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Figure S1. Promoter variants and expression levels. Shown are the promoter variants 
used in this study and the median YFP expression of each variant, as measured by flow 
cytometry. Note the increase in expression with both the lengthening of poly(dA:dT) tracts 
(upper two promoter sets) and the strengthening of transcription factor binding sites (four 
bottom promoter sets).	
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Figure S2. Higher affinity binding sites result in lower promoter dynamics. Shown 
is the average autocorrelation of normalized YFP production rates across thousands of 
different cell traces for each of three different promoter variants that differ only in the 
affinity of the Gal4 site. Bars denote standard errors. 
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Figure S3. Increasing the affinity of a transcription factor binding site results in a 
lower rate of transitions between high and low expressing states. Same as Figure 
3B and Figure 3D, but for three promoter variants with differing affinities for the Gal4 
binding site. The bar graph shows the fraction of cell cycle traces of each variant in 
which the number of transitions between high and low expressing states was at most 2 
(slow transitions, left bar graph) or at least 5 (fast transitions, right bar graph). The 
comparison of these different promoter variants was done at a threshold in which the 
fraction of all low expressing states in each variant was 70% (since absolute expression 
levels vary across variants, the absolute threshold value is different for each variant). 
The left heatmap shows a visual illustration of the cell cycle traces from the bar graphs 
where for each promoter variant, shown are 200 rows that each correspond to a time 
trace of one cell cycle of one cell with colored entries representing high (red) or low 
expressing states (green) at a threshold in which 70% of all states were low expressing. 
Rows are sorted according to the number of transitions between high and low 
expressing states, and the 200 rows were sampled from all cell cycle traces such that 
they accurately represent the same probability distribution of number of transitions 
across all cell cycle traces. 
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Figure S4.  Lengthening poly(dA:dT) tracts and strengthening transcription factor 
binding sites have opposing effects on the rate of promoter transitions between 
high and low expressing states. For every promoter variant, we extract each cell cycle 
of every one of its cells, and classify for each cell cycle the trace of normalized YFP 
production rate into high and low expressing states according to whether they are above 
or below a predefined arbitrary threshold, respectively. From these numbers, we can 
then compute the probability of transitioning between high and low expressing states for 
every variant. For promoter variants that differ in the length of a poly(dA:dT) tract, the left 
graph shows the probability of transitioning between high and low expressing states (y-
axis) across a broad range of thresholds (x-axis) on the fraction of all low expressing 
states in every promoter variant. The right graph shows the same computation but for 
three promoter variants that differ in the affinity of a Gcn4 binding site. Note that across 
the broad range of thresholds examined, lengthening a poly(dA:dT) tract (left graph) 
results in a higher rate of transitioning between states, whereas strengthening a 
transcription factor binding site (right graph) results in a lower transition rate. 
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Figure S5.  The static distribution of YFP fluorescence accurately fits a Gamma 
distribution Promoter activity histograms measured by flow cytometry for two 
representative variants and their relative fits to several distributions: gamma, lognormal 
and Gaussian. For all promoter variants, the Gamma distribution best fit the data and 
thus justify the calculations of promoter dynamics. 
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Supplemental Experimental Procedures 

Image acquisition 

To ensure monolayer growth of cells and to keep a stable focal plane, cells were imaged 

in a yeast microfluidic plate (CellASIC). This plate enables constant flow of media 

throughout the experiment and thus provides “chemostst-like” growth. Images were 

acquired by a fully automated inverted fluorescence microscope. Raw images were 

segmented and objects were tracked to yield a single track of fluorescence intensity over 

time (Fig. S6). 

 

Figure S6. Image analysis pipeline. 

 

Image analysis pipeline 

In order to obtain high quality data on the cells imaged in the microscopy system, the 

images were analyzed in a modular framework (Fig. S7), with six modules that deal with 

image corrections, cell segmentation and tracking of the cells ,  segmentation and 

tracking post processing , analysis of the cell lineage, masking and filtering the 

data, and dilution correction and production rates. The main components of the 

module framework are the flat field correction module which first deals with removing 

image artifacts, followed by the background correction module that removes cell 

fluorescence that did not originate from the respective cell. The cells are then 

segmented and tracked using a modified version of CellProfiler(Carpenter et al. 2006) . 

Problems in the segmentation and tracking and several other issues in the image area 

are then corrected using the post processing modules. The Cell Lineage module is 

used to obtain cell lineage assignments for each cell born. The Masking and filtering 

module is used to filter problematic or low quality cell data tracks. Finally, the dilution 

correction and production rates module is used to create tracks corrected for dilution 

effects, and produce production rates from those tracks. 

Time-lapse 
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Raw 
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Data tracks Lineage
Data
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Figure S7. Modules used in the image analysis pipeline. 

1. Image Corrections 

1.1 Flat field correction: A flat field correction map is calculated to account for the 

observed non-uniformity of the images. A set of images was acquired at the beginning of 

each experiment from a field of view devoid of cells that contains only a homogenous 

medium (SCD). These images were taken with increasing exposure times of: 0, 10, 50, 

100, 200, 400, 800, 1200, 1600, and 2000 milliseconds. Usually, 6 fields of view repeats 

were done, in which the intensities at these exposure times were measured. A linear 

regression over the exposure times and their respective pixel intensities was calculated 

for each pixel, in order to obtain the pixel's gain (the linear regression slope - amount of 

signal given by the detector as a function of the amount of light) and offset (y axis 

intersection, auto florescence of medium). This resulted in correction maps: one 

specifying the gain correction over an entire image and one specifying the offset 

correction over an entire image. The gain and offset correction maps were then 

smoothed using a Gaussian filter with a 32 and 16 filter size, respectively, in order to 

remove noise effects in the flat field images. Finally, a normalized gain map was 

calculated by dividing the gain map by the average gain over all pixels. Each image in 

the experiment was then corrected by subtracting the offset of each pixel and dividing by 

the gain. Any pixel values that were reduced below zero were set to zero. 

