates from those tracks.
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Figure S7. Modules used in the image analysis pipeline.

1. Image Corrections

1.1 Flat field correction: A flat field correction map is calculated to account for the
observed non-uniformity of the images. A set of images was acquired at the beginning of
each experiment from a field of view devoid of cells that contains only a homogenous
medium (SCD). These images were taken with increasing exposure times of: 0, 10, 50,
100, 200, 400, 800, 1200, 1600, and 2000 milliseconds. Usually, 6 fields of view repeats
were done, in which the intensities at these exposure times were measured. A linear
regression over the exposure times and their respective pixel intensities was calculated
for each pixel, in order to obtain the pixel's gain (the linear regression slope - amount of
signal given by the detector as a function of the amount of light) and offset (y axis
intersection, auto florescence of medium). This resulted in correction maps: one
specifying the gain correction over an entire image and one specifying the offset
correction over an entire image. The gain and offset correction maps were then
smoothed using a Gaussian filter with a 32 and 16 filter size, respectively, in order to
remove noise effects in the flat field images. Finally, a normalized gain map was
calculated by dividing the gain map by the average gain over all pixels. Each image in
the experiment was then corrected by subtracting the offset of each pixel and dividing by

the gain. Any pixel values that were reduced below zero were set to zero.

1.2. Background Correction: After flat field correction, we corrected the images for
fluorescence background resulting from auto-fluorescence of both medium and
surrounding cells. To remove this fluorescence without removing fluorescence intrinsic to
the cell, the fluorescence intensities in proximity to cells were measured and subtracted
from the cells. In order to subtract the background, each field corrected image was
roughly and widely segmented according to the mCherry to obtain a cell mask (using
CellProfiler) with a wide margin around the cells (Fig. S8). A subtraction mask was
created by dividing each image (mCherry and YFP separately) into 32 by 32 pixels
blocks. For blocks with very few cell pixels (at least 85% of the pixels within it occupied
by background pixels, pixels not inside the identified cell mask) the median value of the
background pixels was assigned as the value of the subtraction mask block. For the rest

of the blocks (blocks containing mostly cells), the background was computed according
9



to the mean of the computed blocks surrounding it. In every case, the next block to be
computed was chosen as that with the most computed blocks surrounding it. Thus,
blocks containing mostly cells were assigned subtraction values composed of the
subtraction values of blocks close to them, since such blocks contain very few
background pixels that cannot be extracted reliably. Finally, in order to create a smooth
subtraction, the subtraction mask was smoothed using a Gaussian filter of size 32. The
subtraction mask was then subtracted from the original image. Any pixel values that
were reduced below zero were set to zero. Notably, the background fluorescence

intensity represents a rather small fraction (~2%) of the cells' fluorescence intensity.
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Figure S8. Background fluorescence subtraction. To remove background
fluorescence, we used the mCherry flat field corrected images (a) and roughly and
widely segmented to create a cell mask (b). Images were divided into blocks,
calculating median background fluorescence in blocks that contain little (less than
15%) cell fluorescence (c¢) and obtaining subtraction values of cell blocks from the
values of blocks surrounding them (these subtraction masks were then smoothed)
(d). The images were subtracted according to the subtraction masks resulting in
background corrected images (e).
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1.3. Bleaching correction: A photobleaching curve was acquired to model the effects of
light exposure on the fluorescence trajectories. To obtain a photobleaching curve, a field
of view of cells expressing YFP and mCherry were subjected to constant exposure of
fluorescent light. Resolution of image acquisition was 1.5 second. The mean
fluorescence over a region of interest was plotted against time and this data was fitted to
an exponential function to obtain the decay rate, y,, for YFP and mCherry, separately,
according to Cookson et al(Cookson et al. 2005). We obtained a negligible correction
term, of less than 0.015% for YFP and 0.02% for mCherry (the decay rate y, equals
0.0015 for YFP and equals 0.002 for mCherry). Therefore, photobleaching correction

was not applied to the data.

2. Cell Segmentation and tracking

Image analysis was performed using a modified version of the CellProfiler software,
which provides high quality image segmentation and tracking capabilities. Cells were
segmented using CellProfiler's automatic adaptive thresholding of the mCherry
fluorescent signal, followed by CellProfiler's watershed algorithm to separate clumped
cells. Background corrected mCherry fluorescent signal was used for segmentation, as
this fluorophore is driven by the same promoter in all of our strains. Modifications to
CellProfiler include the handling of misshapen cells (usually as a result of segmenting
two cells as a single cell) by iteratively increasing the strength of the mCherry threshold
and watersheding attempts on the result. Other modifications were used to reduce
computer memory usage. A fixed set of segmentation parameters for all experiments
were empirically chosen. Following segmentation, the tracking of cells in CellProfiler was
performed by pixel overlap of cells across time. The measured parameters for each cell
in every time point were: mean, median and total fluorescence intensity (both for
mCherry and YFP), pixel area, cell eccentricity (defined as the ratio of the distance
between the foci of the ellipse, with the same second moments of the cell, and the

ellipse's major axis length), and x and y centroid locations.

3. Segmentation and tracking post processing
We developed further processing steps to overcome problems that remained with the
tracking and segmentation process above. The major modules of the post-processing in

their order of operation are:
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Trim invasions module — used to remove data tracks of cells invading from
outside the current field of view, as well as to remove data tracks of cells affected
by such invasions. This module also filters cells that are improperly tracked.

Split module — merges cells that are incorrectly split into two cells in the
segmentation process, mainly due to vacuoles. An example for a split correction
is seen in Figure S9.

Merging module — corrects data tracks of two cells that incorrectly merge for a
short time into a single cell.

