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A novel reference-based banding technique for multiple alignment

We introduce a banding technique for multiple sequence alignment. The general idea is to constrain the
space of alignments considered to those that deviate by a small amount from a given reference alignment.
The parameter A specifies the maximum amount of deviation. Informally, a residue or nucleotide in the
reference alignment can be repositioned up to A positions up or downstream. In this way, banding enables
a systematic “realignment” of a reference.

Our banding technique can be applied to any dynamic programming (DP) alignment algorithm that
recursively computes optimal subalignments. Computation can be visualized over a DP matrix where
each entry corresponds to a “cut”, i.e. a split into a set of prefix subalignments and a set of suffix
subalignments. A “trace” is a continuous path of matrix entries that correspond to a complete alignment.
Supplementary Figure 1 illustrates the trace of a reference alignment AR and the set of all cuts within a
deviation of 1 from AR. Traces through these cuts correspond to complete alignments within a deviation
of 1 from AR. These alignments are exactly those considered under banding with A = 1.

In the following sections we will formalize our banding technique under the notions of cuts and A-
deviation. We will describe banding for pairwise alignment and extend to progressive multiple alignment.
Finally, we will describe the implementation of banding for the structure-based multiple RNA alignment

tool LOCARNA (Will et al. 2007).
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Supplementary Figure 1. Matrix visualization of banding in a pairwise alignment of the sequences
ACGUUUC and AGTTTGC. A cut corresponds to an element of an alignment trace. Consequently each cut
(i,7) is represented as its corresponding matrix entry (i,j). The trace of a reference alignment AR with
alignment strings AR=AC---GUUUC and AR=AGTTTG---C is shown in dark grey, and the cuts within 1-

deviation from AR in dark and light gray.

Preliminaries

A sequence S is a word over a fixed alphabet . We reserve a special symbol ‘—’¢ ¥ to represent a
gap. A word T over the alphabet ¥ U {—} is an alignment string. T}s denotes the sequence obtained by
removing all gaps from 7. The length of a word w is denoted by |w| and its i-th character by w[i]. A
q-way (multiple) alignment A of length m =: | A] is a matrix A C (X U {—})?*" with ¢ =: rows(A) rows.
Thus for all 1 < z < ¢, the z-th row of A, denoted by A, is an alignment string. A is an alignment of the
sequences S1, ..., S, if and only if (1) S, = Agy for all 1 <z < g and (2) no column in A is gap-only, i.e.,
it consists only of gaps. For example, a 3-way multiple alignment of the sequences Sex; = CTA, Sexo = GTT

and Sexz = CGTT is
C--TA
AeX: -GTT -
CGTT -

The rows of Aex are the alignment strings Aex; = C — —TA, Aexg = —GTT— and Aex3 = CGTT—.

For a g-way alignment A and a p-tuple Z = (z1,...,x,) of distinct integers in {1, ..., ¢}, the projection
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A(Z) of A onto T is constructed by taking the matrix (A, ...Axp)T and deleting all gap-only columns.
Intuitively, the projection is the subalignment implied by A on the sequences indexed by Z. A is an

alignment of A' and A% if A' = A(1,...,q1) and A* = A{g1 +1,...,q) for some 1 < ¢; < q. For example,

-GTT
Aex is an alignment of AL, = A (1) = ( CTA > and A2, = Ax(2,3) =

CGTT

For an alignment string 7" and a position j, 0 < j < |T'|, the function

ctpr(f) = [(T[1. .. 5]) 5]

maps j to a corresponding position in the sequence Tjx. Note that in the case where T’ [7] is the gap symbol,
ctpr(j) points to the position left of the gap. The inverse of ctpy is ptey, mapping positions from Ty, to
T'. For example, ptcy, ,(3) =4, ctpy,,(5) =3, and ctpy_, (3) = 1.

