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A novel reference-based banding technique for multiple alignment

We introduce a banding technique for multiple sequence alignment. The general idea is to constrain the

space of alignments considered to those that deviate by a small amount from a given reference alignment.

The parameter ∆ specifies the maximum amount of deviation. Informally, a residue or nucleotide in the

reference alignment can be repositioned up to ∆ positions up or downstream. In this way, banding enables

a systematic “realignment” of a reference.

Our banding technique can be applied to any dynamic programming (DP) alignment algorithm that

recursively computes optimal subalignments. Computation can be visualized over a DP matrix where

each entry corresponds to a “cut”, i.e. a split into a set of prefix subalignments and a set of suffix

subalignments. A “trace” is a continuous path of matrix entries that correspond to a complete alignment.

Supplementary Figure 1 illustrates the trace of a reference alignment AR and the set of all cuts within a

deviation of 1 from AR. Traces through these cuts correspond to complete alignments within a deviation

of 1 from AR. These alignments are exactly those considered under banding with ∆ = 1.

In the following sections we will formalize our banding technique under the notions of cuts and ∆-

deviation. We will describe banding for pairwise alignment and extend to progressive multiple alignment.

Finally, we will describe the implementation of banding for the structure-based multiple RNA alignment

tool LocARNA (Will et al. 2007).
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Supplementary Figure 1. Matrix visualization of banding in a pairwise alignment of the sequences

ACGUUUC and AGTTTGC. A cut corresponds to an element of an alignment trace. Consequently each cut

(i, j) is represented as its corresponding matrix entry (i,j). The trace of a reference alignment AR with

alignment strings AR
1 =AC---GUUUC and AR

2 =AGTTTG---C is shown in dark grey, and the cuts within 1-

deviation from AR in dark and light gray.

Preliminaries

A sequence S is a word over a fixed alphabet Σ. We reserve a special symbol ‘−’ 6∈ Σ to represent a

gap. A word T over the alphabet Σ ∪ {−} is an alignment string. T|Σ denotes the sequence obtained by

removing all gaps from T . The length of a word w is denoted by |w| and its i-th character by w[i]. A

q-way (multiple) alignment A of length m =: |A| is a matrix A ⊆ (Σ ∪ {−})q×m with q =: rows(A) rows.

Thus for all 1 ≤ x ≤ q, the x-th row of A, denoted by Ax, is an alignment string. A is an alignment of the

sequences S1, . . . , Sq if and only if (1) Sx = Ax|Σ for all 1 ≤ x ≤ q and (2) no column in A is gap-only, i.e.,

it consists only of gaps. For example, a 3-way multiple alignment of the sequences Sex1 = CTA, Sex2 = GTT

and Sex3 = CGTT is

Aex =


C - - T A

- G T T -

C G T T -

 .

The rows of Aex are the alignment strings Aex1 = C−−TA, Aex2 = −GTT− and Aex3 = CGTT−.

For a q-way alignment A and a p-tuple I = (x1, . . . , xp) of distinct integers in {1, . . . , q}, the projection
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A〈I〉 of A onto I is constructed by taking the matrix (Ax1 . . . Axp)T and deleting all gap-only columns.

Intuitively, the projection is the subalignment implied by A on the sequences indexed by I. A is an

alignment of A1 and A2 if A1 = A〈1, . . . , q1〉 and A2 = A〈q1 + 1, . . . , q〉 for some 1 ≤ q1 < q. For example,

Aex is an alignment of A1
ex = Aex〈1〉 =

(
C T A

)
and A2

ex = Aex〈2, 3〉 =

 - G T T

C G T T

 .

For an alignment string T and a position j, 0 ≤ j ≤ |T |, the function

ctpT (j) := |(T [1 . . . j])|Σ|

maps j to a corresponding position in the sequence T|Σ. Note that in the case where T [j] is the gap symbol,

ctpT (j) points to the position left of the gap. The inverse of ctpT is ptcT , mapping positions from T|Σ to

T . For example, ptcAex2
(3) = 4, ctpAex1

(5) = 3, and ctpAex1
(3) = 1.

For a pairwise alignment A of the sequences S1 and S2, the cut of A at column i is the pair

c = (c1, c2) = (ctpA1
(i), ctpA2

(i)).