Interpolate intensity drops module - identifies outlier fluorescent intensity
values and interpolates them using intensities from neighboring time frames.
Tracking errors correction module — disconnects cell tracks that are incorrectly
merged together in time in the tracking process (or incorrectly merged in the
gapping module in the second run of the module).

Clean outliers module — cleans outliers in data tracks due to segmentation
errors based on cell area data tracks.

Gapping module — connects data tracks of two cells which are actually a single
cell with incorrect tracking.

Filtration modules — several modules that filter problematic data tracks.

Remove cells with no neighbors: cells that appeared in some time frame without

any neighboring cells next to them in their birth frame were removed (as a cell
cannot be born without a nearby parent). This may happen due to poor medium
trapping, resulting in cells that drifted far from their previous location in a single

frame and therefore were not tracked correctly.

Remove cells with high birth signal intensity: when a bud is formed, it has a

relatively lower area and mCherry signal intensity than an adult cell. Cells that
first appear with a high birth intensity and large area are usually not born at that
frame, but are usually a continuation of poorly tracked cells. Therefore, if a cell
had a significantly high total mCherry intensity and a large area at its point of
birth compared to the rest of the cells at their birth frame (Z-Score of total
mCherry birth intensity higher than 2 and Z-Score of cell area at birth higher than

2), its data tracks were completely filtered.

Remove cells on edges: cells in close proximity to the edge of the field of view

may produce poor segmentation and incorrect signal as usually part of their
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volume is outside of the field of view. Therefore, the part of the data tracks in
which a cell appears too close to an edge (defined by a 14 pixel margin) was

removed to avoid incorrect data tracking in those frames.

Remove cells that appear in too few frames: Cells appearing in only one or two

frames were completely filtered, as these cells are usually leftovers of other cell

tracks that were not combined with these tracks.

4. Cell Lineage

One of the prominent advantages in dealing with single cell data is the ability to track cell
lineages. This information was obtained by discovering the most likely parent cell
assignment for each new bud in each field of view using the Cell Lineage algorithm. The
basic idea of the algorithm (Fig. S9) is to compute scores for each of the possible
parents, and then assign the best scoring parent for each of the buds, taking into
account the effect of the assignment on the scoring of the other bud-parent pairs. This is

done by optimizing for the best scores over many parent-bud pairs.

Scoring mother-

Figure S9. Parent assignment
daughter pairs

(neighbors) T e scheme. Scores are computed
for each mother daughter pair.

i These scores are optimized to

obtain the best pairs. These

pairs are later used to create

Optimization for
better scores.

bestvalid
scores

Computing the scores: For each bud, a score was calculated for each of its potential

parents (its neighboring cells at the time of its birth). The scores were based on the cell
cycle of the parent cell. As a bud emerges, it is tracked separately from the parent cell,
and thus, the fluorescent protein produced by the parent decreases due to diffusion to
the emerging bud. This happens from the synthesis stage, through the G2 phase until

mitosis, when the parent and bud disconnect. At the start of the next G1 phase, the
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parent cell again accumulates new fluorescent proteins. This scheme was illustrated well
by Cookson et al. (Cookson et al. 2005) and is shown in Figure S10 over real mCherry
total intensity. The S phase (synthesis) and the M phase (mitosis) were used as
reference points to define the cell cycle of a parent. These two points were identified

around the birth of each bud for each of its possible neighbors at the time of its birth.

Mother Cell Intensity (Blue) versus Daughter Cell Intensity (Red)
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Figure S10. Cell cycle intensity fluctuations. Shown are mother
and daughter cells and their total mCherry signal. At the start of the
mother's cell cycle, the signal increases. From the S phase
(synthesis) to the M phase (mitosis), mCherry diffuses towards the
daughter cell.

The behavior of these neighbors around these points helped to create scores defining
how likely these neighbors were as the parent of the emerging bud. In order to identify
the possible cell cycle points in each neighbor, the total mCherry signal was modified to
better display the cell cycle trends. Outliers in the signal were smoothed as depicted in
the post processing (in the Clean Outliers module (3.6)) but using a smaller moving
window of 5 frames. The signal was then smoothed using a moving window of 5 frames.
Next, the period in which the cell itself buds from its parent was removed (filtering until
the point in which the cell's area Z-Score at the first 150 minutes of life rises above -1),
as in this period a cell cannot produce a bud, and the swift rise in total intensity at that

period would have strongly influenced the global smoothing described next. The general
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signal trend of the cell was then obtained using a strong local regression smoothing
(loess smoothing). This general signal was subtracted from the signal to produce a
signal which was not affected by the general trends of the cell, but mostly by the cell
cycle. To make the signal comparable between cells, the result was then scaled
according to the signal's mean and standard deviation. This signal was then used to find
local maxima peaks around the birth of a bud to find the S phases (54 minutes prior to
the birth and up to 27 minutes after the birth) and minima peaks to find the M phases (23
minutes prior to the birth and up to 70 minutes after the birth). Note that due to
segmentation issues, it may happen rarely that the M phase occurs before the birth, or
the S phase occurs after the birth, but an S phase occurring prior to the M phase was
not allowed. Also, a 36 minutes minimum time was set from the cell's birth until its first S

phase.