1.2. Background Correction: After flat field correction, we corrected the images for 

fluorescence background resulting from auto-fluorescence of both medium and 

surrounding cells. To remove this fluorescence without removing fluorescence intrinsic to 

the cell, the fluorescence intensities in proximity to cells were measured and subtracted 

from the cells. In order to subtract the background, each field corrected image was 

roughly and widely segmented according to the mCherry to obtain a cell mask (using 

CellProfiler) with a wide margin around the cells (Fig. S8). A subtraction mask was 

created by dividing each image (mCherry and YFP separately) into 32 by 32 pixels 

blocks. For blocks with very few cell pixels (at least 85% of the pixels within it occupied 

by background pixels, pixels not inside the identified cell mask) the median value of the 

background pixels was assigned as the value of the subtraction mask block. For the rest 

of the blocks (blocks containing mostly cells), the background was computed according 
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Figure S8. Background fluorescence subtraction. To remove background 
fluorescence, we used the mCherry flat field corrected images (a) and roughly and 
widely segmented to create a cell mask (b). Images were divided into blocks, 
calculating median background fluorescence in blocks that contain little (less than 
15%) cell fluorescence (c) and obtaining subtraction values of cell blocks from the 
values of blocks surrounding them (these subtraction masks were then smoothed) 
(d). The images were subtracted according to the subtraction masks resulting in 
background corrected images (e). 

to the mean of the computed blocks surrounding it. In every case, the next block to be 

computed was chosen as that with the most computed blocks surrounding it. Thus, 

blocks containing mostly cells were assigned subtraction values composed of the 

subtraction values of blocks close to them, since such blocks contain very few 

background pixels that cannot be extracted reliably. Finally, in order to create a smooth 

subtraction, the subtraction mask was smoothed using a Gaussian filter of size 32. The 

subtraction mask was then subtracted from the original image. Any pixel values that 

were reduced below zero were set to zero. Notably, the background fluorescence 

intensity represents a rather small fraction (~2%) of the cells' fluorescence intensity. 

e 

a b 

d 
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1.3. Bleaching correction: A photobleaching curve was acquired to model the effects of 

light exposure on the fluorescence trajectories. To obtain a photobleaching curve, a field 

of view of cells expressing YFP and mCherry were subjected to constant exposure of 

fluorescent light. Resolution of image acquisition was 1.5 second. The mean 

fluorescence over a region of interest was plotted against time and this data was fitted to 

an exponential function to obtain the decay rate, γp, for YFP and mCherry, separately, 

according to Cookson et al(Cookson et al. 2005). We obtained a negligible correction 

term, of less than 0.015% for YFP and 0.02% for mCherry (the decay rate γp equals 

0.0015 for YFP and equals 0.002 for mCherry). Therefore, photobleaching correction 

was not applied to the data.  

 

2. Cell Segmentation and tracking 

Image analysis was performed using a modified version of the CellProfiler software, 

which provides high quality image segmentation and tracking capabilities. Cells were 

segmented using CellProfiler's automatic adaptive thresholding of the mCherry 

fluorescent signal, followed by CellProfiler's watershed algorithm to separate clumped 

cells. Background corrected mCherry fluorescent signal was used for segmentation, as 

this fluorophore is driven by the same promoter in all of our strains. Modifications to 

CellProfiler include the handling of misshapen cells (usually as a result of segmenting 

two cells as a single cell) by iteratively increasing the strength of the mCherry threshold 

and watersheding attempts on the result. Other modifications were used to reduce 

computer memory usage. A fixed set of segmentation parameters for all experiments 

were empirically chosen. Following segmentation, the tracking of cells in CellProfiler was 

performed by pixel overlap of cells across time. The measured parameters for each cell 

in every time point were: mean, median and total fluorescence intensity (both for 

mCherry and YFP), pixel area, cell eccentricity (defined as the ratio of the distance 

between the foci of the ellipse, with the same second moments of the cell, and the 

ellipse's major axis length), and x and y centroid locations. 

3. Segmentation and tracking post processing 

We developed further processing steps to overcome problems that remained with the 

tracking and segmentation process above. The major modules of the post-processing in 

their order of operation are:  
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1. Trim invasions module – used to remove data tracks of cells invading from 

outside the current field of view, as well as to remove data tracks of cells affected 

by such invasions. This module also filters cells that are improperly tracked. 

2. Split module – merges cells that are incorrectly split into two cells in the 

segmentation process, mainly due to vacuoles. An example for a split correction 

is seen in Figure S9. 

3. Merging module – corrects data tracks of two cells that incorrectly merge for a 

short time into a single cell. 

4. Interpolate intensity drops module – identifies outlier fluorescent intensity 

values and interpolates them using intensities from neighboring time frames. 

5. Tracking errors correction module – disconnects cell tracks that are incorrectly 

merged together in time in the tracking process (or incorrectly merged in the 

gapping module in the second run of the module). 

6. Clean outliers module – cleans outliers in data tracks due to segmentation 

errors based on cell area data tracks. 

7. Gapping module – connects data tracks of two cells which are actually a single 

cell with incorrect tracking.  

8. Filtration modules – several modules that filter problematic data tracks.  

Remove cells with no neighbors: cells that appeared in some time frame without 

any neighboring cells next to them in their birth frame were removed (as a cell 

cannot be born without a nearby parent). This may happen due to poor medium 

trapping, resulting in cells that drifted far from their previous location in a single 

frame and therefore were not tracked correctly.  

Remove cells with high birth signal intensity: when a bud is formed, it has a 

relatively lower area and mCherry signal intensity than an adult cell. Cells that 

first appear with a high birth intensity and large area are usually not born at that 

frame, but are usually a continuation of poorly tracked cells. Therefore, if a cell 

had a significantly high total mCherry intensity and a large area at its point of 

birth compared to the rest of the cells at their birth frame (Z-Score of total 

mCherry birth intensity higher than 2 and Z-Score of cell area at birth higher than 

2), its data tracks were completely filtered. 

Remove cells on edges: cells in close proximity to the edge of the field of view 

may produce poor segmentation and incorrect signal as usually part of their 
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volume is outside of the field of view. Therefore, the part of the data tracks in 

which a cell appears too close to an edge (defined by a 14 pixel margin) was 

removed to avoid incorrect data tracking in those frames. 

Remove cells that appear in too few frames: Cells appearing in only one or two 

frames were completely filtered, as these cells are usually leftovers of other cell 

tracks that were not combined with these tracks.  

 

4. Cell Lineage 

One of the prominent advantages in dealing with single cell data is the ability to track cell 

lineages. This information was obtained by discovering the most likely parent cell 

assignment for each new bud in each field of view using the Cell Lineage algorithm. The 

basic idea of the algorithm (Fig. S9) is to compute scores for each of the possible 

parents, and then assign the best scoring parent for each of the buds, taking into 

account the effect of the assignment on the scoring of the other bud-parent pairs. This is 

done by optimizing for the best scores over many parent-bud pairs. 

