Supplementary Methods

Data acquisition and alignment

TCGA whole genome sequence datasets generated by lllumina paired-end sequencing were
downloaded from dbGAP in the form of BAM alignment files. The BAM files were generated by the
TCGA consortium by aligning raw paired-end reads (readpairs) to the reference genome (hgl18 or hg19)
using either MAQ (Li et al. 2008) or BWA (Li and Durbin 2009). Since most TCGA datasets were
generated using multiple sequencing libraries, which have distinct insert size distributions, data
processing was conducted on a per read-group basis. To gather read-group statistics, 50 million reads
were extracted from each BAM file, and for each read-group the following statistics were collected:
number of reads present, average read length, edit distance, insert size and insert size standard
deviation (Supplemental Table 1). These statistics were used in subsequent alignment and processing
steps, which were performed on the read-groups separately.

For each read group, concordant readpairs were defined as those with an insert size not more
than 6 standard deviations from the mean insert size. This was done regardless of readpair orientation,
and thus the resolution for detecting tandem duplications and inversions is the same as for deletions
(roughly 400bp). Discordant readpairs for which both reads possessed an alignment to the reference
genome were extracted from the original BAM file using SAMTools (Li et al. 2009) and converted to

FASTQ using the HYDRA utility bamToFastq (http://code.google.com/p/hydra-sv/). FASTQ files were

checked to ensure that they contained two entries for each read ID, in the correct order.
Discordant readpairs were aligned to the reference genome (1000 Genomes Version of NCBI

Build 37: ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/technical/reference/human_glk v37.fasta.gz) with

Novoalign v.2.07.10 (C. Hercus, unpublished; http://www.novocraft.com), using an index of word size

14 and a step of 1 (-k 14 —s 1). Repetitive alignments were resolved using random mode and the read-
group statistics were used to obtain the approximate fragment lengths and standard deviations (-r
Random -i <mean> <standard deviation>). This more sensitive alighnment step helps to eliminate false

positives by removing concordant mappings missed by the original BWA or MAQ alighment.

Pairing, duplicate removal and library classification
Discordant mappings were converted to BEDPE format (Quinlan and Hall 2010) using custom scripts.

The BEDPE read-group files from each dataset were concatenated into a single file for duplicate
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removal. Duplicates were removed using the custom script, dedupDiscordantsMultiPass.py, which is

available as part of the HYDRA suite (http://code.google.com/p/hydra-sv/). This utility allows for

removal of duplicates with inexact coordinates, which is not possible with Picard or SAMTools. We
considered readpairs to be duplicates if both end coordinates were within 3bp (-s 3) of each other.
Following duplicate removal, the combined files were then separated back into their previous
constituent read-group files.

Since multi-sample variant detection with HYDRA-MULTI requires knowledge of each
sequencing library, the duplicate-free read-group files were then classified into their approximate
initial genomic libraries using insert size statistics. If both the insert size mean and standard deviation
of two read-groups were within 90% of each other, the two read-groups were merged into a single
library. The average and standard deviation of the merged library insert sizes were then calculated with
a weighted average. The resulting updated library statistics and library BEDPE files were then
iteratively compared against each read-group by decreasing insert size until read-groups were no
longer merged. The resulting library BEDPE files and newly generated library statistics were then used

as input to HYDRA-MULTI.

Breakpoint detection and filtering

Breakpoint detection was performed using HYDRA-MULTI, a new multi-sample version of the HYDRA
paired-end mapping algorithm (Quinlan et al. 2010) (manuscript in preparation) that uses a similar
population-based breakpoint detection method to our previous method (Quinlan et al. 2011). In
essence, all discordant mappings are pooled prior to breakpoint calling, and presence/absence
genotypes are calculated retrospectively based on the number of readpairs from each dataset that
were incorporated into the breakpoint call. A HYDRA-MULTI configuration file was prepared detailing
the insert size distribution of each of the 377 total sequencing libraries from the 129 datasets.