Several parameters were used to create the score for each of the possible parents:

e Time from S phase to bud birth.

e Time from bud birth to M phase.

e S phase peak shape — Scaled signal values of the potential parent from 20
minutes prior to the S phase peak until 20 minutes after the S phase peak.

e Eccentricity of potential parent cell around the S phase (at 20 minutes prior to the
S phase peak until 20 minutes after the S phase peak), as the shape of a parent
cell is somewhat eccentric close to the budding point.

o Area of potential parent around the S phase (at 20 minutes prior to the S phase
peak until 20 minutes after the S phase peak), as a parent cell slightly expands
prior to the S phase and contracts slightly after the S phase.

e M phase peak shape — Scaled signal values potential parent from 20 minutes
prior to the M phase peak until 20 minutes after the M phase peak.

o Neighboring time - Fraction of time bud and potential parent neighbor each other
(less than 5 pixels distance between cell edges) from bud birth to M phase (as
the parent and bud are attached until the M phase, this number should be very
close to 1, and therefore a neighboring fraction less than 0.4 was not accepted).

o Eccentricity of potential parent from 20 minutes before the bud birth until its birth.

o Ratio of the area between the potential parent and the bud from 15 minutes prior
to the M phase up to the M phase. There is a certain ratio between the parent

and the bud as the bud grows which this property tries to capture.
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e Total mCherry intensity ratio (outlier cleaned and smoothed) between the
potential parent and the bud from 15 minutes prior to the M phase up to the M
phase. This ratio should increase in time as the protein diffuses into the bud,
resulting in a decrease in the intensity of the parent and an increase in the
intensity of the bud.

To use the above parameters to identify the real parent out of the neighboring cells, we
sought to use a Naive Bayes classifier, which models the distribution of these

parameters for real parents and non-parent neighboring cells. The score was defined as:

s PM=-|X) PXM=-) P(M=-) Definitions:
core = = .
P(M =+|X) PXIM=+) P(M=+) False parent M=-
constant
True parent M=+

P(XIM=-) 1—[ P(x,|M = -)

CPRIM =) P(x, M = +)

pEparameters

n
P(xp |M = m) = 1_[ P(xp,l-|M = m) where P(xp,l-|M = m)~N(up,i,m, Up,i,m)
i=1

The probability distribution of all parameters was taken to be a Normal distribution.
Some parameters were computed from multiple time points (such as the S phase peak
shape defined across 40 minutes), by geometrically averaging the probabilities over all
time points. The distribution in each point was modeled over averaged values (median

and standard deviation over 75% of the values around the median).

As the positive set, we took parent-bud pairs whose bud only had one neighbor during
their birth (and thus this neighbor must be the parent). In addition, we required that
neighbor to be a neighbor for at least 80% of the period between the bud's birth and the
M phase, and we required that it was not weaker in intensity than the bud at any point
during that time. In the choice of the negative set, it is important not to enter true parents
into it. Therefore, only neighbors of buds with 4 or more neighbors were considered into
the negative set. The best scoring neighbor out of those was not entered into the
negative set, considered as the true parent, and the rest were entered. The probability of
each neighbor to be a parent was then calculated using the positive set distribution

(score calculated only as: P(X|M = +)). Thus, the probability of entering a true parent
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into the negative set in each choice was at most 0.25 (if we consider the classifier

according to the positive set to be at least as good as a random classifier).

Several penalties were used to penalize empirically unlikely events:

o |f the neighboring ratio parameter was lower than 0.6, 2 standard deviations were
added to the score (standard deviations according to the middle 90% of the
scores).

o |If the distance from birth to M phase parameter had a Z-Score greater than 3, a
single standard deviation was added to the score.

o |If the distance from S phase to birth parameter had a Z-Score greater than 3, a

single standard deviation was added to the score.

In order to decrease the search space for possible parents, parents that had a Z-Score
(built from all the scores) above 4 were filtered. Also, only up to 4 possible parents were
allowed per bud (the best scoring ones were kept). A score for a no-parent assignment
was set as a score having a Z-Score above 5. That way, only when there was no other

choice, no parent was assigned.

Score optimization: Since the optimal score does not always reflect the correct

assignment, a certain optimization on the scores was needed, instead of greedily picking
the best scoring parent for each bud, as depicted in figure S11. The optimization was not
global across the entire movie, since this was not computationally intractable. Therefore,
a local optimization was done for each new bud. The optimization considered parent to
bud assignment scores, and also other nearby bud scores that might be affected by the
parent assignment (up to a certain degree). This way, for each bud born, we found the
best parent assignment, which also did not hinder the parent assignment of the buds
that could have been affected by its assignment. For each new bud (denoted as the
center bud), buds affected by it were chosen as buds born up to an hour after its birth
and in layers of influence around it. Layers of influence refer to layers of bud
assignments around the bud that might be affected by the center bud. The first layer
consisted of buds that shared the possible parents of the center bud. The second layer
consisted of buds sharing the possible parents of buds in the first layer, and so on, up to
5 layers of influence. This resulted is a search space consisting of all the possible parent

assignments for each of the buds affected up to 5 layers from the center bud.
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Figure S11. Parent assignment possibilities. An example of possible parent cell
assignments. (a) Scores for each of the possible parent assignments for cells 3 and 4
(the lower the score, the better). (b) A simple greedy assignments — assigning best
possible parent for cell 3, and then the best possible parent for cell 4 (cell number 1 is
already assigned to cell 3, and as a cell can only have one bud at a time, cell 4 is
assigned no parent), resulting in a score of 12. (c) Optimization on the scores, to assign
the best possible scores for each bud, assigning cell number 2 as the parent of cell
number 3, and cell number 1 as the parent of cell number 4, resulting in a score of 4.

A valid assignment was defined as an assignment in which no two buds were assigned
the same parent at the same time. The optimal valid assignment was found for the entire
search space, and only the center bud was assigned a parent. After assignments were
made, the scores were calculated again, but with the positive set taken as the assigned
parents, and the negative set as the incorrect parent of those same buds.