For a pairwise alignment A of the sequences S; and Sy, the cut of A at column i is the pair

¢ = (c1,c2) = (ctpy, (), ctp 4, (4))-

That is, A can be cut at column ¢ into a prefix and a suffix alignment such that the prefix is an align-
ment of the sequences Si[l...c;] and S3[1...co]. The cuts of A%, at the columns from 0 to 4 are
(0,0),(0,1),(1,2),(2,3), and (3,4), respectively. Note that A is uniquely described by its set of cuts

cuts(A).

A-deviation from a reference alignment

Define the distance between pairwise cuts ¢ = (c1,c2) and ¢ = (¢}, ) as their Manhattan distance
le =1 = ler = cif + e — .

Define the deviation of a cut ¢ = (cy, ¢2) from a reference alignment AR as the distance to the closest cut
in AR

d c) = min c— .
Ar(c) e | (B
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c is said to be within A-deviation from A if d 4z (c) < A. For two pairwise alignments A and A® over the

same sequences, define the deviation of A from A" as the largest deviation of any cut in A from AR

dar(A) = e A)(dAR(C))~

Generalizing to multiple alignments, define the deviation of A from AT as the maximum deviation over

all projections to pairwise subalignments (“maximum-of-pairs”). That is,
dr(A) = max { darg ) (Afi, ) |1 <i<j < Q}~

In this way, if the deviation of A from AR is limited by at most A, then so is the deviation for all projections

to pairwise subalignments. A is said to be within A-deviation from AR if d 4r(4) < A.

Banding in pairwise alignment algorithms

For two input sequences S7 and S2, consider a DP algorithm, like the classic Needleman-Wunsch, that
computes a pairwise alignment A by recursively computing the scores of prefix subalignments M;;. For a
given reference alignment AR and deviation parameter A, the goal of our banding technique is to find the
optimal A under the constraint that d 4r (A) < A. We achieve this goal by restricting computation to the

M;; that correspond to a set of cuts, denoted by Ca(AR, A), that are within A-deviation of AR. That is,

Co(AR, A) = {(z‘,j) €{0,.. ., [Sul} x {0, [S2]} | 3cR € cuts(AR): || B — (i, )1 < A} :

This restriction is sufficient because cuts(A) C Co(AR, A) if and only if d 4z (A) < A.

Co(AR, A) consists of elements (4,4,)--- (i,7;) for each row 0 <4 < |S;|. Therefore, it is convenient to
describe it in terms of the boundaries j, and J;- For each 1 < i < |S}]|, optimizing over all pairs of cuts
(i,4) and (i, 5') of AR, J,; is defined as the minimum of all j' — A if i’ = and 7' if j' — j < A, but set to
0 if this is negative; j;, as the maximum of all 7/ + A if ¢/ =4 and ¢’ if j — 5/ < A, but limited to |Ss| if

larger. Note that we can compute this in linear time, since the number of cases is O(A|S]).
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Banding in progressive multiple alignment

We devise a progressive alignment scheme to solve the problem of multiple alignment in deviation A from
a reference alignment AR. The elementary operation, or a single step, of this scheme is computing an
alignment A of two alignments A' and A? restricted by a set of permissible cuts C(AY, A). Let A! and
A? be alignments of respective sequences Sy, ... s Srows(A1) and Spows(A)4+1, - -5 5. W.lo.g. let AR be a
multiple alignment of the sequences 51, ..., 5.

We perform a single progressive alignment step by aligning two “consensus” sequences S, and S of
respective alignments A! and A2. We denote the optimal alignment of S; and S5 by Ap. Then, A, induces
a multiple alignment A of A and A2, write A := [A,; A', A%], which is optimal, among all alignments of
Al and A2?, due to the sum-of-pairs score.

We define a set of permissible cuts C(AR, A) for the alignment A, of S; and Sa, such that the set of A,
where cuts(Ap) € C (AR, A) describe exactly the alignments whose induced alignments are in A-deviation

from the reference alignment, i.e.,
cuts(Ap) C C(.AR,A) iff dAR([[.Ap;AI,Az]]) < A.