A total of 4,686,652 breakpoints were predicted, which is far more than expected. This is largely
due to a previously unreported library preparation artifact that produces a profuse number of false
small (<10kb) inversion calls. These small inversion calls were judged to be false based upon the
following observations: 1) they are found equally among tumor and normal datasets; 2) different
datasets vary widely in the number of calls; and 3) hierarchical clustering of samples based on small
inversions revealed no genetic relationship between tumor/normal pairs, whereas hierarchical

clustering using other breakpoint classes produced tight clustering between tumor/normal pairs. False
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inversion calls are not due to incomplete removal of duplicate readpairs, and we confirmed the
presence of the discordant readpairs underlying these false inversion calls in the original BAM files
downloaded from TCGA. We are unaware of the precise molecular cause of this artifact, but we
suspect that it involves systematic formation of chimeric molecules early during library generation,
perhaps as a consequence of intra- or inter-molecular annealing between tracts of microhomology.
Removal of small inversions resulted in a total of 1,636,145 HYDRA-MULTI calls.

Paired-end mapping is prone to false positives due to read mapping artifacts and reference
genome assembly errors, and thus we also required breakpoints calls to fulfill the following criteria: 1)
at least 3 readpairs support the call; 2) the reads have a mean mapping quality greater than 30; 3) the
reads have a mean number of mappings less than 1.5; 4) the variant call is at least 100bp in size; and 5)
neither end of the call overlaps simple or satellite repeats by more than 50% (bedtools pairtobed -type
either -f 0.5), as defined by a union of the UCSC “simpleRepeat” track and the simple and satellite
repeat annotations present in the “RepeatMasker” tracks (combined using bedtools merge). These
filtering steps resulted in 34,621 high confidence calls, 6179 of which were judged to be somatic by

their presence in one tumor sample and none of the remaining 128 samples.

Assembly and validation
To enable efficient assembly of somatic breakpoints, we modified the sga walk function from the
String Graph Assembler (SGA) (Simpson and Durbin 2012) to report all walks from all connected
components of the string graph, with advice from the developer (J. Simpson). For each HYDRA-MULTI
call, we extracted readpairs that mapped within 500bp of the predicted breakpoints, including
readpairs with one unmapped read. We then ran the following assembly pipeline: sga preprocess
(default), sga index (--no-reverse), sga correct (-k 13 -x 2 -d 128), sga index on the error corrected reads
(default), sga rmdup (default), sga overlap (-m 15), sga assemble (-m 15 -d 0 -g 0 -b 0 -1 100), and our
modified version of the sga walk program (-d 10000 --component-walks).

Resulting contigs were aligned to the reference genome using BWA-SW (v.0.5.9) (Li and Durbin
2010). Split-mappings with at least 25bp of non-overlap with an adjacent mapping on the query
sequence were extracted from the BAM file and converted to BEDPE format. We then used bedtools
pairtopair (-type both) from the BEDTools software suite (Quinlan and Hall 2010) to assess whether

HYDRA-MULTI calls were validated by split-mapping contigs. We considered a call to be validated if the
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breakpoints predicted by split-mapping fell within the 200bp predicted breakpoint interval defined by
HYDRA-MULTI, and if split-mapping and HYDRA-MULTI predicted the same variant class (e.g., deletion).

Comparison to 1000 Genomes deletions

To assess the number of known SVs within our dataset, we used a set of deletion calls from the 1000
Genomes project (Mills et al. 2011). This callset is a combination of validated deletion calls identified
from the high coverage trios, validated deletion calls from the low coverage individuals, and the set of
"gold standard" deletions that were used to tune the 1000 Genomes calling algorithms. There are
60069 entries in this file, but many are redundant calls generated by distinct centers. After merging
calls with mergeBed, there were 14368 non-redundant deletions. To compare our deletion calls to this

high-quality validated set, we used bedtools intersect requiring 50% reciprocal overlap (-r -f 50).

Identification of breakpoint clusters
CGRs were identified using a custom method composed of two steps (Fig. 2A). First, somatic
breakpoint calls from a single sample that were found within 100kb of each other were merged using
clusterBed from the BEDTools suite. Second, "chains" were formed from genomic loci sharing
breakpoint calls in common. Initially, a chain is formed when two loci are linked to one another by one
or more HYDRA-MULTI calls. Loci are chained together through an iterative process by looping through
the loci and updating the composition of chain as they grow due to the addition of new loci. At each
iteration, the locus is added to a pre-existing chain if that locus shares an SV breakpoint call with any
other locus in that chain. Moreover, if that same locus also shares a SV call with one or more additional
(previously unlinked) chain, all chains linked by that locus are merged into a single chain. The end
result of this simple algorithm is that all loci within a chain are linked to one another by a series of
HYDRA-MULTI breakpoint calls, and no two loci from distinct chains are linked by a call. "Breakpoint
clusters" were defined as chains comprising 3 or more breakpoints.