 

 

Computing the scores: For each bud, a score was calculated for each of its potential 

parents (its neighboring cells at the time of its birth). The scores were based on the cell 

cycle of the parent cell. As a bud emerges, it is tracked separately from the parent cell, 

and thus, the fluorescent protein produced by the parent decreases due to diffusion to 

the emerging bud. This happens from the synthesis stage, through the G2 phase until 

mitosis, when the parent and bud disconnect. At the start of the next G1 phase, the 

Figure S9. Parent assignment 
scheme. Scores are computed 
for each mother daughter pair. 
These scores are optimized to 
obtain the best pairs. These 
pairs are later used to create 
better scores. 
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parent cell again accumulates new fluorescent proteins. This scheme was illustrated well 

by Cookson et al. (Cookson et al. 2005) and is shown in Figure S10 over real mCherry 

total intensity. The S phase (synthesis) and the M phase (mitosis) were used as 

reference points to define the cell cycle of a parent. These two points were identified 

around the birth of each bud for each of its possible neighbors at the time of its birth.  

 

The behavior of these neighbors around these points helped to create scores defining 

how likely these neighbors were as the parent of the emerging bud. In order to identify 

the possible cell cycle points in each neighbor, the total mCherry signal was modified to 

better display the cell cycle trends. Outliers in the signal were smoothed as depicted in 

the post processing (in the Clean Outliers module (3.6)) but using a smaller moving 

window of 5 frames. The signal was then smoothed using a moving window of 5 frames. 

Next, the period in which the cell itself buds from its parent was removed (filtering until 

the point in which the cell's area Z-Score at the first 150 minutes of life rises above -1), 

as in this period a cell cannot produce a bud, and the swift rise in total intensity at that 

period would have strongly influenced the global smoothing described next. The general 

Figure S10. Cell cycle intensity fluctuations. Shown are mother 
and daughter cells and their total mCherry signal. At the start of the 
mother's cell cycle, the signal increases. From the S phase 
(synthesis) to the M phase (mitosis), mCherry diffuses towards the 
daughter cell. 



15	
  
	
  

signal trend of the cell was then obtained using a strong local regression smoothing 

(loess smoothing). This general signal was subtracted from the signal to produce a 

signal which was not affected by the general trends of the cell, but mostly by the cell 

cycle. To make the signal comparable between cells, the result was then scaled 

according to the signal's mean and standard deviation. This signal was then used to find 

local maxima peaks around the birth of a bud to find the S phases (54 minutes prior to 

the birth and up to 27 minutes after the birth) and minima peaks to find the M phases (23 

minutes prior to the birth and up to 70 minutes after the birth). Note that due to 

segmentation issues, it may happen rarely that the M phase occurs before the birth, or 

the S phase occurs after the birth, but an S phase occurring prior to the M phase was 

not allowed. Also, a 36 minutes minimum time was set from the cell's birth until its first S 

phase. 

Several parameters were used to create the score for each of the possible parents: 

• Time from S phase to bud birth. 

• Time from bud birth to M phase. 

• S phase peak shape – Scaled signal values of the potential parent from 20 

minutes prior to the S phase peak until 20 minutes after the S phase peak. 

• Eccentricity of potential parent cell around the S phase (at 20 minutes prior to the 

S phase peak until 20 minutes after the S phase peak), as the shape of a parent 

cell is somewhat eccentric close to the budding point. 

• Area of potential parent around the S phase (at 20 minutes prior to the S phase 

peak until 20 minutes after the S phase peak), as a parent cell slightly expands 

prior to the S phase and contracts slightly after the S phase. 

• M phase peak shape – Scaled signal values potential parent from 20 minutes 

prior to the M phase peak until 20 minutes after the M phase peak. 

• Neighboring time - Fraction of time bud and potential parent neighbor each other 

(less than 5 pixels distance between cell edges) from bud birth to M phase (as 

the parent and bud are attached until the M phase, this number should be very 

close to 1, and therefore a neighboring fraction less than 0.4 was not accepted). 

• Eccentricity of potential parent from 20 minutes before the bud birth until its birth. 

• Ratio of the area between the potential parent and the bud from 15 minutes prior 

to the M phase up to the M phase. There is a certain ratio between the parent 

and the bud as the bud grows which this property tries to capture. 
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Definitions: 

False parent  M = - 

True parent  M = + 

Parameter set  X   	
  

𝑆𝑐𝑜𝑟𝑒 =
𝑃(𝑀 = −|𝑋)
𝑃(𝑀 = +|𝑋)

=
𝑃(𝑋|𝑀 = −)
𝑃(𝑋|𝑀 = +)

∙
𝑃(𝑀 = −)
𝑃(𝑀 = +)0112113
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

	
  

∝
𝑃(𝑋|𝑀 = −)
𝑃(𝑋|𝑀 = +)

=    :
𝑃;𝑥𝑝>𝑀 = −?
𝑃;𝑥𝑝>𝑀 = +?

𝑝∈𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

	
  

  𝑃;𝑥𝑝>𝑀 = 𝑚? =    B:𝑃;𝑥𝑝,𝑖>𝑀 = 𝑚?
𝑛

𝑖=1

𝑛

𝑤ℎ𝑒𝑟𝑒  𝑃;𝑥𝑝,𝑖 >𝑀 = 𝑚?~𝑁(𝜇𝑝,𝑖,𝑚 , 𝜎𝑝,𝑖,𝑚 )	
  

• Total mCherry intensity ratio (outlier cleaned and smoothed) between the 

potential parent and the bud from 15 minutes prior to the M phase up to the M 

phase. This ratio should increase in time as the protein diffuses into the bud, 

resulting in a decrease in the intensity of the parent and an increase in the 

intensity of the bud. 

To use the above parameters to identify the real parent out of the neighboring cells, we 

sought to use a Naïve Bayes classifier, which models the distribution of these 

parameters for real parents and non-parent neighboring cells. The score was defined as: 

 

 

 

 

 

 

The probability distribution of all parameters was taken to be a Normal distribution. 

Some parameters were computed from multiple time points (such as the S phase peak 

shape defined across 40 minutes), by geometrically averaging the probabilities over all 

time points. The distribution in each point was modeled over averaged values (median 

and standard deviation over 75% of the values around the median). 

As the positive set, we took parent-bud pairs whose bud only had one neighbor during 

their birth (and thus this neighbor must be the parent). In addition, we required that 

neighbor to be a neighbor for at least 80% of the period between the bud's birth and the 

M phase, and we required that it was not weaker in intensity than the bud at any point 

during that time. In the choice of the negative set, it is important not to enter true parents 

into it. Therefore, only neighbors of buds with 4 or more neighbors were considered into 

the negative set. The best scoring neighbor out of those was not entered into the 

negative set, considered as the true parent, and the rest were entered. The probability of 

each neighbor to be a parent was then calculated using the positive set distribution 

(score calculated only as: 𝑃 𝑋 𝑀 = + ). Thus, the probability of entering a true parent 
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into the negative set in each choice was at most 0.25 (if we consider the classifier 

according to the positive set to be at least as good as a random classifier). 