In order to further improve the scores, the distribution of the time between cell cycles
and time from the birth of a cell until its first cell cycle were collected from the previous
assignments. Empirical probability density functions were created for both measures for
the positive set. For the negative set, a uniform density function was created as these
measures are meaningless for a negative set. Thus, in the second assignment iteration,
the scores for parents budding for the first time were multiplied by a constant divided by
the empirical probability density function collected previously. The same was done for
the time between cell cycles according to time distance to assignments already made.
This algorithm was tested on ~200 manually tagged mother-daughter pairs, and had an

accuracy of 0.96.
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5. Masking and Filtering
A conservative framework for filtering the data was created to ensure that only high
quality data is kept in the end. The following are the standard filtrations:

Mask last known cell cycles: As cell tracking ends abruptly due to the end of an

experiment, the last cell cycle of all cells is incomplete. For the majority of our analyses,
we required complete cell cycles and therefore the last cell cycle of every cell was
masked.

Mask initial growth: The initial growth stage of a bud while it is attached to its parent was

usually of no interest to us, as we attributed the protein production at that time to the
parent cell. Therefore, the time a cell spent as a bud was masked.

Mask abnormally large and strong cells: Rarely, there are cells that grow to abnormal

sizes. These cells usually begin their life as normal cells, and at some point in time grow
to large proportions. To avoid such extremities in the analyses, these cells were filtered
from the point of their abnormal growth. These points were found by finding cells with an
area Z-Score larger than 2 and a total fluorescence intensity Z-Score larger than 5 for
more than 5 consecutive frames.

Mask missed cell cycles: As some cell cycles are not detected by the lineage, the cell

cycles that follow appear as very long cell cycles. Usually during these incorrectly long
cell cycles, the missing S phase is detectable. Within these cell cycles the probability for
an additional S phase peak was calculated. If an additional S phase was found with high
probability, the two cell cycles were filtered.
Long cell cycles were found by finding cell cycles longer than 1.5 times the median cell
cycle length in the population. Cell cycles longer than 2 times of the median cell cycle
length were automatically filtered as being too long. The cell cycles in between these
lengths were checked for an additional S phase peak. The probability for an S phase
peak was built from several parameters used in the Lineage algorithm:

e S phase peak shape

e Eccentricity of cell around the S phase

o Area of cell around the S phase
The probabilities according to these three parameters were sampled from S phases set
by the Lineage algorithm. The median and standard deviations were taken from the top
80% sample in order to consider only high probability S phases, which are more likely to
be true. Then, the threshold for S phase peak was set as the median minus two

standard deviations. Long cell cycles were filtered in cases in which the probability for
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the additional S phase to occur passed the threshold, within its expected time frame in
the cell cycle. The expected period for the additional S phase was set from the time of
the previous M phase plus the minimum empirically checked G1 time and until the time
of the S phase of the cell cycle minus the minimum empirically checked interphase time.

Mask cell cycle arrest: Due to high cell density within a field of view many cells enter cell

arrest. These occurrences were found and filtered by searching for cell cycles longer
than 3 times the median cell cycle length in the population. In a cell arrested field of
view, it is probable that cells not in a cell arrest also suffer in some way from the
conditions in the field of view. Therefore, in field of views in which more than half of the
cells were in a cell arrest, all the cell cycles from that point onwards were filtered.

Mask negative protein production cell cycles: Another strong indication of missed cell

cycles are cell cycles that have a long period of negative mCherry production (see no
dilution section). As the mCherry has very slow degradation time, a negative protein
production can only happen due to protein dilution to the bud. This dilution should be
accounted for in the calculation of the non-diluted total protein fluorescence, and the
primary reason for such a drop, is a missed cell cycle. Protein dilution occurs during the
bud formation between the S phase and M phase, and therefore the typical drop length
was calculated as the median length of time between the two phases. If within 33% of a
window of such size negative production occurred, the cell cycle in which the drop
occurred was filtered.

Mask low quality cell tracks: During the post processing framework some cells have

more problems than most, e.g., cells with large vacuoles might split many times. The
quality of these cell tracks is questionable as the post processing framework cannot
always find a perfect solution. Such cells, exceeding certain thresholds (defined below)
on the amount of problems that occur in the post processing, were considered as low
quality cells and filtered from further analysis. For a cell to be considered as a low quality
cell, a cell needed to pass any of the following criteria:

o Split at least three times (found in the Splitting module).

o Disappear and reappear at least three times (in the Gapping module).

e Having at least 3 long intensity drops (of at least 3 frames).

e A tracking error of at least 3 frames length occurred.

Mask growth rate: In order to achieve relatively constant conditions, we aimed at

keeping the growth rate at certain limits within a strain, filtering periods in field of views

where the median growth rate differed from a reference growth rate obtained from all the
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field of views. We defined the growth rate at a certain point in time as the median of the
cell cycle times at that point in time. To obtain a reference growth rate, we calculated the
growth rate for each field of view at a time reference between 150 and 420 minutes into
the experiment, which is usually a time of stable growth and low cell density. The
reference growth rate was set as the median over the median growth rate over time of
each field of view. The limit for field of view growth rate was set as up to 15% distant
from the reference growth rate. Only time periods within a field of view in which the
growth rate was within the limits for a time period were kept. The length of these periods
needed to be at least twice the reference growth rate so as to keep only large periods of
almost constant growth rates. For periods shorter than 4 times the reference growth rate,
between periods of growth rates within the limits, slight deviations of up to 22.5% from
the reference growth rates were allowed. Note that in order to complement this work in
terms of comparisons between repeats, different strains and different experiments; we

also manually checked that the resulting growth rates were similar.