Due to the definition of the deviation as “maximum-of-pairs”, we can compute this set as the intersection
of pairwise cut sets C(AR, z,y, A) C {0,...,[S51|} x{0,...,]%|} (1 <z < rows(A!), rows(A)+1 <y < q)

that guarantee the A-deviation for the pairwise alignment of sequences S, and Sy, i.e.,
cuts(Ap) € C(A%, z,y, A) iff dyry ) ([Ap: A', A2, y) < A

Let ¢/ = y — rows(A!) denote the index of sequence S, in A2 The set C(AR,z,y, A) from the alignment
strings A';, A%, AR, AR is generated as follows. A cut ¢, of A, corresponds to an induced cut ¢ = (cy, c2)

of [Ap; A, A%](x, y), which is defined by

c= [cp;Alx,AQy/]] = (CtpAII(Cl),CtpAQy,(CQ)).
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For each cut c of the alignment AR (z,y), we generate the set of cuts ¢ in distance A. Then for each such
cut ¢, we generate the cuts ¢y, where ¢ = [c,; A',, A%,/], and add them to the set C(AR,z,y, A). As in
the pairwise case, this is computed in terms of boundaries j. and 7; for “matrix rows” 1 < i < rows(A%).
Supplementary Figure 2 provides examples of cut sets C(AR, z,y, A).

Multiple alignments generated by progressive alignment built on this strict definition of permissible
cuts C(AR, A) have at most deviation A from the reference alignment. However, this strategy can fail
to produce an alignment, for similar reasons that alignment cannot guarantee success in constructing an
optimal alignment, because of misalignments in earlier progressive steps. We emphasize that such potential
inconsistencies cannot be avoided in a progressive alignment method that guarantees the maximum devia-
tion A. As long as such events are rare (like we observe), they can be tolerated for screening applications.
In cases, where this behavior is unwanted, we can instead apply a variant of the algorithm that relazes the

constraints, thereby ignoring violations due to previous steps.

Relaxed cut sets.

For applications that require guaranteed success, we propose a relaxation of the method that avoids in-
consistencies by relaxing the distance constraints in an optimal way. By DP, we compute a relaxed cut
set Crelaxed (AR, A) that has a size limited by A and minimizes the distance to the sets C(AR, z,y, A).
Crelaxed (AR, A) is computed as set of cuts in A- deviation from an alignment A’ of Sy and Sy. A’ mini-

Mizes Y ccygs(a) COSt(c), Where the cost of a cut of A’ is defined by

cost(c) := Z min le— €L,
1<z<rows(A1), c'€C(Az,y,0)
rows(A1)<y<rows(A)

The alignment A’ is obtained by traceback from the DP matrix C evaluating C(0,0) = cost(0,0), C(#,0) =

cost(z,0) + C(i — 1,0),C(0, 5) = cost(0,5) + C(0,5 — 1), and

C(i,j) = cost(i,j) + min{C(i — 1,5 — 1),C(i — 1,5),C(i,5 — 1)}
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Supplementary Figure 2. Cut sets for banding in the case of multiple progressive alignment. Cut sets
for sequences = and y of AR. Intersecting such sets for all pairs of sequences = and y — rows(A') from the
respective input alignments A' and A2 yields a cut set for one step of the progressive multiple alignment
algorithm. Cut sets for A =0 (dark gray), A =1 (dark+light gray). There, the rows = and y of AR are
AR, =AC--TTT- and ARy:—CCTT—TG; the corresponding rows of the input alignments are A',=AC---TTT
and A2(

(A1))=CCTTT--G.

Y—TOWS

for 1 < i < |A;1],1 < j < |Az|. Finally, we set Crelaxea (AR, A) := C(A’, A). Clearly, a heuristic based
on this relaxation will not guarantee A-deviation from AR. However, by construction, it will favor low

deviation and limit the computational cost and deviation in each progressive alignment step by A.

Simultaneous Alignment and Folding in LocARNA in Limited Deviation of a Reference

Alignment

We review details of the LocARNA score and algorithm and show the lifting of the novel banding technique

to LOCARNA’s simultaneous alignment and folding DP algorithm.