That is, A can be cut at column i into a prefix and a suffix alignment such that the prefix is an align-

ment of the sequences S1[1 . . . c1] and S2[1 . . . c2]. The cuts of A2
ex at the columns from 0 to 4 are

(0, 0), (0, 1), (1, 2), (2, 3), and (3, 4), respectively. Note that A is uniquely described by its set of cuts

cuts(A).

∆-deviation from a reference alignment

Define the distance between pairwise cuts c = (c1, c2) and c′ = (c′1, c
′
2) as their Manhattan distance

‖c− c′‖1 = |c1 − c′1|+ |c2 − c′2|.

Define the deviation of a cut c = (c1, c2) from a reference alignment AR as the distance to the closest cut

in AR

dAR(c) = min
cR∈cuts(AR)

‖c− cR‖1.
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c is said to be within ∆-deviation from A if dAR(c) ≤ ∆. For two pairwise alignments A and AR over the

same sequences, define the deviation of A from AR as the largest deviation of any cut in A from AR

dAR(A) = max
c∈cuts(A)

(dAR(c)).

Generalizing to multiple alignments, define the deviation of A from AR as the maximum deviation over

all projections to pairwise subalignments (“maximum-of-pairs”). That is,

dAR(A) = max
{

dAR〈i,j〉(A〈i, j〉) | 1 ≤ i < j ≤ q
}
.

In this way, if the deviation of A from AR is limited by at most ∆, then so is the deviation for all projections

to pairwise subalignments. A is said to be within ∆-deviation from AR if dAR(A) ≤ ∆.

Banding in pairwise alignment algorithms

For two input sequences S1 and S2, consider a DP algorithm, like the classic Needleman-Wunsch, that

computes a pairwise alignment A by recursively computing the scores of prefix subalignments Mij . For a

given reference alignment AR and deviation parameter ∆, the goal of our banding technique is to find the

optimal A under the constraint that dAR(A) ≤ ∆. We achieve this goal by restricting computation to the

Mij that correspond to a set of cuts, denoted by C2(AR,∆), that are within ∆-deviation of AR. That is,

C2(AR,∆) :=

{
(i, j) ∈ {0, . . . , |S1|} × {0, . . . , |S2|}

∣∣∣∣ ∃cR ∈ cuts(AR) : ‖cR − (i, j)‖1 ≤ ∆

}
.

This restriction is sufficient because cuts(A) ⊆ C2(AR,∆) if and only if dAR(A) ≤ ∆.

C2(AR,∆) consists of elements (i, j
i
) . . . (i, ji) for each row 0 ≤ i ≤ |S1|. Therefore, it is convenient to

describe it in terms of the boundaries j
i

and ji. For each 1 ≤ i ≤ |S1|, optimizing over all pairs of cuts

(i, j) and (i′, j′) of AR, j
i

is defined as the minimum of all j′ −∆ if i′ = i and i′ if j′ − j ≤ ∆, but set to

0 if this is negative; ji, as the maximum of all j′ + ∆ if i′ = i and i′ if j − j′ ≤ ∆, but limited to |S2| if

larger. Note that we can compute this in linear time, since the number of cases is O(∆|S1|).
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Banding in progressive multiple alignment

We devise a progressive alignment scheme to solve the problem of multiple alignment in deviation ∆ from

a reference alignment AR. The elementary operation, or a single step, of this scheme is computing an

alignment A of two alignments A1 and A2 restricted by a set of permissible cuts C(AR,∆). Let A1 and

A2 be alignments of respective sequences S1, . . . , Srows(A1) and Srows(A1)+1, . . . , Sq. W.l.o.g. let AR be a

multiple alignment of the sequences S1, . . . , Sq.

We perform a single progressive alignment step by aligning two “consensus” sequences Ŝ1 and Ŝ2 of

respective alignments A1 and A2. We denote the optimal alignment of Ŝ1 and Ŝ2 by Ap. Then, Ap induces

a multiple alignment A of A1 and A2, write A := [[Ap;A1,A2]], which is optimal, among all alignments of

A1 and A2, due to the sum-of-pairs score.

We define a set of permissible cuts C(AR,∆) for the alignment Ap of Ŝ1 and Ŝ2, such that the set of Ap

where cuts(Ap) ⊆ C(AR,∆) describe exactly the alignments whose induced alignments are in ∆-deviation

from the reference alignment, i.e.,

cuts(Ap) ⊆ C(AR,∆) iff dAR([[Ap;A1,A2]]) ≤ ∆.