6. Dilution correction and production rates

In order to perform analysis on protein production rates, we defined the protein
production rate as the average amount of protein accumulated over a certain period of
time. However, the total protein fluorescence of a cell provides information only on the
protein accumulated in a cell without accounting for the protein and transcripts lost
through dilution to its buds (mCherry and YFP degradation are negligible in relation to
dilution. This was verified by observing negligible degradation in mCherry and YFP after
addition of a translation inhibitor to the media). As the bud transcripts and cell
environment are transported from the parent through active transportation and diffusion,
we considered the total protein accumulated in the bud until the mitosis separation as
proteins produced by the parent. Although the bud is a part of the parent until the mitosis
point, it is considered as a new cell by the image segmentation and tracking. Therefore,
the protein accumulated in the bud until the mitosis point was added to the protein
accumulated in the parent as depicted in Figure S12, to obtain the protein accumulated
in the parent until the mitosis point while correcting for dilution to the bud. The corrected
accumulated protein was then smoothed for outlier points in the signal (as done in the

post processing, in the 'Clean outliers module', but with a smoothing window of size 5).
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After calculating the corrected accumulated protein in a cell for each time point, the
calculation of the protein production rate from time T to time T+AT for a single cell was

defined as:

Accumelated protein(T+AT)—Accumelated protein(T)

Productionrate (T ...T + AT) = v

Prior to the production rate calculation, the accumulated protein signal was smoothed
separately in each of the time windows in which the protein production rate was
calculated using Matlab's Loess smoothing, with a span set to 0.4 of the data points in
the window, such that data from a certain time window did not leak to its adjacent

windows.

100 200 300 400 0 100 200 300 400

Figure S12. Correcting for dilution. An example of how the effects of dilution are
corrected. The bud total intensity values (dark blue) are added to the total intensity of
the parent (red) from the point of the bud's appearance until the mitosis point (first blue
dot) to produce the parent's total intensity values, corrected for dilution (dark red). The
rest of the lines are additional daughter cells, and are also used for dilution correction.
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Yeast Strains

A shared master strain that contains the YFP reporter gene, the HIS3 proximal promoter
(100bp upstream of the ATG), and the mCherry fluorescent protein downstream of the
TEF2 promoter, was used to construct the library. The variable part of each promoter
were synthesized by Biomatik and inserted into a master strain by genomic integration,
as previously described (see (Raveh-Sadka et al. 2012) for details).Additional strains
with mutated Gal4 binding sites were designed to span a range of weak medium and

strong affinity to Gal4, based on previous studies by Ptashne et al. as follows:

1. STRONG: CGGAAGACTCTCCTCCG ( “near consensus”, (Ginigea and
Ptashne 1988))

2. MEDIUM: AGGAAGACTCTCCTCCG ( GAL1-GAL10 UASg site3, (Liang et
al. 1996))

3. WEAK:CGGATTAGAAGCCGCCG ( GAL1-GAL10 UASg site1, (Liang et al.
1996))

Flow Cytometry data analysis and Gamma distribution analysis

An automatic data analysis pipeline was applied for gating and filtering the data and to
remove outliers. Wells were considered outliers having abnormal forward scatter, side
scatter or mCherry distributions. Cells collected in the first or last 0.5 seconds in each
well were discarded from further analysis, as well as cells for which negative or
saturated values were measured in one of the parameters. Cells collected over periods
that show flow instability (bubbles, etc.) were also removed. Automated gating based on
FSC and SSC values was implemented to minimize cell heterogeneity and reduce
extrinsic variability. The gating algorithm select for the lower population that is enriched

for G1 cells. The final gated YFP values were normalized by mCherry.
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Fluorescent proteins

A direct and accurate measure of promoter activity over time was achieved by real-time
monitoring the fluorescent protein levels as a measure of promoter activity. The YFP
protein was very stable over the acquisition time (>15 hours), showing no degradation,
also after addition of cycloheximide to block translation. Protein accumulation, corrected
for dilution from mother to daughter cells, showed a constant increase (Fig. S13) and

was considered as an accurate measure for promoter activity.

80 T T T T T

Fluorescence Intensity

0 100 200 300 400 500 600

Figure S13. Individual cell tracks, corrected for dilution between
the mother and the daughter cells. Cell tracks are shown for 2
strains: strong binding site affinity (purple) and weak binding site affinity
(pink). The tracks show robust continuous increase in signal intensity,
and were differentiated to yield the production rate (as described in the
main text).
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Normalization between experiments and wells

As the mCherry distribution should be equal across all wells in all experiments, we made
sure that all mCherry rate distributions have the same mean mCherry rate. This was
done by measuring the mean mCherry rate from a reference well, and multiplying all
mCherry rates of a well by a factor such that its new mean mCherry rate will have the
same mean mCherry rate as the reference well. A multiplication factor between the
different mean mCherry rate distributions reflects a global factor that should also be
reflected in YFP changes as well. Therefore, the YFP rates were also multiplied by the
same factor multiplying the mCherry. Displayed in figure S14 are corrected mCherry rate
histograms and their common distribution (a distribution created from an equal amount
of data points taken from each strain). It can be seen that the mCherry rate histograms

of different strains are very similar, and fit the common distribution.