Structure

A base pair is a pair a = (i,7) € N2, We call i =: a its left end and j =: a* its right end. An (RNA)
structure P for length n is a set of base pairs (i,j), 1 <i < j < n, where no two different base pairs share

a common end, i.e., for all (i,7),(i,j') € P:i=14 = j =7 and j # . We call P crossing iff there
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exist two base pairs (4,75), (i',j') € P such that i < ¢/ < j < j'. Otherwise, P is called non-crossing or

nested. We discuss only non-crossing structure.

Similarity and Simultaneous Alignment and Folding

Following (Hofacker et al. 2004) and (Will et al. 2007), we define a sequence-structure similarity score for
an alignment |A| and an RNA structure P for length |A|. In the case of a pairwise alignment A, this

similarity score is of the form

simscore(S1, Sa, A1, As, P) =

Z 751,82 (ctpa, (i), ctpa, (4), ctpa, (i), ctp 4, (5)) (structural similarity)
(i.j)ep
Ay [i)#—, Ar[j]#—
Ag[i]#—, Az jl#—

+ Z o152 (etp 4, (), ctp a4, (1)) + Z 'y(k:)]\flfl’A2 (sequence similarity,affine gap cost)

1<i<n, k>0
7 unpaired in P,
Ax[i]#—,Az[i]#—
where 05152 is a sequence similarity and 75152 is a structural similarity function, v(k) = v + kve, and

N, l? 142 i¢ the number of maximal subsequences of k gaps in A; and As. For the definition of 05152 and
79192 confer (Will et al. 2007). We generalize this to the g-way case by sum-of-pairs, i.e., we define for
q22,

simscore(A, P) = Z simscore(Sz, Sy, Az, Ay, P).

1<z<y<q

Given sequences Si,..., S, the problem of simultaneous alignment and folding (SA&F) asks for the
alignment A of Si,...,S; and structure P for length |.A| that maximize simscore(A, P).

An efficient algorithm to solve this specific problem for the pairwise case (¢ = 2) was introduced
in (Hofacker et al. 2004) and significantly improved in (Will et al. 2007). Whereas LOCARNA (Will

et al. 2007) (and therefore our implementation) supports affine gap cost, we keep presentation simple, by
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describing only linear gap cost, where each gap costs 7 (i.e. y(k) = k).

The pairwise LOCARN A-algorithm has parameters (n, m, o, 7,7), where n and m are sequence lengths,
o denotes sequence similarity, 7 structural similarity, and v gap cost. We assume for our description w.l.o.g
that the algorithm aligns two sequences S7 and Sy of respective lengths n and m. The algorithm evaluates,

for M;;—1.,x—1 = 0, the recursion

M;ij 1k1-1+ 0, 1); Mij 160+ M1+
M j;r1 = max (1)

max;y Mij’—l;kl’—l =+ Dj’j;l’l
D1 = Miy1jrik—11-1 +7(2, 55k, 1)

for1<i<j<nand1l <k <[l <m. The matrix entries M, ;.;; are defined as the maximal similarity
score of an alignment of subsequences Si[i...j] and Sak...l]. D;jy is the maximal similarity score of
such an alignment where base pairs (7, j) and (k,[) are matched.

In this way, the pairwise LOCARNA-algorithm solves the alignment problem for sequence S7 and Ss
when parametrized by (|S1],|S2|, 052, 79152 ). The maximal sequence-structure similarity is obtained
as M1 1.,m and the actual alignment is obtained by trace back from the DP matrices.