Due to the definition of the deviation as “maximum-of-pairs”, we can compute this set as the intersection

of pairwise cut sets C(AR, x, y,∆) ⊆ {0, . . . , |Ŝ1|}×{0, . . . , |Ŝ2|} (1 ≤ x ≤ rows(A1), rows(A1)+1 ≤ y ≤ q)

that guarantee the ∆-deviation for the pairwise alignment of sequences Sx and Sy, i.e.,

cuts(Ap) ⊆ C(AR, x, y,∆) iff dAR〈x,y〉([[Ap;A1,A2]]〈x, y〉) ≤ ∆.

Let y′ = y − rows(A1) denote the index of sequence Sy in A2. The set C(AR, x, y,∆) from the alignment

strings A1
x, A2

y′ , A
R
x, AR

y is generated as follows. A cut cp of Ap corresponds to an induced cut c = (c1, c2)

of [[Ap;A1,A2]]〈x, y〉, which is defined by

c = [[cp;A
1
x, A

2
y′ ]] = (ctpA1

x
(c1), ctpA2

y′
(c2)).
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For each cut c of the alignment AR〈x, y〉, we generate the set of cuts c′ in distance ∆. Then for each such

cut c′, we generate the cuts cp, where c′ = [[cp;A
1
x, A

2
y′ ]], and add them to the set C(AR, x, y,∆). As in

the pairwise case, this is computed in terms of boundaries j
i

and ji for “matrix rows” 1 ≤ i ≤ rows(A1).

Supplementary Figure 2 provides examples of cut sets C(AR, x, y,∆).

Multiple alignments generated by progressive alignment built on this strict definition of permissible

cuts C(AR,∆) have at most deviation ∆ from the reference alignment. However, this strategy can fail

to produce an alignment, for similar reasons that alignment cannot guarantee success in constructing an

optimal alignment, because of misalignments in earlier progressive steps. We emphasize that such potential

inconsistencies cannot be avoided in a progressive alignment method that guarantees the maximum devia-

tion ∆. As long as such events are rare (like we observe), they can be tolerated for screening applications.

In cases, where this behavior is unwanted, we can instead apply a variant of the algorithm that relaxes the

constraints, thereby ignoring violations due to previous steps.

Relaxed cut sets.

For applications that require guaranteed success, we propose a relaxation of the method that avoids in-

consistencies by relaxing the distance constraints in an optimal way. By DP, we compute a relaxed cut

set Crelaxed(AR,∆) that has a size limited by ∆ and minimizes the distance to the sets C(AR, x, y,∆).

Crelaxed(AR,∆) is computed as set of cuts in ∆- deviation from an alignment A′ of Ŝ1 and Ŝ2. A′ mini-

mizes
∑

c∈cuts(A′) cost(c), where the cost of a cut of A′ is defined by

cost(c) :=
∑

1≤x≤rows(A1),
rows(A1)<y≤rows(A)

min
c′∈C(AR,x,y,0)

‖c− c′‖1.

The alignment A′ is obtained by traceback from the DP matrix C evaluating C(0, 0) = cost(0, 0),C(i, 0) =

cost(i, 0) + C(i− 1, 0),C(0, j) = cost(0, j) + C(0, j − 1), and

C(i, j) = cost(i, j) + min{C(i− 1, j − 1),C(i− 1, j),C(i, j − 1)}

6



Will, et al.

C C T T T - - G

A
C
-
-
-
T
T
T

Supplementary Figure 2. Cut sets for banding in the case of multiple progressive alignment. Cut sets

for sequences x and y of AR. Intersecting such sets for all pairs of sequences x and y − rows(A1) from the

respective input alignments A1 and A2 yields a cut set for one step of the progressive multiple alignment

algorithm. Cut sets for ∆ = 0 (dark gray), ∆ = 1 (dark+light gray). There, the rows x and y of AR are

AR
x=AC--TTT- and AR

y=-CCTT-TG; the corresponding rows of the input alignments are A1
x=AC---TTT

and A2
(y−rows(A1))=CCTTT--G.

for 1 ≤ i ≤ |A1|, 1 ≤ j ≤ |A2|. Finally, we set Crelaxed(AR,∆) := C(A′,∆). Clearly, a heuristic based

on this relaxation will not guarantee ∆-deviation from AR. However, by construction, it will favor low

deviation and limit the computational cost and deviation in each progressive alignment step by ∆.