No poly(dA:dT) tract Poly(dA:dT) tract length: 17

mCherry
distribution

Common
distribution

0 0.05 0.1 0 0.05 0.1
Poly(dA:dT) tract length: 17 Poly(dA:dT) tract length: 22

o

0 0.05 0.1
Figure S14. Corrected mCherry rate histograms. Representative mCherry rate

histograms normalized between wells and experiments. Depicted in red is a

distribution of mCherry rates of all strains in the example.
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Autocorrelation of promoter production rates

Normalized YFP rates were calculated for each cell at a resolution of 3 minutes.
Negative rates were filtered. The top and bottom 0.5% values of the data for both
mCherry and YFP were considered as outliers. Cell cycles containing at least 50%
unfiltered YFP and mCherry rates were used. A cell cycle not containing at least 30
minutes of data was not used. Autocorrelations were calculated at a resolution of 6
minutes, averaging the temporal information to reduce noise. Autocorrelation at 3
minutes resolution (an example shown in Figure S15) yielded lower autocorrelation
values, however the relation between the different strains was kept the same.
Autocorrelation lag information smaller than 14 data points was not used. Then, all
autocorrelations across all cells were averaged. Correlations between consecutive time
windows were calculated by averaging the values across each resolution (e.g. for a
resolution of 9 minutes the values of windows i, i+1, i+2 were averaged), and then
computing the correlation of the consecutive windows in a single cell. Then, all the
values across all cells for each resolution were averaged. Values filtered were not used
for the correlation. Correlations with less than 28 data points divided by the current
resolution (where a resolution of 3 minutes is considered as 1 as this is the system's
minimal resolution), or less than 4 data points, were not used. To verify that the strains
differ in their autocorrelation of YFP rates and not the mCherry rates, we calculated the
autocorrelation also for YFP and mCherry rates alone. We clearly observed that for all
the strains there was no significant change for between the autocorrelation curves of the

mCherry, as opposed to the autocorrelation curves of the YFP rates.

Average of all experiments . .
d 05 S Figure S15. A utocorrelation
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Poly(dA:dT) 22bp || autocorrelation was calculated

o
w
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— errors.

©
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o
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Model of stochastic gene expression
We use a two-state kinetic scheme in which the promoter switches between an active
and in-active promoter state, and has transcription, translation, mRNA degradation and

protein degradation (Fig. S16).

Kon
—_—

OFF _
Koff

ON —> mRNA —> Protein

Figure $16: Kinetic model of gene expression. The scheme represents a promoter
that switches between a transcriptionally inactive and active state. On- and off switching
happens with rate Kon and Koff respectively. Transcription, translation, mRNA and
protein degradation rates are not shown, but are taken into account in all simulations.

To analyze the temporal dynamics of gene expression we use a stochastic simulation of
this model (Gillesple 1977). For steady-state gene expression and cell-to-cell variability
(noise) we use an analytical solution of this same model (Sanchez et al. 2011), which

was solved using the master equation.

For both models we use the following rate parameters: (All rate parameters are in

minute™)

1. Protein degradation. YFP was found to be highly stable (see fluorescent protein
paragraph). We therefore assume that protein degradation comes only from
dilution. Since we measured the doubling time of our strain (~90 min), we chose
to fix the protein degradation rate. We set the degradation rate to In(2)/90 =
0.0077.

2. Translation rate. Yeast, under fast growing conditions, has a protein production
rate of between 6500 and 19500 proteins/cell/sec (von der Haar 2008). Yeast
has around 60,000 mRNAs/cell (Zenklusen et al. 2011). This gives a translation
rate between 6.5 and 19.5 proteins/mRNA/min. We set the translation rate to 10
proteins/min.

3. Transcription rate. The transcription rate is the rate of production of stable

mRNAs while the promoter is in each respective state (on or off). Experimentally
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measured transcription rates combine both on and off promoter states.
Therefore, the total rate of transcription for a gene is the sum, for all states, of the
fraction of time spent in that state times the transcription rate in that state. The
upper bound for expression rate is between 4 transcripts/minute and 10
transcripts/minute (Pelechano et al. 2010). We note that these rates represent

the combination of on and off promoter states. We set the transcription rate to 5.

4. mRNA degradation. The median mRNA half-life was measured to be ~20 min
(Wang et al. 2002). We therefore set the mRNA degradation rate to In(2)/20.
5. Promoter switching rates (Kon, Koff). Promoter switching is a function of TF

binding and unbinding, however each (un)binding event does not necessarily
switch the promoter to another state. For this reason promoter switching is much
slower than TF binding kinetics. Promoter switching was measured to be in the
range of 1e-3 to 1e1 (Zenklusen et al. 2011; Octavio et al. 2009; Tan and van
Oudenaarden 2010). For the “normal” promoter we use 2 min™ and 2 min™ for
Kon and Koff respectively. For the “fast” promoter we use 12 min™ and 22 min™,
for the “slow” promoter we use 22 min" and 2° min” for Kon and Koff

respectively.

Stochastic simulation of fast and slow promoter dynamics

We simulate three regimes: normal, slow and fast dynamics. The “fast” regime has a
higher Kon to simulate an increased accessibility with the reduction of nucleosome
coverage as a result of the addition of a poly(dA:dT) element. The “slow” regime has a
lower Koff to simulate the increase in transcription factor binding affinity. Figure 1 shows
three example runs in which the promoter switches between the ON and OFF state, and
transcription and translation occur when the promoter is ON. The protein production
shows the bursting behavior of gene expression. The figure illustrates that protein
production is correlated with promoter dynamics, however also that protein production
has a delay compared to promoter on-switching and that, due to chance, not every on

state results in a protein production burst.
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Autocorrelation analysis of simulated protein production

We found that, in experiment, increasing the binding affinity or decreasing the
poly(dA:dT) length both increase the autocorrelation (Fig. 2 from main text). To
investigate if this change in autocorrelation is expected given the simple model of
promoter state switching, we performed the same autocorrelation analysis on simulated
data obtained from the Gillespie simulations. We model the increase in binding affinity by
a decrease in Koff and the decrease in polyT length by a decrease in Kon. Figure S17
shows that indeed we observe the same increase in autocorrelation when we decrease