We then merged breakpoint clusters that were within 1mb of each other. This last step was
added to minimize fragmentation, where subsections of the same apparent rearrangement may be

reported separately due to false negative breakpoint calls.
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Simulation of breakpoint cluster identification

We performed four simulations to test the specificity of breakpoint cluster identification. In all cases
we identified clusters exactly as for the real data and report the mean of 100 replicates. For the Monte
Carlo simulation, the genomic coordinates of tumor-specific somatic breakpoints were randomly
shuffled using bedtools shuffle, excluding assembly gaps. To emulate the filtering of HYDRA-MULTI
breakpoint calls, breakpoints were only placed within uniquely-mappable regions of the genome, as
defined by the UCSC wgEncodeCrgMapabilityAlign100mer track, and were not allowed to overlap with
simple or satellite repeats. For the other simulations, a random subset of 1000 Genomes calls,
validated germline SVs, and "rare" individuals specific SVs were sampled to match the number of

tumor-specific somatic SVs identified in each sample.

Genome annotation enrichment analysis

To assess whether breakpoint clusters are enriched in SV hotspots or genomic regions prone to read
mapping artifacts, we assessed overlap between our breakpoint calls and segmental duplications
(Bailey et al, 2001), known fragile sites in the human genome (Fungtammasan et al. 2012), simple
repeats, microsatellites, and assembly gaps. For each comparison, we counted the observed number of
overlaps between breakpoints and the above genome annotations. Using pybedtools (Dale et al. 2011),
we then conducted a Monte Carlo simulation by shuffling the genomic locations of each breakpoint
and each annotation 100 times, and for each iteration we counted the number of overlaps found using
the randomized locations. We assessed potential enrichments between breakpoints and genome
annotations by measuring the log2 ratio of observed count of intersections versus the median

intersection count from the 100 MC simulations.

Read-depth analysis

We used bedtools coverage from the BEDTools software suite to measure read depth in genomic
windows containing 5kb  of uniquely mappable sequence, as defined by the
wgEncodeCrgMapabilityAlign100mer track. There were a total of 534,957 windows with a mean size of
5787bp. We corrected for GC bias using a normalization procedure that expresses copy number as a Z-
score, as described previously (Quinlan et al. 2010). This Z-score is simply the number of standard
deviations that the read-depth of a given window differs from the mean read-depth of all other

windows that have a similar GC content (defined in 1-3% intervals), as calculated by fitting a normal
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distribution. To estimate the approximate copy number of a genomic window we divided the raw read
depth of that window by the median raw read-depth of all other windows with a similar GC-content,
and multiplied by 2. While this calculation assumes diploidy and tumor homogeneity, which may not
be valid for many tumors, the resulting estimates are sufficient to estimate the number of CNA states
(if not their true absolute value). To detect CNAs we performed circular binary segmentation (Olshen
et al. 2004) of Z-scores using the DNAcopy package in R with the following parameters:

undo.splits="sdundo" and undo.SD=2 (http://cran.r-project.org/). We defined CNA change-points as

the interval between two adjacent CNA segments (+/- 5kb) whose median Z-score differed from each
other by at least one median absolute deviation. We defined somatic change-points as those that were
found in a single tumor sample but not in any of the 65 normal sample, requiring 100% reciprocal
overlap between change-points (bedtools intersect -r -f 1) and the same direction of copy number
change.

For the analysis of overlap between CNA change-points and HYDRA-MULTI breakpoint calls
(Supplementary Table 7), we identified overlapping calls using bedtools intersect, allowing 10kb of bi-
directional slop. This is fairly strict given the relatively low resolution and imprecision of read-depth
analysis. To assess enrichment we divided the observed number of breakpoints that overlapped CNA
change-points by the mean number of overlaps identified using 100 sets of randomly shuffled
breakpoint calls. These were the same shuffled calls used in the Monte Carlo simulation to test the
specificity of CGR detection, as described above. For the comparison of CNA change-points and
breakpoint clusters (Supplementary Fig. 4C), a breakpoint call was judged to overlap a cluster if it was
found within 50kb, and breakpoint clusters were randomly shuffled 100 times to obtain enrichment
values, as described above for breakpoint calls.