Simultaneous Alignment and Folding in LocARNA in Limited Deviation of a Reference

Alignment

We review details of the LocARNA score and algorithm and show the lifting of the novel banding technique

to LocARNA’s simultaneous alignment and folding DP algorithm.

Structure

A base pair is a pair a = (i, j) ∈ N2. We call i =: a` its left end and j =: ar its right end. An (RNA)

structure P for length n is a set of base pairs (i, j), 1 ≤ i < j ≤ n, where no two different base pairs share

a common end, i.e., for all (i, j), (i′, j′) ∈ P : i = i′ =⇒ j = j′ and j 6= i′. We call P crossing iff there
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exist two base pairs (i, j), (i′, j′) ∈ P such that i < i′ < j < j′. Otherwise, P is called non-crossing or

nested. We discuss only non-crossing structure.

Similarity and Simultaneous Alignment and Folding

Following (Hofacker et al. 2004) and (Will et al. 2007), we define a sequence-structure similarity score for

an alignment |A| and an RNA structure P for length |A|. In the case of a pairwise alignment A, this

similarity score is of the form

simscore(S1, S2, A1, A2, P ) =∑
(i,j)∈P

A1[i] 6=−,A1[j] 6=−
A2[i] 6=−,A2[j] 6=−

τS1,S2(ctpA1
(i), ctpA1

(j), ctpA2
(i), ctpA2

(j)) (structural similarity)

+
∑

1≤i≤n,
i unpaired in P ,
A1[i] 6=−,A2[i] 6=−

σS1,S2
(

ctpA1
(i), ctpA2

(i)
)

+
∑
k>0

γ(k)NA1,A2

k (sequence similarity,affine gap cost)

where σS1,S2 is a sequence similarity and τS1,S2 is a structural similarity function, γ(k) = γo + kγe, and

NA1,A2

k is the number of maximal subsequences of k gaps in A1 and A2. For the definition of σS1,S2 and

τS1,S2 confer (Will et al. 2007). We generalize this to the q-way case by sum-of-pairs, i.e., we define for

q ≥ 2,

simscore(A, P ) =
∑

1≤x<y≤q
simscore(Sx, Sy, Ax, Ay, P ).

Given sequences S1, . . . , Sq, the problem of simultaneous alignment and folding (SA&F) asks for the

alignment A of S1, . . . , Sq and structure P for length |A| that maximize simscore(A, P ).

An efficient algorithm to solve this specific problem for the pairwise case (q = 2) was introduced

in (Hofacker et al. 2004) and significantly improved in (Will et al. 2007). Whereas LocARNA (Will

et al. 2007) (and therefore our implementation) supports affine gap cost, we keep presentation simple, by
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describing only linear gap cost, where each gap costs γ (i.e. γ(k) = kγ).

The pairwise LocARNA-algorithm has parameters (n,m, σ, τ, γ), where n and m are sequence lengths,

σ denotes sequence similarity, τ structural similarity, and γ gap cost. We assume for our description w.l.o.g

that the algorithm aligns two sequences S1 and S2 of respective lengths n and m. The algorithm evaluates,

for Mi i−1;k k−1 = 0, the recursion

Mi j;k l = max


Mi j−1;k l−1 + σ(j, l);Mi j−1;k l + γ;Mi j;k l−1 + γ

maxj′l′ Mi j′−1;k l′−1 +Dj′ j;l′ l

(1)

Di j;k l = Mi+1 j+1;k−1 l−1 + τ(i, j; k, l)

for 1 ≤ i < j ≤ n and 1 ≤ k < l ≤ m. The matrix entries Mi j;k l are defined as the maximal similarity

score of an alignment of subsequences S1[i . . . j] and S2[k . . . l]. Di j;k l is the maximal similarity score of

such an alignment where base pairs (i, j) and (k, l) are matched.

In this way, the pairwise LocARNA-algorithm solves the alignment problem for sequence S1 and S2

when parametrized by (|S1|, |S2|, σS1,S2 , τS1,S2 , γ). The maximal sequence-structure similarity is obtained

as M1 1;nm and the actual alignment is obtained by trace back from the DP matrices.