Several penalties were used to penalize empirically unlikely events: 

• If the neighboring ratio parameter was lower than 0.6, 2 standard deviations were 

added to the score (standard deviations according to the middle 90% of the 

scores).  

• If the distance from birth to M phase parameter had a Z-Score greater than 3, a 

single standard deviation was added to the score. 

• If the distance from S phase to birth parameter had a Z-Score greater than 3, a 

single standard deviation was added to the score. 

 

In order to decrease the search space for possible parents, parents that had a Z-Score 

(built from all the scores) above 4 were filtered. Also, only up to 4 possible parents were 

allowed per bud (the best scoring ones were kept). A score for a no-parent assignment 

was set as a score having a Z-Score above 5. That way, only when there was no other 

choice, no parent was assigned. 

Score optimization: Since the optimal score does not always reflect the correct 

assignment, a certain optimization on the scores was needed, instead of greedily picking 

the best scoring parent for each bud, as depicted in figure S11. The optimization was not 

global across the entire movie, since this was not computationally intractable. Therefore, 

a local optimization was done for each new bud. The optimization considered parent to 

bud assignment scores, and also other nearby bud scores that might be affected by the 

parent assignment (up to a certain degree). This way, for each bud born, we found the 

best parent assignment, which also did not hinder the parent assignment of the buds 

that could have been affected by its assignment. For each new bud (denoted as the 

center bud), buds affected by it were chosen as buds born up to an hour after its birth 

and in layers of influence around it. Layers of influence refer to layers of bud 

assignments around the bud that might be affected by the center bud. The first layer 

consisted of buds that shared the possible parents of the center bud. The second layer 

consisted of buds sharing the possible parents of buds in the first layer, and so on, up to 

5 layers of influence. This resulted is a search space consisting of all the possible parent 

assignments for each of the buds affected up to 5 layers from the center bud. 
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A valid assignment was defined as an assignment in which no two buds were assigned 

the same parent at the same time. The optimal valid assignment was found for the entire 

search space, and only the center bud was assigned a parent. After assignments were 

made, the scores were calculated again, but with the positive set taken as the assigned 

parents, and the negative set as the incorrect parent of those same buds.  

In order to further improve the scores, the distribution of the time between cell cycles 

and time from the birth of a cell until its first cell cycle were collected from the previous 

assignments. Empirical probability density functions were created for both measures for 

the positive set. For the negative set, a uniform density function was created as these 

measures are meaningless for a negative set. Thus, in the second assignment iteration, 

the scores for parents budding for the first time were multiplied by a constant divided by 

the empirical probability density function collected previously. The same was done for 

the time between cell cycles according to time distance to assignments already made. 

This algorithm was tested on ~200 manually tagged mother-daughter pairs, and had an 

accuracy of 0.96. 

 

Figure S11. Parent assignment possibilities. An example of possible parent cell 
assignments. (a) Scores for each of the possible parent assignments for cells 3 and 4 
(the lower the score, the better). (b) A simple greedy assignments – assigning best 
possible parent for cell 3, and then the best possible parent for cell 4 (cell number 1 is 
already assigned to cell 3, and as a cell can only have one bud at a time, cell 4 is 
assigned no parent), resulting in a score of 12. (c) Optimization on the scores, to assign 
the best possible scores for each bud, assigning cell number 2 as the parent of cell 
number 3, and cell number 1 as the parent of cell number 4, resulting in a score of 4. 
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5. Masking and Filtering 

A conservative framework for filtering the data was created to ensure that only high 

quality data is kept in the end. The following are the standard filtrations: 

Mask last known cell cycles: As cell tracking ends abruptly due to the end of an 

experiment, the last cell cycle of all cells is incomplete. For the majority of our analyses, 

we required complete cell cycles and therefore the last cell cycle of every cell was 

masked.  

Mask initial growth: The initial growth stage of a bud while it is attached to its parent was 

usually of no interest to us, as we attributed the protein production at that time to the 

parent cell. Therefore, the time a cell spent as a bud was masked. 

Mask abnormally large and strong cells: Rarely, there are cells that grow to abnormal 

sizes. These cells usually begin their life as normal cells, and at some point in time grow 

to large proportions. To avoid such extremities in the analyses, these cells were filtered 

from the point of their abnormal growth. These points were found by finding cells with an 

area Z-Score larger than 2 and a total fluorescence intensity Z-Score larger than 5 for 

more than 5 consecutive frames. 

Mask missed cell cycles: As some cell cycles are not detected by the lineage, the cell 

cycles that follow appear as very long cell cycles. Usually during these incorrectly long 

cell cycles, the missing S phase is detectable. Within these cell cycles the probability for 

an additional S phase peak was calculated. If an additional S phase was found with high 

probability, the two cell cycles were filtered. 

Long cell cycles were found by finding cell cycles longer than 1.5 times the median cell 

cycle length in the population. Cell cycles longer than 2 times of the median cell cycle 

length were automatically filtered as being too long. The cell cycles in between these 

lengths were checked for an additional S phase peak. The probability for an S phase 

peak was built from several parameters used in the Lineage algorithm:  

• S phase peak shape 

• Eccentricity of cell around the S phase 

• Area of cell around the S phase 

The probabilities according to these three parameters were sampled from S phases set 

by the Lineage algorithm. The median and standard deviations were taken from the top 

80% sample in order to consider only high probability S phases, which are more likely to 

be true. Then, the threshold for S phase peak was set as the median minus two 

standard deviations. Long cell cycles were filtered in cases in which the probability for 
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the additional S phase to occur passed the threshold, within its expected time frame in 

the cell cycle. The expected period for the additional S phase was set from the time of 

the previous M phase plus the minimum empirically checked G1 time and until the time 

of the S phase of the cell cycle minus the minimum empirically checked interphase time.  

Mask cell cycle arrest: Due to high cell density within a field of view many cells enter cell 

arrest. These occurrences were found and filtered by searching for cell cycles longer 

than 3 times the median cell cycle length in the population. In a cell arrested field of 

view, it is probable that cells not in a cell arrest also suffer in some way from the 

conditions in the field of view. Therefore, in field of views in which more than half of the 

cells were in a cell arrest, all the cell cycles from that point onwards were filtered.  