The same algorithm can be employed in a progressive alignment scheme to compute multiple alignments
(Hofacker et al. 2004; Will et al. 2007). There the algorithm computes an alignment A of two alignments
Al and A2, For this reason the algorithm is parametrized by (|A![, [A2[,ocA A% 74"A% 5) Details on how
AL A2 ALA2 according to the sum-of-pairs idea are given in (Hofacker et al. 2004) and

to construct o and 7

(Will et al. 2007).
Extending the banding technique to simultaneous alignment and folding

Adapting the banding technique to the LOCARNA algorithm, we change the semantics of the matrix

entries M; ;. and D; j.x; such that they contain the maximal score only over subalignments of alignments
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with limited deviation A from AR. Due to this definition, we need to compute entries M; j:k1 only if the
optimal alignment can be derived from an alignment of subsequences Si[i]...S1[j] and Sa[k]...S2[l], i.e.,
only if the cuts (i — 1,k — 1) and (j,) are in Co(AR, A). D needs to be computed only if i can be
matched to k and j can be matched to [, i.e., (4,k), (i — 1,k — 1), (4,1), and (j — 1,1 — 1) are in Co(AR, A).
Furthermore, the computation of M; ;.;; is restricted to indices ¢ and k, where i — 1 and k — 1 can match

(with the exception of (i,k) = (1,1)).

Sensitivity for annnotations in D. melanogaster through successive REAPR

steps

We further examined the annotation sensitivity of the REAPR pipeline step-by-step. As each step removes
some genomic regions from further consideration as ncRNAs, sensitivity progressively decreases through
the pipeline. Table 1 shows, for each step, the number of annotations overlapping the genomic regions
still in consideration after the step is completed and the associated percentage loss in sensitivity. Both
REAPR with LOCARNA realignment at A = 20 and the control pipeline without realignment, differing
only in the last step, are shown. A substantial fraction of the overall loss in sensitivity occurs during
the first step, i.e. slicing the WGA into windows. This loss results from REAPR being an RN Az-based
pipeline. In this step, windows that do not have more than one sequence meeting certain gap and base
composition criteria are removed. In general, an annotated ncRNA is not covered by a window only if the
WGA does not align it well to genomic regions of one or more other organisms. Thus, it is fair to assume
that most of these annotated RNAs are lost because they are misaligned by the WGA at a non-local scale.
With the current methods, such RNAs cannot be found. In the sets miscRNA and ncRNA, there is an even
larger drop in the annotations that overlap with stable loci. This confirms that many of these annotated

RNAs do not form stable structures or form only a few local structures. The final step from annotations

10
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in stable loci to those overlapping predictions is the only step that is affected by realignment in REAPR.
Even with realignment, there is still a significant loss for the weakly structural sets miscRNA (32%) and
ncRNA (54%). However, for the remaining sets Rfam, miRNA, and tRNA we observe high sensitivities between

85% and 94%. For all sets, the loss is significantly reduced.

Co-predicted ncRNAs recapitulate the Drosophila phylogeny

We estimated a phylogeny of Drosophila based on co-predicted ncRNAs across fly species (Supplementary
Fig. 4). For every pair of genomes, we counted the number of times the two genomes were represented
in the same high-confidence prediction. Note that a locus alignment regularly contains sequences from
only a subset of the twelve fly genomes, since often the sequences of some genomes are either deleted
or weakly aligned in the locus region; consequently, such genomes are removed in the first pipeline stage
(Methods). Naturally, from a given locus, we can predict ncRNA only for the genomes present in the locus.
As background, we count how often the two genomes are part of the same stable locus alignment. The
negative log-odds of these frequencies are distances betweeen the genomes. The effect of normalizing with
these particular background frequencies is that the distances are based only on conservation of structure
and not influenced by other factors, in particular the length of genomes, the number of stable RNAs in
the genomes, or the co-occurrence of genomes in the same stable locus or general locus, which are more
obviously related to evolutionary similarity.

Although the phylogeny is constructed straightforwardly from our predictions, we observe remarkable
agreement with the FlyBase Drosophila phylogeny (Clark et al. 2007). Our only topological difference is
the association of D.willistoni with the subgenus Drosophila instead of the larger Sophophora. In the light
of recent discussion by (Bhutkar et al. 2008) on the position of D.willistoni, this may well reflect a true
relationship on the level of structural RNA.