The same algorithm can be employed in a progressive alignment scheme to compute multiple alignments

(Hofacker et al. 2004; Will et al. 2007). There the algorithm computes an alignment A of two alignments

A1 and A2. For this reason the algorithm is parametrized by (|A1|, |A2|, σA1,A2
, τA

1,A2
, γ). Details on how

to construct σA
1,A2

and τA
1,A2

according to the sum-of-pairs idea are given in (Hofacker et al. 2004) and

(Will et al. 2007).

Extending the banding technique to simultaneous alignment and folding

Adapting the banding technique to the LocARNA algorithm, we change the semantics of the matrix

entries Mi j;k l and Di j;k l such that they contain the maximal score only over subalignments of alignments
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with limited deviation ∆ from AR. Due to this definition, we need to compute entries Mi j;k l only if the

optimal alignment can be derived from an alignment of subsequences S1[i] . . . S1[j] and S2[k] . . . S2[l], i.e.,

only if the cuts (i − 1, k − 1) and (j, l) are in C2(AR,∆). Di j;k l needs to be computed only if i can be

matched to k and j can be matched to l, i.e., (i, k), (i− 1, k− 1), (j, l), and (j − 1, l− 1) are in C2(AR,∆).

Furthermore, the computation of Mi j;k l is restricted to indices i and k, where i− 1 and k − 1 can match

(with the exception of (i, k) = (1, 1)).

Sensitivity for annnotations inD. melanogaster through successive REAPR

steps

We further examined the annotation sensitivity of the REAPR pipeline step-by-step. As each step removes

some genomic regions from further consideration as ncRNAs, sensitivity progressively decreases through

the pipeline. Table 1 shows, for each step, the number of annotations overlapping the genomic regions

still in consideration after the step is completed and the associated percentage loss in sensitivity. Both

REAPR with LocARNA realignment at ∆ = 20 and the control pipeline without realignment, differing

only in the last step, are shown. A substantial fraction of the overall loss in sensitivity occurs during

the first step, i.e. slicing the WGA into windows. This loss results from REAPR being an RNAz-based

pipeline. In this step, windows that do not have more than one sequence meeting certain gap and base

composition criteria are removed. In general, an annotated ncRNA is not covered by a window only if the

WGA does not align it well to genomic regions of one or more other organisms. Thus, it is fair to assume

that most of these annotated RNAs are lost because they are misaligned by the WGA at a non-local scale.

With the current methods, such RNAs cannot be found. In the sets miscRNA and ncRNA, there is an even

larger drop in the annotations that overlap with stable loci. This confirms that many of these annotated

RNAs do not form stable structures or form only a few local structures. The final step from annotations
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in stable loci to those overlapping predictions is the only step that is affected by realignment in REAPR.

Even with realignment, there is still a significant loss for the weakly structural sets miscRNA (32%) and

ncRNA (54%). However, for the remaining sets Rfam, miRNA, and tRNA we observe high sensitivities between

85% and 94%. For all sets, the loss is significantly reduced.

Co-predicted ncRNAs recapitulate the Drosophila phylogeny

We estimated a phylogeny of Drosophila based on co-predicted ncRNAs across fly species (Supplementary

Fig. 4). For every pair of genomes, we counted the number of times the two genomes were represented

in the same high-confidence prediction. Note that a locus alignment regularly contains sequences from

only a subset of the twelve fly genomes, since often the sequences of some genomes are either deleted

or weakly aligned in the locus region; consequently, such genomes are removed in the first pipeline stage

(Methods). Naturally, from a given locus, we can predict ncRNA only for the genomes present in the locus.

As background, we count how often the two genomes are part of the same stable locus alignment. The

negative log-odds of these frequencies are distances betweeen the genomes. The effect of normalizing with

these particular background frequencies is that the distances are based only on conservation of structure

and not influenced by other factors, in particular the length of genomes, the number of stable RNAs in

the genomes, or the co-occurrence of genomes in the same stable locus or general locus, which are more

obviously related to evolutionary similarity.

Although the phylogeny is constructed straightforwardly from our predictions, we observe remarkable

agreement with the FlyBase Drosophila phylogeny (Clark et al. 2007). Our only topological difference is

the association of D.willistoni with the subgenus Drosophila instead of the larger Sophophora. In the light

of recent discussion by (Bhutkar et al. 2008) on the position of D.willistoni, this may well reflect a true

relationship on the level of structural RNA.