Mask negative protein production cell cycles: Another strong indication of missed cell 

cycles are cell cycles that have a long period of negative mCherry production (see no 

dilution section). As the mCherry has very slow degradation time, a negative protein 

production can only happen due to protein dilution to the bud. This dilution should be 

accounted for in the calculation of the non-diluted total protein fluorescence, and the 

primary reason for such a drop, is a missed cell cycle. Protein dilution occurs during the 

bud formation between the S phase and M phase, and therefore the typical drop length 

was calculated as the median length of time between the two phases. If within 33% of a 

window of such size negative production occurred, the cell cycle in which the drop 

occurred was filtered.  

Mask low quality cell tracks: During the post processing framework some cells have 

more problems than most, e.g., cells with large vacuoles might split many times. The 

quality of these cell tracks is questionable as the post processing framework cannot 

always find a perfect solution. Such cells, exceeding certain thresholds (defined below) 

on the amount of problems that occur in the post processing, were considered as low 

quality cells and filtered from further analysis. For a cell to be considered as a low quality 

cell, a cell needed to pass any of the following criteria:  

• Split at least three times (found in the Splitting module). 

• Disappear and reappear at least three times (in the Gapping module). 

• Having at least 3 long intensity drops (of at least 3 frames). 

• A tracking error of at least 3 frames length occurred. 

Mask growth rate: In order to achieve relatively constant conditions, we aimed at 

keeping the growth rate at certain limits within a strain, filtering periods in field of views 

where the median growth rate differed from a reference growth rate obtained from all the 
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field of views. We defined the growth rate at a certain point in time as the median of the 

cell cycle times at that point in time. To obtain a reference growth rate, we calculated the 

growth rate for each field of view at a time reference between 150 and 420 minutes into 

the experiment, which is usually a time of stable growth and low cell density. The 

reference growth rate was set as the median over the median growth rate over time of 

each field of view. The limit for field of view growth rate was set as up to 15% distant 

from the reference growth rate. Only time periods within a field of view in which the 

growth rate was within the limits for a time period were kept. The length of these periods 

needed to be at least twice the reference growth rate so as to keep only large periods of 

almost constant growth rates. For periods shorter than 4 times the reference growth rate, 

between periods of growth rates within the limits, slight deviations of up to 22.5% from 

the reference growth rates were allowed. Note that in order to complement this work in 

terms of comparisons between repeats, different strains and different experiments; we 

also manually checked that the resulting growth rates were similar. 

 

6. Dilution correction and production rates  

In order to perform analysis on protein production rates, we defined the protein 

production rate as the average amount of protein accumulated over a certain period of 

time. However, the total protein fluorescence of a cell provides information only on the 

protein accumulated in a cell without accounting for the protein and transcripts lost 

through dilution to its buds (mCherry and YFP degradation are negligible in relation to 

dilution. This was verified by observing negligible degradation in mCherry and YFP after 

addition of a translation inhibitor to the media). As the bud transcripts and cell 

environment are transported from the parent through active transportation and diffusion, 

we considered the total protein accumulated in the bud until the mitosis separation as 

proteins produced by the parent. Although the bud is a part of the parent until the mitosis 

point, it is considered as a new cell by the image segmentation and tracking. Therefore, 

the protein accumulated in the bud until the mitosis point was added to the protein 

accumulated in the parent as depicted in Figure S12, to obtain the protein accumulated 

in the parent until the mitosis point while correcting for dilution to the bud. The corrected 

accumulated protein was then smoothed for outlier points in the signal (as done in the 

post processing, in the 'Clean outliers module', but with a smoothing window of size 5). 
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After calculating the corrected accumulated protein in a cell for each time point, the 

calculation of the protein production rate from time T to time T+∆T for a single cell was 

defined as: 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛  𝑟𝑎𝑡𝑒   𝑇… 𝑇 + ∆𝑇 = !""#$%&'(%)  !"#$!"# !!∆! !!""#$%&'(%)  !"#$%&' !
∆!

  

 

Prior to the production rate calculation, the accumulated protein signal was smoothed 

separately in each of the time windows in which the protein production rate was 

calculated using Matlab's Loess smoothing, with a span set to 0.4 of the data points in 

the window, such that data from a certain time window did not leak to its adjacent 

windows. 

 
  

	
  

+ 

Figure S12. Correcting for dilution. An example of how the effects of dilution are 
corrected. The bud total intensity values (dark blue) are added to the total intensity of 
the parent (red) from the point of the bud's appearance until the mitosis point (first blue 
dot) to produce the parent's total intensity values, corrected for dilution (dark red). The 
rest of the lines are additional daughter cells, and are also used for dilution correction.	
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Yeast Strains 

A shared master strain that contains the YFP reporter gene, the HIS3 proximal promoter 

(100bp upstream of the ATG), and the mCherry fluorescent protein downstream of the 

TEF2 promoter, was used to construct the library. The variable part of each promoter 

were synthesized by Biomatik and inserted into a master strain by genomic integration, 

as previously described (see (Raveh-Sadka et al. 2012) for details).Additional strains 

with mutated Gal4 binding sites were designed to span a range of weak medium and 

strong affinity to Gal4, based on previous studies by Ptashne et al. as follows: 

1. STRONG: CGGAAGACTCTCCTCCG ( “near consensus”, (Ginigea and 

Ptashne 1988)) 

2. MEDIUM:  AGGAAGACTCTCCTCCG ( GAL1-GAL10 UASg site3, (Liang et 

al. 1996)) 

3. WEAK: CGGATTAGAAGCCGCCG ( GAL1-GAL10 UASg site1, (Liang et al. 

1996)) 

 

Flow Cytometry data analysis and Gamma distribution analysis 

An automatic data analysis pipeline was applied for gating and filtering the data and to 

remove outliers. Wells were considered outliers having abnormal forward scatter, side 

scatter or mCherry distributions. Cells collected in the first or last 0.5 seconds in each 

well were discarded from further analysis, as well as cells for which negative or 

saturated values were measured in one of the parameters. Cells collected over periods 

that show flow instability (bubbles, etc.) were also removed. Automated gating based on 

FSC and SSC values was implemented to minimize cell heterogeneity and reduce 

extrinsic variability. The gating algorithm select for the lower population that is enriched 

for G1 cells. The final gated YFP values were normalized by mCherry. 
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Fluorescent proteins 