For estimation of copy number states, we extracted all CNA change-points within 100kb of a
breakpoint cluster. We used this generous definition in order to compensate for imprecise change-
point detection and false negative HYDRA-MULTI breakpoint calls, thus helping to ensure that the
number of CNA states at a breakpoint cluster was not underestimated (which could lead to
misclassification of stepwise rearrangements as one-off CGRs). To estimate the number of copy
number states at breakpoint clusters we used a greedy clustering algorithm that operates on a sorted
list of predicted copy numbers taken from change-points. The algorithm merges the values into a
group if the smaller value is at least 80% of the larger value, and then recalculates the copy number by

taking the mean of the values in the group. The only exception is that the two copy number values for
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a given change-point cannot be placed into the same group. When this happens, a new group is
initiated and the process is repeated for the remaining values. We chose this greedy algorithm after
testing more conventional methods including k-means clustering, hierarchical clustering, and kernel
density estimation. These methods routinely underestimated the number of copy number states at a
nontrivial fraction of breakpoint clusters, leading to misclassification of stepwise rearrangements as

one-off CGRs.

Monte Carlo simulation of progressive rearrangement

To assess the likelihood that an extreme CGR was due to one-off rather than stepwise mutation, we
performed a simulation based on the method of Stephens et al. (2011). For each observed CGR, we
performed a Monte Carlo simulation in which the observed SV breakpoint calls were applied in random
order to a progressively mutated synthetic chromosome. We estimated the probability that the
observed CGR is caused by stepwise rearrangement (the null hypothesis) by dividing the number of
simulation runs that produced the same or fewer copy number states as observed in the real data by
the total number of successful simulation runs.

To perform simulations we used a modified version of SVsim (G. Faust, unpublished), a
structural variation simulator. We simulate rearrangements on multiple chromosomes, but we do not
allow rearrangements between chromosomes. We use a diploid genome for our simulations to more
accurately mirror natural conditions and to help mitigate the loss of genomic regions via deletions. This
is more conservative than a haploid simulation in that it generally results in fewer CNA states. During
the simulation, we take into account the orientation of mutated chromosomal segments when
determining the relationship between readpair orientation and event type. To select breakpoint
locations within multi-copy regions generated by a prior duplication, we randomly select one of the
breakpoint loci, and then select the second locus that is closest to it on the mutated chromosome. If a
breakpoint cannot be applied due to a prior deletion, we attempt to apply the rearrangement to the
homologous chromosome; if it cannot be applied to the homolog, we abort the simulation run and try
again. At the end of each successful run, we count the number of distinct copy number states across
the entire mutated genome. As our ability to observe copy number states in actual data is restricted to
the resolution of our read-depth analysis, we only count states in our simulations that appear in
regions exceeding 10kb in length. We continue this process until 1000 successful simulation runs have

completed for each CGR.
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Identification of templated insertion events

To identify templated insertion events and small-scale rearrangements at SV breakpoints, we
examined contigs whose split-alignments were found to validate HYDRA-MULTI calls, but that
contained at least 20bp of unaligned sequence directly at the breakpoint, as determined by BWA-SW.
We then aligned these contigs to the reference genome with YAHA (Faust and Hall 2012), an algorithm
that allows for highly sensitive determination of split alignments (options: kmer size 15, -M 15 -P 0.8 -H
5000). Alignments were visualized with a modified version of PARASIGHT (J. Bailey and E. Eichler,

unpublished: http://eichlerlab.gs.washington.edu/jeff/parasight) and scrutinized for insertions derived

from elsewhere in the genome, as well as for small-scale rearrangements directly at the breakpoint.

Estimating breakpoint allele frequencies

To measure the intra-tumor allele frequency of breakpoint, we aligned all the raw reads from each
dataset to the assembled breakpoint-containing contigs. For each contig we extracted the 200bp of
sequence flanking the breakpoint and aligned raw reads to the 200bp fragments using BWA (default
options). To consider an alignment as positively genotyping the presence of the variant allele, we
required that it spanned the breakpoint with at least 20bp on both sides. To genotype the reference
allele, we extracted the 200bp flanking each of the two breakpoint positions in the reference genome,
and performed alignment as above. The intra-tumor breakpoint allele frequency is given by the
number of reads that align to the variant junction (breakReadCount) divided by the average number of
reads aligning to the respective reference junctions (refReadCountl and refReadCount2):
breakReadCount / (breakReadCount + ((refReadCountl + refReadCount2) / 2)). In order to consider
allele frequency measurements as sufficiently precise for comparing simple and complex variants, we

required that at least 3 reads identified the variant allele.
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