
Supplementary	
  Methods	
  

	
  

Data	
  acquisition	
  and	
  alignment	
  	
  

TCGA	
   whole	
   genome	
   sequence	
   datasets	
   generated	
   by	
   Illumina	
   paired-­‐end	
   sequencing	
   were	
  

downloaded	
   from	
  dbGAP	
   in	
   the	
   form	
  of	
  BAM	
  alignment	
   files.	
   The	
  BAM	
   files	
  were	
  generated	
  by	
   the	
  

TCGA	
  consortium	
  by	
  aligning	
  raw	
  paired-­‐end	
  reads	
  (readpairs)	
  to	
  the	
  reference	
  genome	
  (hg18	
  or	
  hg19)	
  

using	
   either	
   MAQ	
   (Li	
   et	
   al.	
   2008)	
   or	
   BWA	
   (Li	
   and	
   Durbin	
   2009).	
   Since	
   most	
   TCGA	
   datasets	
   were	
  

generated	
   using	
   multiple	
   sequencing	
   libraries,	
   which	
   have	
   distinct	
   insert	
   size	
   distributions,	
   data	
  

processing	
  was	
  conducted	
  on	
  a	
  per	
  read-­‐group	
  basis.	
  To	
  gather	
  read-­‐group	
  statistics,	
  50	
  million	
  reads	
  

were	
  extracted	
   from	
  each	
  BAM	
   file,	
   and	
   for	
  each	
   read-­‐group	
   the	
   following	
   statistics	
  were	
   collected:	
  

number	
   of	
   reads	
   present,	
   average	
   read	
   length,	
   edit	
   distance,	
   insert	
   size	
   and	
   insert	
   size	
   standard	
  

deviation	
  (Supplemental	
  Table	
  1).	
  These	
  statistics	
  were	
  used	
  in	
  subsequent	
  alignment	
  and	
  processing	
  

steps,	
  which	
  were	
  performed	
  on	
  the	
  read-­‐groups	
  separately.	
  

	
   For	
  each	
  read	
  group,	
  concordant	
  readpairs	
  were	
  defined	
  as	
  those	
  with	
  an	
  insert	
  size	
  not	
  more	
  

than	
  6	
  standard	
  deviations	
  from	
  the	
  mean	
  insert	
  size.	
  This	
  was	
  done	
  regardless	
  of	
  readpair	
  orientation,	
  

and	
  thus	
  the	
  resolution	
  for	
  detecting	
  tandem	
  duplications	
  and	
  inversions	
  is	
  the	
  same	
  as	
  for	
  deletions	
  

(roughly	
  400bp).	
  Discordant	
  readpairs	
   for	
  which	
  both	
  reads	
  possessed	
  an	
  alignment	
  to	
  the	
  reference	
  

genome	
  were	
  extracted	
   from	
  the	
  original	
  BAM	
  file	
  using	
  SAMTools	
   (Li	
  et	
  al.	
  2009)	
  and	
  converted	
   to	
  

FASTQ	
   using	
   the	
   HYDRA	
   utility	
   bamToFastq	
   (http://code.google.com/p/hydra-­‐sv/).	
   FASTQ	
   files	
   were	
  

checked	
  to	
  ensure	
  that	
  they	
  contained	
  two	
  entries	
  for	
  each	
  read	
  ID,	
  in	
  the	
  correct	
  order.	
  

Discordant	
   readpairs	
  were	
  aligned	
   to	
   the	
   reference	
  genome	
   (1000	
  Genomes	
  Version	
  of	
  NCBI	
  

Build	
  37:	
  ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/human_g1k_v37.fasta.gz)	
  with	
  

Novoalign	
  v.2.07.10	
  (C.	
  Hercus,	
  unpublished;	
  http://www.novocraft.com),	
  using	
  an	
  index	
  of	
  word	
  size	
  

14	
  and	
  a	
  step	
  of	
  1	
  (-­‐k	
  14	
  –s	
  1).	
  Repetitive	
  alignments	
  were	
  resolved	
  using	
  random	
  mode	
  and	
  the	
  read-­‐

group	
   statistics	
   were	
   used	
   to	
   obtain	
   the	
   approximate	
   fragment	
   lengths	
   and	
   standard	
   deviations	
   (-­‐r	
  

Random	
  -­‐i	
  <mean>	
  <standard	
  deviation>).	
  This	
  more	
  sensitive	
  alignment	
  step	
  helps	
  to	
  eliminate	
  false	
  

positives	
  by	
  removing	
  concordant	
  mappings	
  missed	
  by	
  the	
  original	
  BWA	
  or	
  MAQ	
  alignment.	
  