A direct and accurate measure of promoter activity over time was achieved by real-time 

monitoring the fluorescent protein levels as a measure of promoter activity. The YFP 

protein was very stable over the acquisition time (>15 hours), showing no degradation, 

also after addition of cycloheximide to block translation. Protein accumulation, corrected 

for dilution from mother to daughter cells, showed a constant increase (Fig. S13) and 

was considered as an accurate measure for promoter activity.  
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Figure S13. Individual cell tracks, corrected for dilution between 
the mother and the daughter cells. Cell tracks are shown for 2 
strains: strong binding site affinity (purple) and weak binding site affinity 
(pink). The tracks show robust continuous increase in signal intensity, 
and were differentiated to yield the production rate (as described in the 
main text). 
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Normalization between experiments and wells 

As the mCherry distribution should be equal across all wells in all experiments, we made 

sure that all mCherry rate distributions have the same mean mCherry rate. This was 

done by measuring the mean mCherry rate from a reference well, and multiplying all 

mCherry rates of a well by a factor such that its new mean mCherry rate will have the 

same mean mCherry rate as the reference well. A multiplication factor between the 

different mean mCherry rate distributions reflects a global factor that should also be 

reflected in YFP changes as well. Therefore, the YFP rates were also multiplied by the 

same factor multiplying the mCherry. Displayed in figure S14 are corrected mCherry rate 

histograms and their common distribution (a distribution created from an equal amount 

of data points taken from each strain). It can be seen that the mCherry rate histograms 

of different strains are very similar, and fit the common distribution. 

 

 

Figure S14. Corrected mCherry rate histograms. Representative mCherry rate 

histograms normalized between wells and experiments. Depicted in red is a 

distribution of mCherry rates of all strains in the example. 
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Autocorrelation of promoter production rates  

Normalized YFP rates were calculated for each cell at a resolution of 3 minutes. 

Negative rates were filtered. The top and bottom 0.5% values of the data for both 

mCherry and YFP were considered as outliers. Cell cycles containing at least 50% 

unfiltered YFP and mCherry rates were used. A cell cycle not containing at least 30 

minutes of data was not used. Autocorrelations were calculated at a resolution of 6 

minutes, averaging the temporal information to reduce noise. Autocorrelation at 3 

minutes resolution (an example shown in Figure S15) yielded lower autocorrelation 

values, however the relation between the different strains was kept the same.   

Autocorrelation lag information smaller than 14 data points was not used. Then, all 

autocorrelations across all cells were averaged. Correlations between consecutive time 

windows were calculated by averaging the values across each resolution (e.g. for a 

resolution of 9 minutes the values of windows i, i+1, i+2 were averaged), and then 

computing the correlation of the consecutive windows in a single cell. Then, all the 

values across all cells for each resolution were averaged. Values filtered were not used 

for the correlation. Correlations with less than 28 data points divided by the current 

resolution (where a resolution of 3 minutes is considered as 1 as this is the system's 

minimal resolution), or less than 4 data points, were not used. To verify that the strains 

differ in their autocorrelation of YFP rates and not the mCherry rates, we calculated the 

autocorrelation also for YFP and mCherry rates alone. We clearly observed that for all 

the strains there was no significant change for between the autocorrelation curves of the 

mCherry, as opposed to the autocorrelation curves of the YFP rates. 

  

a b Figure S15. A utocorrelation 
of normalized YFP production 
rates at 3 min resolution. The 
autocorrelation was calculated 
across thousands of different 
cell traces for each promoter 
variants. Bars denote standard 
errors. 
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Model of stochastic gene expression 

We use a two-state kinetic scheme in which the promoter switches between an active 

and in-active promoter state, and has transcription, translation, mRNA degradation and 

protein degradation (Fig. S16). 

 

 

 

To analyze the temporal dynamics of gene expression we use a stochastic simulation of 

this model (Gillesple 1977). For steady-state gene expression and cell-to-cell variability 

(noise) we use an analytical solution of this same model (Sanchez et al. 2011), which 

was solved using the master equation. 

 

For both models we use the following rate parameters: (All rate parameters are in 

minute-1) 

 
1. Protein degradation. YFP was found to be highly stable (see fluorescent protein 

paragraph). We therefore assume that protein degradation comes only from 

dilution. Since we measured the doubling time of our strain (~90 min), we chose 

to fix the protein degradation rate. We set the degradation rate to ln(2)/90 = 

0.0077. 

2. Translation rate. Yeast, under fast growing conditions, has a protein production 

rate of between 6500 and 19500 proteins/cell/sec (von der Haar 2008). Yeast 

has around 60,000 mRNAs/cell (Zenklusen et al. 2011). This gives a translation 

rate between 6.5 and 19.5 proteins/mRNA/min. We set the translation rate to 10 

proteins/min. 

3. Transcription rate. The transcription rate is the rate of production of stable 

mRNAs while the promoter is in each respective state (on or off). Experimentally 

OFF ON mRNA Protein
Kon

Koff

Figure S16: Kinetic model of gene expression. The scheme represents a promoter 
that switches between a transcriptionally inactive and active state. On- and off switching 
happens with rate Kon and Koff respectively. Transcription, translation, mRNA and 
protein degradation rates are not shown, but are taken into account in all simulations. 
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measured transcription rates combine both on and off promoter states. 

Therefore, the total rate of transcription for a gene is the sum, for all states, of the 

fraction of time spent in that state times the transcription rate in that state. The 

upper bound for expression rate is between 4 transcripts/minute and 10 

transcripts/minute (Pelechano et al. 2010). We note that these rates represent 

the combination of on and off promoter states. We set the transcription rate to 5. 

4. mRNA degradation. The median mRNA half-life was measured to be ~20 min 

(Wang et al. 2002). We therefore set the mRNA degradation rate to ln(2)/20. 

5. Promoter switching rates (Kon, Koff). Promoter switching is a function of TF 

binding and unbinding, however each (un)binding event does not necessarily 

switch the promoter to another state. For this reason promoter switching is much 

slower than TF binding kinetics. Promoter switching was measured to be in the 

range of 1e-3 to 1e1 (Zenklusen et al. 2011; Octavio et al. 2009; Tan and van 

Oudenaarden 2010). For the “normal” promoter we use 2-3 min-1 and 2-2 min-1 for 

Kon and Koff respectively. For the “fast” promoter we use 1-2 min-1 and 2-2 min-1, 

for the “slow” promoter we use 2-3 min-1 and 2-3 min-1 for Kon and Koff 

respectively. 