Since previous computational screens for ncRNAs aimed at predicting candidates in a reference organ-
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Table 1. Sensitivity to D. melanogaster annotations through successive steps of RNAz-based pipelines.

Entries indicate the number of annotations overlapping the genomic regions that are still in consideration

after each step. Arrows indicate the percentage loss from step to step. The first two steps are characteristic

of RNAz-based pipelines regardless of realignment, whereas the third step is specific to the REAPR

pipeline with realignment. In parenthesis, we provide annotation numbers and losses specific to the control

pipeline without realignment.

WGA windows stable loci REAPR ∆20

(control)

Rfam 664 -31% 460 -20% 369 -15% 315(
-28% 267

)
miRNA 191 -17% 159 -15% 135 -6% 127(

-10% 121
)

miscRNA 390 -32% 266 -45% 145 -32% 99(
-45% 80

)
tRNA 292 -11% 259 -16% 218 -14% 187(

-33% 147
)

ncRNA 198 -11% 177 -40% 106 -54% 49(
-70% 32

)
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ism (e.g., D. melanogaster or H. sapiens), they evaluated only regions of the alignment that are represented

in the reference genome. In contrast, we screened without this bias, allowing us to study the fly phylogeny

based on predicted structural RNAs.

Unsurprisingly Weak Correlation of RNAz Scores and Expression Levels

We plotted the expression level and RNAz score of high confidence predictions that have an expression

level of at least 50 reads (Supplementary Fig. 5). The relationship is visually weak, and the Spearman

rank correlation is only 0.19. While a strong correlation would have been interesting, we find this weak

correlation to be unsurprising. We believe that the primary reason that could have driven a strong correla-

tion would have been if each of these measures was positively correlated to the separate notion of a locus’s

functional significance. After all, a locus can function as an ncRNA only if it is expressed. However, while

these relationships may hold to some degree on a qualitative level, they may not hold very strongly on a

quantitative level. For example, an ncRNA with an important regulatory role could have a higher or lower

expression level or a higher or lower RNAz score than other loci. As another example, a housekeeping gene

that has a low RNAz score and is in fact not an ncRNA could be constitutively expressed at high levels

in the cell.

This weak correlation indicates that expression alone does not serve as a good proxy for benchmarking

ncRNA prediction nor as sufficient validation of function. Using expression as a benchmark can identify

which ncRNA predictors are enriched for high expression, but not necessarily which ones better capture

the total set of ncRNAs in terms of measures like sensitivity or FDR.
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REAPR Predictions in Long ncRNAs

Table 2 lists the long non-coding RNAs from the FlyBase annotation set ncRNA that overlap with high-

confidence predictions of REAPR in D. melanogaster. We show single annotated ranges of long non-coding

RNAs together with the names of overlapping (merged) high-confidence predictions (sorted by ncRNA

names). The latter names are composed of the WGA block coordinates and the locus ID of all merged loci.

The names correspond to the online supplement table of REAPR (∆ = 20) high confidence predictions

in D. melanogaster (http://reapr.csail.mit.edu/Fly/reapr20_dm2.bed). The column labeled “#”

shows the number of REAPR predictions in the long ncRNA. For example, the table reports roX1-RA

to contain the two predictions X 3665964 3708413.92 and X 3665964 3708413.185 from Figure 6 of the

main text. Several of the long ncRNAs, e.g. CR43334-RA (7 overlaps) and CR43314-RD (8 overlaps), have

remarkable overlap with our predictions, indicating a high degree of structure. All of the reported RNAs

from the annotation set are bona fide long ncRNAs that are longer than 200nt and frequently even several

thousand nucleotides long. (We have removed two shorter annotations snmRNA:158-RA and snmRNA:254

with overlaps.) The reported ncRNAs are thus much longer than typical REAPR predictions.

Table 2. REAPR predictions of long ncRNAs from FlyBase annotation set ncRNA.