	
  

Pairing,	
  duplicate	
  removal	
  and	
  library	
  classification	
  

Discordant	
  mappings	
  were	
  converted	
  to	
  BEDPE	
  format	
   (Quinlan	
  and	
  Hall	
  2010)	
  using	
  custom	
  scripts.	
  

The	
   BEDPE	
   read-­‐group	
   files	
   from	
   each	
   dataset	
   were	
   concatenated	
   into	
   a	
   single	
   file	
   for	
   duplicate	
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removal.	
   Duplicates	
  were	
   removed	
   using	
   the	
   custom	
   script,	
  dedupDiscordantsMultiPass.py,	
  which	
   is	
  

available	
   as	
   part	
   of	
   the	
   HYDRA	
   suite	
   (http://code.google.com/p/hydra-­‐sv/).	
   This	
   utility	
   allows	
   for	
  

removal	
   of	
   duplicates	
  with	
   inexact	
   coordinates,	
  which	
   is	
   not	
   possible	
  with	
   Picard	
   or	
   SAMTools.	
  We	
  

considered	
   readpairs	
   to	
  be	
  duplicates	
   if	
   both	
  end	
   coordinates	
  were	
  within	
  3bp	
   (-­‐s	
   3)	
   of	
   each	
  other.	
  

Following	
   duplicate	
   removal,	
   the	
   combined	
   files	
   were	
   then	
   separated	
   back	
   into	
   their	
   previous	
  

constituent	
  read-­‐group	
  files.	
  

Since	
   multi-­‐sample	
   variant	
   detection	
   with	
   HYDRA-­‐MULTI	
   requires	
   knowledge	
   of	
   each	
  

sequencing	
   library,	
   the	
   duplicate-­‐free	
   read-­‐group	
   files	
   were	
   then	
   classified	
   into	
   their	
   approximate	
  

initial	
  genomic	
  libraries	
  using	
  insert	
  size	
  statistics.	
  If	
  both	
  the	
  insert	
  size	
  mean	
  and	
  standard	
  deviation	
  

of	
   two	
   read-­‐groups	
  were	
  within	
  90%	
  of	
  each	
  other,	
   the	
   two	
   read-­‐groups	
  were	
  merged	
   into	
  a	
   single	
  

library.	
  The	
  average	
  and	
  standard	
  deviation	
  of	
  the	
  merged	
  library	
  insert	
  sizes	
  were	
  then	
  calculated	
  with	
  

a	
   weighted	
   average.	
   The	
   resulting	
   updated	
   library	
   statistics	
   and	
   library	
   BEDPE	
   files	
   were	
   then	
  

iteratively	
   compared	
   against	
   each	
   read-­‐group	
   by	
   decreasing	
   insert	
   size	
   until	
   read-­‐groups	
   were	
   no	
  

longer	
  merged.	
  The	
  resulting	
  library	
  BEDPE	
  files	
  and	
  newly	
  generated	
  library	
  statistics	
  were	
  then	
  used	
  

as	
  input	
  to	
  HYDRA-­‐MULTI.	
  

	
  

Breakpoint	
  detection	
  and	
  filtering	
  

Breakpoint	
  detection	
  was	
  performed	
  using	
  HYDRA-­‐MULTI,	
  a	
  new	
  multi-­‐sample	
  version	
  of	
   the	
  HYDRA	
  

paired-­‐end	
  mapping	
   algorithm	
   (Quinlan	
   et	
   al.	
   2010)	
   (manuscript	
   in	
   preparation)	
   that	
   uses	
   a	
   similar	
  

population-­‐based	
   breakpoint	
   detection	
   method	
   to	
   our	
   previous	
   method	
   (Quinlan	
   et	
   al.	
   2011).	
   In	
  

essence,	
   all	
   discordant	
   mappings	
   are	
   pooled	
   prior	
   to	
   breakpoint	
   calling,	
   and	
   presence/absence	
  

genotypes	
   are	
   calculated	
   retrospectively	
   based	
   on	
   the	
   number	
   of	
   readpairs	
   from	
   each	
   dataset	
   that	
  

were	
  incorporated	
  into	
  the	
  breakpoint	
  call.	
  A	
  HYDRA-­‐MULTI	
  configuration	
  file	
  was	
  prepared	
  detailing	
  

the	
  insert	
  size	
  distribution	
  of	
  each	
  of	
  the	
  377	
  total	
  sequencing	
  libraries	
  from	
  the	
  129	
  datasets.	
  	