Since previous computational screens for ncRNAs aimed at predicting candidates in a reference organ-

11
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Table 1. Sensitivity to D. melanogaster annotations through successive steps of RN Az-based pipelines.
Entries indicate the number of annotations overlapping the genomic regions that are still in consideration
after each step. Arrows indicate the percentage loss from step to step. The first two steps are characteristic
of RNAz-based pipelines regardless of realignment, whereas the third step is specific to the REAPR
pipeline with realignment. In parenthesis, we provide annotation numbers and losses specific to the control

pipeline without realignment.
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ism (e.g., D. melanogaster or H. sapiens), they evaluated only regions of the alignment that are represented
in the reference genome. In contrast, we screened without this bias, allowing us to study the fly phylogeny

based on predicted structural RNAs.

Unsurprisingly Weak Correlation of RN Az Scores and Expression Levels

We plotted the expression level and RNAz score of high confidence predictions that have an expression
level of at least 50 reads (Supplementary Fig. 5). The relationship is visually weak, and the Spearman
rank correlation is only 0.19. While a strong correlation would have been interesting, we find this weak
correlation to be unsurprising. We believe that the primary reason that could have driven a strong correla-
tion would have been if each of these measures was positively correlated to the separate notion of a locus’s
functional significance. After all, a locus can function as an ncRNA only if it is expressed. However, while
these relationships may hold to some degree on a qualitative level, they may not hold very strongly on a
quantitative level. For example, an ncRNA with an important regulatory role could have a higher or lower
expression level or a higher or lower RN Az score than other loci. As another example, a housekeeping gene
that has a low RNAZ score and is in fact not an ncRNA could be constitutively expressed at high levels
in the cell.

This weak correlation indicates that expression alone does not serve as a good proxy for benchmarking
ncRNA prediction nor as sufficient validation of function. Using expression as a benchmark can identify
which ncRNA predictors are enriched for high expression, but not necessarily which ones better capture

the total set of ncRNAs in terms of measures like sensitivity or FDR.

13
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REAPR Predictions in Long ncRNAs

Table 2 lists the long non-coding RNAs from the FlyBase annotation set ncRNA that overlap with high-
confidence predictions of REAPR in D. melanogaster. We show single annotated ranges of long non-coding
RNAs together with the names of overlapping (merged) high-confidence predictions (sorted by ncRNA
names). The latter names are composed of the WGA block coordinates and the locus ID of all merged loci.
The names correspond to the online supplement table of REAPR (A = 20) high confidence predictions
in D. melanogaster (http://reapr.csail.mit.edu/Fly/reapr20_dm2.bed). The column labeled “#”
shows the number of REAPR predictions in the long ncRNA. For example, the table reports roX1-RA
to contain the two predictions X 3665964 3708413.92 and X 3665964 3708413.185 from Figure 6 of the
main text. Several of the long ncRNAs, e.g. CR43334-RA (7 overlaps) and CR43314-RD (8 overlaps), have
remarkable overlap with our predictions, indicating a high degree of structure. All of the reported RNAs
from the annotation set are bona fide long ncRNAs that are longer than 200nt and frequently even several
thousand nucleotides long. (We have removed two shorter annotations snmRNA:158-RA and snmRNA:254

with overlaps.) The reported ncRNAs are thus much longer than typical REAPR predictions.

Table 2. REAPR predictions of long ncRNAs from FlyBase annotation set ncRNA.

Name (FB id) # REAPR High-confidence Predictions

7TSLRNA:CR32864-RA (FBtr0081624) 1 3R_2612115.2651106.89

7SLRNA:CR42652-RA (FBtr0302398) 1 3R-2612115.2651106.195

CR18854-RB (FBtr0302441) 1 2L_.9782784_.9790968.35
CR18854-RC (FBtr0079919) 1 2L.9782784_9790968.35
CR31044-RA (FBtr0085391) 3 3R-24984168-25046151.10233R_24984168_25046151.225