Name (FB id) # REAPR High-confidence Predictions

7SLRNA:CR32864-RA (FBtr0081624) 1 3R 2612115 2651106.89

7SLRNA:CR42652-RA (FBtr0302398) 1 3R 2612115 2651106.195

CR18854-RB (FBtr0302441) 1 2L 9782784 9790968.35

CR18854-RC (FBtr0079919) 1 2L 9782784 9790968.35

CR31044-RA (FBtr0085391) 3 3R 24984168 25046151.102$3R 24984168 25046151.225
3R 24984168 25046151.227
3R 24984168 25046151.106$3R 24984168 25046151.228

CR31044-RC (FBtr0303427) 3 3R 24984168 25046151.102$3R 24984168 25046151.225
3R 24984168 25046151.227
3R 24984168 25046151.106$3R 24984168 25046151.228

CR31846-RB (FBtr0303312) 2 2L 13387774 13508614.347$2L 13387774 13508614.152
2L 13387774 13508614.153$2L 13387774 13508614.348

CR32028-RA (FBtr0076660) 1 3L 8411516 8446956.296
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CR32205-RA (FBtr0075000) 2 3L 19372126 19491209.268
3L 19372126 19491209.48

CR32218-RA (FBtr0304110) 1 3L 19816292 19853995.16

CR32658-RA (FBtr0073626) 1 X 11923641 11960675.4$X 11923641 11960675.63

CR32658-RB (FBtr0073627) 1 X 11923641 11960675.4$X 11923641 11960675.63

CR32658-RC (FBtr0073628) 1 X 11923641 11960675.4$X 11923641 11960675.63

CR32690-RB (FBtr0303456) 1 X 10034733 10067079.27

CR32730-RA (FBtr0071016) 3 X 6954857 7000161.26$X 6954857 7000161.61
X 6954857 7000161.62$X 6954857 7000161.27
X 6954857 7000161.30

CR33963-RA (FBtr0100004) 2 X 12470049 12532543.49 X 12470049 12532543.53

CR42646-RA (FBtr0302350) 2 2R 847136 982050.115 2R 847136 982050.32

CR42745-RA (FBtr0303214) 2 3R 22009768 22077220.483
3R 22009768 22077220.483

CR42767-RA (FBtr0303397) 1 X 9400682 9414674.19$X 9400682 9414674.3

CR42839-RA (FBtr0303861) 1 3R 11819947 11843432.41

CR42858-RA (FBtr0304027) 1 3R 5648820 5695010.123

CR42859-RA (FBtr0304029) 1 2L 2239473 2263557.8

CR42862-RA (FBtr0304059) 1 3L 207751 217833.24$3L 207751 217833.7

CR43159-RA (FBtr0305611) 1 3L 15267930 15485878.721$3L 15267930 15485878.348

CR43238-RA (FBtr0306291) 1 3R 26407990 26693611.313$3R 26407990 26693611.893

CR43264-RA (FBtr0306548) 1 X 5660354 5679586.91$X 5660354 5679586.170

CR43270-RA (FBtr0306851) 1 3L 22540117 22613045.229$3L 22540117 22613045.110

CR43280-RA (FBtr0306721) 1 3L 18363299 18565897.554

CR43283-RB (FBtr0306729) 3 3R 7066873 7158976.162$3R 7066873 7158976.22
3R 7066873 7158976.163$3R 7066873 7158976.23
3R 7066873 7158976.25

CR43299-RA (FBtr0306829) 1 X 15439105 15532352.240

CR43299-RB (FBtr0306830) 2 X 15439105 15532352.98
X 15439105 15532352.240

CR43299-RC (FBtr0306831) 2 X 15439105 15532352.240
X 15439105 15532352.98

CR43301-RA (FBtr0306833) 3 3R 5161283 5189245.5 3R 5161283 5189245.6
3R 5161283 5189245.58$3R 5161283 5189245.8

CR43301-RB (FBtr0306834) 3 3R 5161283 5189245.5 3R 5161283 5189245.6
3R 5161283 5189245.58$3R 5161283 5189245.8
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CR43305-RA (FBtr0306839) 1 2R 18491053 18500732.174$2R 18491053 18500732.44

CR43314-RA (FBtr0306897) 6 2L 11811119 11982002.263$2L 11811119 11982002.581
2L 11811119 11982002.264
2L 11811119 11982002.583
2L 11811119 11982002.588
2L 11811119 11982002.291$2L 11811119 11982002.622
2L 11811119 11982002.292

CR43314-RC (FBtr0306898) 7 2L 11811119 11982002.263$2L 11811119 11982002.581
2L 11811119 11982002.264
2L 11811119 11982002.583
2L 11811119 11982002.588
2L 11811119 11982002.596
2L 11811119 11982002.291$2L 11811119 11982002.622
2L 11811119 11982002.292