Koff (increase affinity) or decrease Kon (decrease polyT length).
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Figure S17: Autocorrelation analysis on simulated protein production. We use the stochastic
simulation data to look for autocorrelation changes when changing either Koff (a) or Kon (b). We
observe that decreasing either Koff or Kon significantly increases the autocorrelation, in line with
our experimental observations. Values shown for Koff and Kon are in min™.
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Limits of measuring promoter dynamics through protein production

In order to systematically investigate how promoter dynamics relate to protein production
bursting we use the above stochastic simulation and gradually increase either Kon or
Koff and quantify protein production bursting. We quantify the burst frequency as
P(on|off) and burst size as P(of‘f|on)'1. P(on|off) = Noft>on / torr and P(offlon) = Non-soff / ton-
Where Ngs.>on iS the number of off to on event and Ng,soif Vice versa. to and to, is the
total time in the off or on state respectively.

To simulate our microscopy experiments as best as possible we sample the protein level
every 6 min. We note however that our simulation does not capture every process that
affects the delay between on-switching, transcription and translation, such as mRNA
maturation and protein folding. However, adding such delays would not change the
qualitative result of our simulations.

Figure $18 shows how changing promoter ON and OFF switching (Kon and Koff
respectively) affects mean expression and the derived promoter dynamics from protein
production bursting. The figure shows that there is a regime in which promoter Kon and
protein burst frequency change linearly with respect to each other. However, at higher
Kon the protein burst frequency saturates. For Koff the same happens, but now both at
very low and very high Koff. There appears to be only a limited regime where changes in
Koff are linear to changes in the observed protein burst size. However, in the biologically
meaningful regimes of Kon and Koff, the simulation shows that changes in Kon and Koff
can be detected, at least qualitatively, by measuring changes in protein production
bursting. The fact that there exists a regime in which this measurement is non-linear
could explain why, in our microscopy experiment, we measure a smaller change in

bursting than is expected from the change in mean expression.
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Figure S18: Measured protein production bursting as a function of promoter switching, in a
stochastic simulation. We measure mean expression, protein production burst frequency and
protein production burst size as a function of changing Kon or Koff. Increasing Kon increases the
mean expression level (a) and increases the burst frequency, while burst size remains constant (b).
However, there is a regime, at higher Kon (b, Kon>2*10?), where measured burst frequency
increases non-linearly with increasing Kon, while mean expression continues to increase (c). For
changing Koff we observe a similar phenomenon. Decreasing Koff increases the mean expression
level (d), but at higher and very low Koff (e, Koff>1*10"" and Koff<2*10?) burst size changes non-
linearly with Koff, while expression continues to increase (f). This analysis shows that changing
promoter dynamics can be measured qualitatively through protein production bursting, but might be
limited quantitatively in regimes where protein production bursting changes non-linearly with
changing promoter dynamics.



Exploring the relationship between mean expression level and noise using an
analytical model

We have changed the mean expression and noise using two different biological
parameters, namely promoter accessibility (adding polyT) and binding affinity (TF
binding site sequence). Using various analyses we show that each biological parameter
changes the dynamics of gene expression in a different way. Accessibility changes the
frequency of expression bursts and affinity changes the length of expression bursts.
Using a stochastic simulation (Gillesple 1977) we show how promoter kinetics (on-off
switching) can be modulated to give changes in protein production bursting. Various
studies have connected this “bursting” to the noise properties of gene expression. Most
notably is the gamma model by Friedman et al. (Friedman et al. 2006), where noise
(std®mu?) is inversely related to the burst frequency and the burst size is related to the
noise strength (std®mu).

To understand how the expression and noise changes that we observe are related to
promoter dynamics we use an analytical solution of the kinetic scheme that we used in
the stochastic simulations (see below for the derivation), which gives us the mean
expression level, noise and noise strength at steady state.

We set the parameters to biologically meaningful values (see above) and assume that
changing accessibility changes Kon and affinity changes Koff, where an increased

affinity has a decreased Koff and an increased accessibility has an increased Kon.

Figure S19 shows the mean versus burst frequency (and noise) plot of either changing
Kon or Koff. Increasing Kon increases expression and decreases noise (increases burst
frequency) (Fig. S19b,c,e,f blue lines), which is in accordance with our experimental
observations (Figure 4 from main text). Interestingly, for changing Koff we observe two
different qualitative responses, depending on the rate of on switching (Kon). When Kon
is relatively slow decreasing Koff increases expression and increases noise (Fig.S19b,c
red lines). When Kon is relatively fast decreasing Koff increases expression and
decreases noise (Fig.1S9e,f red lines). In our measurements we observe that increasing
the binding affinity increases expression and increases noise. The model therefore
predicts that if we would increase Kon (TF concentration and/or activity) that noise would
decrease with increasing binding affinity. Figure S19d shows expression and burst
frequency from gamma fit (inverse noise) for increasing the binding affinity, however now

in activating condition (SCD-AA). When starved for amino acids the Gen4 TF is induced.