  

A	
  total	
  of	
  4,686,652	
  breakpoints	
  were	
  predicted,	
  which	
  is	
  far	
  more	
  than	
  expected.	
  This	
  is	
  largely	
  

due	
   to	
   a	
  previously	
  unreported	
   library	
  preparation	
   artifact	
   that	
  produces	
   a	
  profuse	
  number	
  of	
   false	
  

small	
   (<10kb)	
   inversion	
   calls.	
   These	
   small	
   inversion	
   calls	
   were	
   judged	
   to	
   be	
   false	
   based	
   upon	
   the	
  

following	
   observations:	
   1)	
   they	
   are	
   found	
   equally	
   among	
   tumor	
   and	
   normal	
   datasets;	
   2)	
   different	
  

datasets	
  vary	
  widely	
   in	
   the	
  number	
  of	
  calls;	
  and	
  3)	
  hierarchical	
  clustering	
  of	
  samples	
  based	
  on	
  small	
  

inversions	
   revealed	
   no	
   genetic	
   relationship	
   between	
   tumor/normal	
   pairs,	
   whereas	
   hierarchical	
  

clustering	
  using	
  other	
  breakpoint	
  classes	
  produced	
  tight	
  clustering	
  between	
  tumor/normal	
  pairs.	
  False	
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inversion	
   calls	
   are	
   not	
   due	
   to	
   incomplete	
   removal	
   of	
   duplicate	
   readpairs,	
   and	
   we	
   confirmed	
   the	
  

presence	
   of	
   the	
   discordant	
   readpairs	
   underlying	
   these	
   false	
   inversion	
   calls	
   in	
   the	
   original	
   BAM	
   files	
  

downloaded	
   from	
   TCGA.	
   We	
   are	
   unaware	
   of	
   the	
   precise	
   molecular	
   cause	
   of	
   this	
   artifact,	
   but	
   we	
  

suspect	
   that	
   it	
   involves	
   systematic	
   formation	
   of	
   chimeric	
  molecules	
   early	
   during	
   library	
   generation,	
  

perhaps	
   as	
   a	
   consequence	
   of	
   intra-­‐	
   or	
   inter-­‐molecular	
   annealing	
   between	
   tracts	
   of	
  microhomology.	
  

Removal	
  of	
  small	
  inversions	
  resulted	
  in	
  a	
  total	
  of	
  1,636,145	
  HYDRA-­‐MULTI	
  calls.	
  	
  

	
   Paired-­‐end	
  mapping	
   is	
   prone	
   to	
   false	
   positives	
   due	
   to	
   read	
  mapping	
   artifacts	
   and	
   reference	
  

genome	
  assembly	
  errors,	
  and	
  thus	
  we	
  also	
  required	
  breakpoints	
  calls	
  to	
  fulfill	
  the	
  following	
  criteria:	
  1)	
  

at	
  least	
  3	
  readpairs	
  support	
  the	
  call;	
  2)	
  the	
  reads	
  have	
  a	
  mean	
  mapping	
  quality	
  greater	
  than	
  30;	
  3)	
  the	
  

reads	
  have	
  a	
  mean	
  number	
  of	
  mappings	
  less	
  than	
  1.5;	
  4)	
  the	
  variant	
  call	
  is	
  at	
  least	
  100bp	
  in	
  size;	
  and	
  5)	
  

neither	
  end	
  of	
  the	
  call	
  overlaps	
  simple	
  or	
  satellite	
  repeats	
  by	
  more	
  than	
  50%	
  (bedtools	
  pairtobed	
  	
  -­‐type	
  

either	
   -­‐f	
   0.5),	
   as	
   defined	
   by	
   a	
   union	
   of	
   the	
  UCSC	
   “simpleRepeat”	
   track	
   and	
   the	
   simple	
   and	
   satellite	
  

repeat	
   annotations	
   present	
   in	
   the	
   “RepeatMasker”	
   tracks	
   (combined	
   using	
   bedtools	
   merge).	
   These	
  

filtering	
   steps	
   resulted	
   in	
  34,621	
  high	
  confidence	
  calls,	
  6179	
  of	
  which	
  were	
   judged	
   to	
  be	
   somatic	
  by	
  

their	
  presence	
  in	
  one	
  tumor	
  sample	
  and	
  none	
  of	
  the	
  remaining	
  128	
  samples.	
  