 

Stochastic simulation of fast and slow promoter dynamics 

We simulate three regimes: normal, slow and fast dynamics. The “fast” regime has a 

higher Kon to simulate an increased accessibility with the reduction of nucleosome 

coverage as a result of the addition of a poly(dA:dT) element. The “slow” regime has a 

lower Koff to simulate the increase in transcription factor binding affinity. Figure 1 shows 

three example runs in which the promoter switches between the ON and OFF state, and 

transcription and translation occur when the promoter is ON. The protein production 

shows the bursting behavior of gene expression. The figure illustrates that protein 

production is correlated with promoter dynamics, however also that protein production 

has a delay compared to promoter on-switching and that, due to chance, not every on 

state results in a protein production burst. 
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Autocorrelation analysis of simulated protein production 

We found that, in experiment, increasing the binding affinity or decreasing the 

poly(dA:dT) length both increase the autocorrelation (Fig. 2 from main text). To 

investigate if this change in autocorrelation is expected given the simple model of 

promoter state switching, we performed the same autocorrelation analysis on simulated 

data obtained from the Gillespie simulations. We model the increase in binding affinity by 

a decrease in Koff and the decrease in polyT length by a decrease in Kon. Figure S17 

shows that indeed we observe the same increase in autocorrelation when we decrease 

Koff (increase affinity) or decrease Kon (decrease polyT length). 

  

Figure S17: Autocorrelation analysis on simulated protein production. We use the stochastic 
simulation data to look for autocorrelation changes when changing either Koff (a) or Kon (b). We 
observe that decreasing either Koff or Kon significantly increases the autocorrelation, in line with 
our experimental observations. Values shown for Koff and Kon are in min-1. 
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Limits of measuring promoter dynamics through protein production 

In order to systematically investigate how promoter dynamics relate to protein production 

bursting we use the above stochastic simulation and gradually increase either Kon or 

Koff and quantify protein production bursting. We quantify the burst frequency as 

P(on|off) and burst size as P(off|on)-1. P(on|off) = Noff->on / toff and P(off|on) = Non->off / ton. 

Where Noff->on is the number of off to on event and Non->off vice versa. toff and ton is the 

total time in the off or on state respectively. 

To simulate our microscopy experiments as best as possible we sample the protein level 

every 6 min. We note however that our simulation does not capture every process that 

affects the delay between on-switching, transcription and translation, such as mRNA 

maturation and protein folding. However, adding such delays would not change the 

qualitative result of our simulations. 

Figure S18 shows how changing promoter ON and OFF switching (Kon and Koff 

respectively) affects mean expression and the derived promoter dynamics from protein 

production bursting. The figure shows that there is a regime in which promoter Kon and 

protein burst frequency change linearly with respect to each other. However, at higher 

Kon the protein burst frequency saturates. For Koff the same happens, but now both at 

very low and very high Koff. There appears to be only a limited regime where changes in 

Koff are linear to changes in the observed protein burst size. However, in the biologically 

meaningful regimes of Kon and Koff, the simulation shows that changes in Kon and Koff 

can be detected, at least qualitatively, by measuring changes in protein production 

bursting. The fact that there exists a regime in which this measurement is non-linear 

could explain why, in our microscopy experiment, we measure a smaller change in 

bursting than is expected from the change in mean expression. 
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Figure S18: Measured protein production bursting as a function of promoter switching, in a 
stochastic simulation. We measure mean expression, protein production burst frequency and 
protein production burst size as a function of changing Kon or Koff. Increasing Kon increases the 
mean expression level (a) and increases the burst frequency, while burst size remains constant (b). 
However, there is a regime, at higher Kon (b, Kon>2*10-2), where measured burst frequency 
increases non-linearly with increasing Kon, while mean expression continues to increase (c). For 
changing Koff we observe a similar phenomenon. Decreasing Koff increases the mean expression 
level (d), but at higher and very low Koff (e, Koff>1*10-1 and Koff<2*10-2) burst size changes non-
linearly with Koff, while expression continues to increase (f). This analysis shows that changing 
promoter dynamics can be measured qualitatively through protein production bursting, but might be 
limited quantitatively in regimes where protein production bursting changes non-linearly with 
changing promoter dynamics. 
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Exploring the relationship between mean expression level and noise using an 

analytical model 

We have changed the mean expression and noise using two different biological 

parameters, namely promoter accessibility (adding polyT) and binding affinity (TF 

binding site sequence). Using various analyses we show that each biological parameter 

changes the dynamics of gene expression in a different way. Accessibility changes the 

frequency of expression bursts and affinity changes the length of expression bursts. 

Using a stochastic simulation (Gillesple 1977) we show how promoter kinetics (on-off 

switching) can be modulated to give changes in protein production bursting. Various 

studies have connected this “bursting” to the noise properties of gene expression. Most 

notably is the gamma model by Friedman et al. (Friedman et al. 2006), where noise 

(std2/mu2) is inversely related to the burst frequency and the burst size is related to the 

noise strength (std2/mu). 

To understand how the expression and noise changes that we observe are related to 

promoter dynamics we use an analytical solution of the kinetic scheme that we used in 

the stochastic simulations (see below for the derivation), which gives us the mean 

expression level, noise and noise strength at steady state. 

We set the parameters to biologically meaningful values (see above) and assume that 

changing accessibility changes Kon and affinity changes Koff, where an increased 

affinity has a decreased Koff and an increased accessibility has an increased Kon. 

 

Figure S19 shows the mean versus burst frequency (and noise) plot of either changing 

Kon or Koff. Increasing Kon increases expression and decreases noise (increases burst 

frequency) (Fig. S19b,c,e,f blue lines), which is in accordance with our experimental 

observations (Figure 4 from main text). Interestingly, for changing Koff we observe two 

different qualitative responses, depending on the rate of on switching (Kon). When Kon 

is relatively slow decreasing Koff increases expression and increases noise (Fig.S19b,c 

red lines). When Kon is relatively fast decreasing Koff increases expression and 

decreases noise (Fig.1S9e,f red lines). In our measurements we observe that increasing 

the binding affinity increases expression and increases noise. The model therefore 

predicts that if we would increase Kon (TF concentration and/or activity) that noise would 

decrease with increasing binding affinity. Figure S19d shows expression and burst 

frequency from gamma fit (inverse noise) for increasing the binding affinity, however now 

in activating condition (SCD-AA). When starved for amino acids the Gcn4 TF is induced. 
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Exactly as the model predicts, burst frequency increases (or noise decreases) now with 

increasing expression. 
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Figure S19: Measured and predicted change in burst frequency and noise. We compare 
the measured change in expression and burst frequency with the predicted change in 
expression and burst frequency from the analytical solution of the kinetic scheme shown in 
figure 1. Burst frequency (a,b,d,e) is quantified as noise-1 (c,f) (Friedman et al. 2006). In non-
activating condition, where Gcn4 is lowly induced, we measured an increase in noise, or 
decrease in burst frequency, with increasing expression as a result of increasing the binding 
affinity of the Gcn4 site (a). The analytical model predicts that such behavior happens when 
two conditions are met: 1) the promoter is leaky, i.e. the “OFF” state has low, but significant, 
transcriptional activity, and 2) promoter switching is slow, i.e. Kon is relatively low (b,c Koff 
change: red lines). Changing Kon in the model always results in an increase in burst frequency 
and therefore a decrease in noise (b,c,e,f Kon change: blue lines). Given these theoretical 
conditions, the model predicts that the decrease in burst frequency, or increase in noise, 
disappears when promoter switching is relatively fast, i.e. Kon is high (e,f Koff change: red 
lines). In accordance with this prediction, when we repeat the experiment in activating 
condition (amino acid starved, to induce Gcn4), we find that burst frequency now increases (d), 
and noise decreases, with increasing expression as a result of increasing the binding affinity. 
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Frequency spectrum analysis 