32



Exactly as the model predicts, burst frequency increases (or noise decreases) now with

increasing expression.
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Figure S19: Measured and predicted change in burst frequency and noise. We compare
the measured change in expression and burst frequency with the predicted change in
expression and burst frequency from the analytical solution of the kinetic scheme shown in
figure 1. Burst frequency (a,b,d,e) is quantified as noise™ (c,f) (Friedman et al. 2006). In non-
activating condition, where Gcn4 is lowly induced, we measured an increase in noise, or
decrease in burst frequency, with increasing expression as a result of increasing the binding
affinity of the Gcn4 site (a). The analytical model predicts that such behavior happens when
two conditions are met: 1) the promoter is leaky, i.e. the “OFF” state has low, but significant,
transcriptional activity, and 2) promoter switching is slow, i.e. Kon is relatively low (b,c Koff
change: red lines). Changing Kon in the model always results in an increase in burst frequency
and therefore a decrease in noise (b,c,e,f Kon change: blue lines). Given these theoretical
conditions, the model predicts that the decrease in burst frequency, or increase in noise,
disappears when promoter switching is relatively fast, i.e. Kon is high (e,f Koff change: red
lines). In accordance with this prediction, when we repeat the experiment in activating
condition (amino acid starved, to induce Gcn4), we find that burst frequency now increases (d),
and noise decreases, with increasing expression as a result of increasing the binding affinity.
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Frequency spectrum analysis

When the lifetime of mMRNAs is short relative to the lifetime of the protein, as is the case
for yeast, protein production can be assumed to occur in random uncorrelated events
(Cai et al. 2006; Friedman et al. 2006). If protein production is indeed uncorrelated, we
don’t expect to observe any frequencies, other than cell cycle, in the production over
time. Figure S$20 shows the frequency spectrum analysis of the YFP production in time.
As expected the only frequency that we observe is around 1/90 per min, which is the
frequency of the cell-cycle (measured doubling time). We note however that when
mMmRNA production occurs in bursts, and that re-initiation occurs at some fixed time
interval, we would expect to see this in the frequency spectrum. Since re-initiation is
probably faster than the interval at which we measure the protein production and due to

stochastic translation, we would not be able to pick up this re-initiation frequency.
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Figure S20: Frequency spectrum analysis of YFP production in time. Shown is a frequency
spectrum analysis performed using the Fourier transform of the autocorrelation of the YFP production
in time, which was measured in the microscope. The shown spectra quantify the relative contribution
of each frequency to the total signal. We find that the only frequency that is significantly present in the
data is around 0.01 min™, which very likely stems from the frequency of the cell cycle (around 90 min,
a,b arrow). Changing the polyT length (a) or binding affinity (b) does not change the frequency
spectrum. For comparison spectra are shown for random sequences with different means (c).
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Analytical solution of the kinetic model

We model stochastic promoter state switching, transcription and translation using the
master equation (Sanchez et al. 2011). In this model promoter transcription factor (TF)
binding and unbinding events determine the transitions between promoter states.
Transcriptional activity changes when the promoter switches to a state with different
transcriptional activity. The promoter states can have low (including zero) or high
transcription rate, to describe in-active (“off’) or active (“on”) states respectively.
Translation occurs in bursts with the probability of a burst described by a geometric

distribution. The master equation (in matrix notation) takes the form:

d . [ao b s A .
Zp(n)—[l( R n5l}p(n)+Rﬁz:;h(ﬁ)p(n B+(n+131pn+1)

Where P is the vector of probabilities of having n proteins in the cell for each promoter

A

state dfdt p(n) describes the time evolution of these probabilities. K is the matrix of

A~

K.
promoter state transition rates, where Y is the rate of transitioning from state j to state

A
A

i and K; is the sum over all outgoing rates from i times -1. R is the diagonal matrix of

A

transcription rates with ¥ on the diagonal (Rii =7 ), where ’i is the transcription rate of

A

state i. I is the identity matrix. b is the average burst size (proteins produced per
mRNA). § is the protein degradation rate. h(p) describes a geometric distribution and is

the probability of producing a burst of size beta.

To derive the mean protein abundance and variance we solve this system at steady

state, thus for dfdt p(n)= O. We get mean protein abundance:
(2)

brm

(my= 20

—

m
Where ) is the zeroth partial moment of the distribution of mMRNA abundance and is

the solution to:
— 3
0=K my, (3)
We can get noise (6%/u?) and noise strength (6/u) by deriving:
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br g,

(n*)=1+b)(n)+ 5

(4)

n
Where 'V is the first partial moment of the distribution of protein abundance and is the

solution to:

0=(K~81)ii, +b R,
Variance (6?) is:

Var(n) = <n2> - <n>2

Therefore noise (6/u?) becomes:

b7
(1+b)n) ~(n) +7
)= )
(n)’
And noise strength (c?/p):
b7
(+)(m) = () + 7 210

(F)=

(n)

()

We describe gene expression using a two state kinetic scheme that represents switching

between an active (ON) and inactive (OFF) promoter configuration (Figure $16). The

ON state is transcriptionally active (with rate r7) and we allow the OFF state to have

some (leaky) transcriptional activity (with rate r2). K and ¥ thus become:

ra. Koff Kon
Koff —Kon

F=(r r2)
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Figure S21: Analysis of protein production bursting using the change in
production rate. We define a production burst (ON state) as a period in which the
change in YFP production is positive, i.e. the second derivative of the YFP fluorescence
in time. We then quantify the on-rate as the number of OFF to ON transitions divided by
the total time in the OFF state. Similarly we quantify the off-rate as the number of ON to
OFF transitions divided by the total time in the ON state. Shown is the measured off
and on-rate (from microscope data) versus the mean production rate, for either
changing the polyT length or the binding site affinity. We find that when changing the
polyT length the on-rate changes more than the off-rate. When changing the binding
affinity we find that the off-rate changes more than the on-rate. Measured rates are in

min™".
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Figure S22: Burst size and burst length as a function of changing the binding site
affinity. We define a “burst” as a period of relative high (YFP) protein production. Shown is
the average burst length and average burst size, measured in microscope, for strains with
differing binding site affinity. We quantified the length, in minutes, of the periods of activity
(a) and the size in terms of average YFP production (b).
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