CR43314-RD (FBtr0306899) 8 2L 11811119 11982002.257$2L 11811119 11982002.575
2L 11811119 11982002.263$2L 11811119 11982002.581
2L 11811119 11982002.264
2L 11811119 11982002.583
2L 11811119 11982002.588
2L 11811119 11982002.596
2L 11811119 11982002.291$2L 11811119 11982002.622
2L 11811119 11982002.292

CR43334-RA (FBtr0306918) 7 3L 588730 632529.148$3L 588730 632529.58
3L 588730 632529.149$3L 588730 632529.59
3L 588730 632529.154 3L 588730 632529.155
3L 588730 632529.71 3L 588730 632529.80
3L 588730 632529.82

CR43344-RA (FBtr0306973) 3 2L 18445565 18479823.25$2L 18445565 18479823.63
2L 18445565 18479823.27
2L 18445565 18479823.28$2L 18445565 18479823.65

CR43372-RA (FBtr0307362) 1 3R 17341791 17399115.142$3R 17341791 17399115.26

Hsromega-RA (FBtr0084057) 1 3R 17087193 17178558.50

Hsromega-RB (FBtr0084058) 1 3R 17087193 17178558.50

Hsromega-RC (FBtr0084059) 1 3R 17087193 17178558.50

RNaseMRP:RNA-RA (FBtr0091662) 1 3R 19531299 19557312.83$3R 19531299 19557312.84$-
3R 19531299 19557312.85

RNaseP:RNA-RA (FBtr0085775) 2 3R 26952344 27057668.350
3R 26952344 27057668.351

Yu-RA (FBtr0302365) 1 2R 19983214 20031920.130

bxd-RA (FBtr0083342) 1 3R 12509464 12623559.369

bxd-RB (FBtr0083343) 1 3R 12509464 12623559.369

bxd-RC (FBtr0083344) 1 3R 12509464 12623559.369

iab-4-RA (FBtr0083362) 1 3R 12623559 12822774.463$3R 12623559 12822774.93

pncr004:X-RA (FBtr0091949) 1 X 18977524 19011215.134
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pncr009:3L-RA (FBtr0091951) 2 3L 19372126 19491209.146
3L 19372126 19491209.147

pncr017:3R-RA (FBtr0091956) 1 3R 27588420 27598275.32

roX1-RA (FBtr0070634) 2 X 3665964 3708413.185 X 3665964 3708413.92

roX1-RB (FBtr0070635) 2 X 3665964 3708413.185 X 3665964 3708413.92

roX2-RA (FBtr0073514) 2 X 11419270 11426141.5$X 11419270 11426141.8
X 11419270 11426141.9

roX2-RB (FBtr0073515) 2 X 11419270 11426141.5$X 11419270 11426141.8
X 11419270 11426141.9

snRNA:7SK-RA (FBtr0091929) 1 3R 3298203 3312554.8$3R 3298203 3312554.41

sphinx-RA (FBtr0111044) 1 4 963017 1010501.96$4 963017 1010501.31

sphinx-RB (FBtr0111045) 1 4 963017 1010501.96$4 963017 1010501.31

sphinx-RC (FBtr0111046) 1 4 963017 1010501.96$4 963017 1010501.31
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Supplementary Figure 3. A normalized representation of Figures 3A-B, which is also reproduced here

for comparison. The number of novel (green) or lost (red) predictions at a given sequence identity was

divided by the total number of predictions from the original WGA (blue + red) at that identity. Note

the difference scales used for percentage loss and gain. For both REAPR and Muscle realignment, the

percentage loss is more uniformly distributed across sequence identities than the absolute count of lost

predictions. The percentage gain shows REAPR’s greater ability to identify low identities than Muscle.

(A) REAPR, ∆ = 20. (B) Muscle.
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Supplementary Figure 4. Distances of Drosophila genomes and phylogeny due to co-predictions of

ncRNA across all genomes (at ∆ = 20). Heat map of the log odds (co-prediction over background frequency,

see text) and dendrogram by heatmap.2 of the R-package gplots.
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Supplementary Figure 5. Density scatterplot of the RNAz score vs. the expression level in high-

confidence predictions from REAPR with ∆ = 20.
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