When the lifetime of mRNAs is short relative to the lifetime of the protein, as is the case 

for yeast, protein production can be assumed to occur in random uncorrelated events 

(Cai et al. 2006; Friedman et al. 2006). If protein production is indeed uncorrelated, we 

don’t expect to observe any frequencies, other than cell cycle, in the production over 

time. Figure S20 shows the frequency spectrum analysis of the YFP production in time. 

As expected the only frequency that we observe is around 1/90 per min, which is the 

frequency of the cell-cycle (measured doubling time). We note however that when 

mRNA production occurs in bursts, and that re-initiation occurs at some fixed time 

interval, we would expect to see this in the frequency spectrum. Since re-initiation is 

probably faster than the interval at which we measure the protein production and due to 

stochastic translation, we would not be able to pick up this re-initiation frequency. 

Figure S20: Frequency spectrum analysis of YFP production in time. Shown is a frequency 
spectrum analysis performed using the Fourier transform of the autocorrelation of the YFP production 
in time, which was measured in the microscope.  The shown spectra quantify the relative contribution 
of each frequency to the total signal. We find that the only frequency that is significantly present in the 
data is around 0.01 min-1, which very likely stems from the frequency of the cell cycle (around 90 min, 
a,b arrow). Changing the polyT length (a) or binding affinity (b) does not change the frequency 
spectrum. For comparison spectra are shown for random sequences with different means (c). 
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Analytical solution of the kinetic model 
 
We model stochastic promoter state switching, transcription and translation using the 

master equation (Sanchez et al. 2011). In this model promoter transcription factor (TF) 

binding and unbinding events determine the transitions between promoter states. 

Transcriptional activity changes when the promoter switches to a state with different 

transcriptional activity. The promoter states can have low (including zero) or high 

transcription rate, to describe in-active (“off”) or active (“on”) states respectively. 

Translation occurs in bursts with the probability of a burst described by a geometric 

distribution. The master equation (in matrix notation) takes the form:  

 

d
dt
p(n) = K̂ − b

1+ b
R̂ − nδ Î⎡

⎣⎢
⎤
⎦⎥
p(n)+ R̂ h(β ) p(n − β )

β=1

n

∑ + (n +1)δ Î p(n +1)
 

       

(1) 

 

Where  
p  is the vector of probabilities of having n proteins in the cell for each promoter 

state  d dt p(n)  describes the time evolution of these probabilities. K̂  is the matrix of 

promoter state transition rates, where 
K̂ij  is the rate of transitioning from state j to state 

i and K̂ii  is the sum over all outgoing rates from i times -1. R̂  is the diagonal matrix of 

transcription rates with  
r  on the diagonal ( R̂ii =

ri ), where  
ri  is the transcription rate of 

state i. Î  is the identity matrix. b is the average burst size (proteins produced per 

mRNA). δ is the protein degradation rate. h(β) describes a geometric distribution and is 

the probability of producing a burst of size beta. 

 

To derive the mean protein abundance and variance we solve this system at steady 

state, thus for  d dt p(n) = 0 . We get mean protein abundance: 

 

  
n =

b r m(0)

δ  

(2) 

Where  
m(0)  is the zeroth partial moment of the distribution of mRNA abundance and is 

the solution to: 

 
 0 = K̂

m(0)  
(3) 

We can get noise (σ2/µ2) and noise strength (σ2/µ) by deriving: 
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n2 = (1+ b) n +

b r n(1)
δ  

(4) 

Where  
n(1)  is the first partial moment of the distribution of protein abundance and is the 

solution to: 

 
 0 = (K̂ −δ Î ) n(1) + b R̂

m(0)  
(5) 

Variance (σ2) is: 

 

€ 

Var(n) = n2 − n 2

 
(6) 

Therefore noise (σ2/µ2) becomes: 

 

  

� 

η2 =
(1+ b) n − n 2 +

b  r  n (1)
δ

n 2
 

(7) 

And noise strength (σ2/µ): 

 

  

� 

F =
(1+ b) n − n 2 +

b  r  n (1)
δ

n  

(8) 

 

We describe gene expression using a two state kinetic scheme that represents switching 

between an active (ON) and inactive (OFF) promoter configuration (Figure S16). The 

ON state is transcriptionally active (with rate r1) and we allow the OFF state to have 

some (leaky) transcriptional activity (with rate r2). K̂  and  
r  thus become: 

 

 
⎟⎟⎠

⎞
⎜⎜⎝

⎛
−

−
=

KonKoff
KonKoff

K̂  
(9) 

 

 

  r = r1 r2( )  
(10) 
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Figure S21: Analysis of protein production bursting using the change in 
production rate. We define a production burst (ON state) as a period in which the 
change in YFP production is positive, i.e. the second derivative of the YFP fluorescence 
in time. We then quantify the on-rate as the number of OFF to ON transitions divided by 
the total time in the OFF state. Similarly we quantify the off-rate as the number of ON to 
OFF transitions divided by the total time in the ON state. Shown is the measured off 
and on-rate (from microscope data) versus the mean production rate, for either 
changing the polyT length or the binding site affinity. We find that when changing the 
polyT length the on-rate changes more than the off-rate. When changing the binding 
affinity we find that the off-rate changes more than the on-rate. Measured rates are in 
min-1. 
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Figure S22: Burst size and burst length as a function of changing the binding site 
affinity. We define a “burst” as a period of relative high (YFP) protein production. Shown is 
the average burst length and average burst size, measured in microscope, for strains with 
differing binding site affinity. We quantified the length, in minutes, of the periods of activity 
(a) and the size in terms of average YFP production (b). 
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