3R_24984168_25046151.227
3R_24984168_25046151.106$3R_24984168_25046151.228

CR31044-RC (FBtr0303427) 3 3R-24984168-25046151.10233R_24984168_25046151.225
3R_24984168_25046151.227
3R_24984168_25046151.106$3R_24984168_25046151.228

CR31846-RB (FBtr0303312) 2 2L.13387774.13508614.347$2L_13387774_13508614.152
2L..13387774-13508614.153$2L._13387774_13508614.348

CR32028-RA (FBtr0076660) 1 3L_8411516_8446956.296

14
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CR32205-RA (FBtr0075000)

CR32218-RA (FBtr0304110)
CR32658-RA (FBtr0073626)
CR32658-RB (FBtr0073627)
CR32658-RC (FBtr0073628)
CR32690-RB (FBtr0303456)

CR32730-RA (FBtr0071016)

CR33963-RA (FBtr0100004)
CR42646-RA (FBtr0302350)

CR42745-RA (FBtr0303214)

CR42767-RA (FBtr0303397)
CR42839-RA (FBtr0303861)
CR42858-RA (FBtr0304027)
CR42859-RA (FBtr0304029)
CR42862-RA (FBtr0304059)
CR43159-RA (FBtr0305611)
CR43238-RA (FBtr0306291)
CR43264-RA (FBtr0306548)
CR43270-RA (FBtr0306851)
CR43280-RA (FBtr0306721)

CR43283-RB (FBtr0306729)

CR43299-RA (FBtr0306829)

CR43299-RB (FBtr0306830)

CR43299-RC (FBtr0306831)

CR43301-RA (FBtr0306833)

CR43301-RB (FBtr0306834)

Will, et al.

3L.19372126_-19491209.268
3L_19372126_.19491209.48

3L_19816292_19853995.16
X_11923641-11960675.4$X_11923641-11960675.63
X_11923641.11960675.4$X_11923641_-11960675.63
X_11923641.11960675.4$X_11923641_11960675.63
X_10034733-10067079.27

X_6954857_7000161.26$X_6954857_7000161.61
X_6954857_7000161.62$X_6954857_7000161.27
X_6954857_-7000161.30

X_12470049-12532543.49 X_12470049_-12532543.53
2R _847136-982050.115 2R_847136-982050.32

3R_-22009768-22077220.483
3R_22009768_22077220.483

X_9400682-9414674.19$X_9400682_9414674.3
3R_11819947.11843432.41

3R_5648820_5695010.123

2L.2239473_2263557.8
3L_207751217833.24$3L_207751_217833.7
3L_15267930-15485878.721$3L_15267930.15485878.348
3R_26407990-26693611.313$3R_26407990-26693611.893
X_5660354_5679586.91$X_5660354_5679586.170
3L_22540117-22613045.229$3L_22540117_22613045.110
3L_18363299_18565897.554

3R_7066873_7158976.162$3R_7066873-7158976.22
3R_7066873_7158976.163$3R_7066873-7158976.23
3R_7066873_7158976.25

X_15439105-15532352.240
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Supplementary Figure 3. A normalized representation of Figures 3A-B, which is also reproduced here
for comparison. The number of novel (green) or lost (red) predictions at a given sequence identity was
divided by the total number of predictions from the original WGA (blue + red) at that identity. Note
the difference scales used for percentage loss and gain. For both REAPR and Muscle realignment, the
percentage loss is more uniformly distributed across sequence identities than the absolute count of lost
predictions. The percentage gain shows REAPR’s greater ability to identify low identities than Muscle.

(A) REAPR, A = 20. (B) Muscle.
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Supplementary Figure 4. Distances of Drosophila genomes and phylogeny due to co-predictions of

ncRNA across all genomes (at A = 20). Heat map of the log odds (co-prediction over background frequency,

see text) and dendrogram by heatmap.2 of the R-package gplots.

19



Will, et al.

100,000

10,000
|

Expression Level (reads)
1000

100

RNAZz score

Supplementary Figure 5. Density scatterplot of the RNAz score vs. the expression level in high-

confidence predictions from REAPR with A = 20.
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