	
  

Assembly	
  and	
  validation	
  

To	
   enable	
   efficient	
   assembly	
   of	
   somatic	
   breakpoints,	
   we	
   modified	
   the	
   sga	
   walk	
   function	
   from	
   the	
  

String	
   Graph	
   Assembler	
   (SGA)	
   (Simpson	
   and	
   Durbin	
   2012)	
   to	
   report	
   all	
   walks	
   from	
   all	
   connected	
  

components	
  of	
  the	
  string	
  graph,	
  with	
  advice	
  from	
  the	
  developer	
  (J.	
  Simpson).	
  For	
  each	
  HYDRA-­‐MULTI	
  

call,	
   we	
   extracted	
   readpairs	
   that	
   mapped	
   within	
   500bp	
   of	
   the	
   predicted	
   breakpoints,	
   including	
  

readpairs	
   with	
   one	
   unmapped	
   read.	
   We	
   then	
   ran	
   the	
   following	
   assembly	
   pipeline:	
   sga	
   preprocess	
  

(default),	
  sga	
  index	
  (-­‐-­‐no-­‐reverse),	
  sga	
  correct	
  (-­‐k	
  13	
  -­‐x	
  2	
  -­‐d	
  128),	
  sga	
  index	
  on	
  the	
  error	
  corrected	
  reads	
  

(default),	
  sga	
  rmdup	
  (default),	
  sga	
  overlap	
  (-­‐m	
  15),	
  sga	
  assemble	
  (-­‐m	
  15	
  -­‐d	
  0	
  -­‐g	
  0	
  -­‐b	
  0	
  -­‐l	
  100),	
  and	
  our	
  

modified	
  version	
  of	
  the	
  sga	
  walk	
  program	
  (-­‐d	
  10000	
  -­‐-­‐component-­‐walks).	
  	
  

	
   Resulting	
  contigs	
  were	
  aligned	
  to	
  the	
  reference	
  genome	
  using	
  BWA-­‐SW	
  (v.0.5.9)	
  (Li	
  and	
  Durbin	
  

2010).	
   Split-­‐mappings	
   with	
   at	
   least	
   25bp	
   of	
   non-­‐overlap	
   with	
   an	
   adjacent	
   mapping	
   on	
   the	
   query	
  

sequence	
  were	
  extracted	
  from	
  the	
  BAM	
  file	
  and	
  converted	
  to	
  BEDPE	
  format.	
  We	
  then	
  used	
  bedtools	
  

pairtopair	
   (-­‐type	
  both)	
   from	
   the	
  BEDTools	
   software	
   suite	
   (Quinlan	
  and	
  Hall	
   2010)	
   to	
  assess	
  whether	
  

HYDRA-­‐MULTI	
  calls	
  were	
  validated	
  by	
  split-­‐mapping	
  contigs.	
  We	
  considered	
  a	
  call	
  to	
  be	
  validated	
  if	
  the	
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breakpoints	
  predicted	
  by	
  split-­‐mapping	
  fell	
  within	
  the	
  200bp	
  predicted	
  breakpoint	
  interval	
  defined	
  by	
  

HYDRA-­‐MULTI,	
  and	
  if	
  split-­‐mapping	
  and	
  HYDRA-­‐MULTI	
  predicted	
  the	
  same	
  variant	
  class	
  (e.g.,	
  deletion).	
  

	
  

Comparison	
  to	
  1000	
  Genomes	
  deletions	
  

To	
  assess	
  the	
  number	
  of	
  known	
  SVs	
  within	
  our	
  dataset,	
  we	
  used	
  a	
  set	
  of	
  deletion	
  calls	
  from	
  the	
  1000	
  

Genomes	
  project	
  (Mills	
  et	
  al.	
  2011).	
  This	
  callset	
  is	
  a	
  combination	
  of	
  validated	
  deletion	
  calls	
   identified	
  

from	
  the	
  high	
  coverage	
  trios,	
  validated	
  deletion	
  calls	
  from	
  the	
  low	
  coverage	
  individuals,	
  and	
  the	
  set	
  of	
  

"gold	
   standard"	
   deletions	
   that	
   were	
   used	
   to	
   tune	
   the	
   1000	
   Genomes	
   calling	
   algorithms.	
   There	
   are	
  

60069	
  entries	
   in	
   this	
   file,	
  but	
  many	
  are	
   redundant	
  calls	
  generated	
  by	
  distinct	
   centers.	
  After	
  merging	
  

calls	
  with	
  mergeBed,	
  there	
  were	
  14368	
  non-­‐redundant	
  deletions.	
  To	
  compare	
  our	
  deletion	
  calls	
  to	
  this	
  

high-­‐quality	
  validated	
  set,	
  we	
  used	
  bedtools	
  intersect	
  requiring	
  50%	
  reciprocal	
  overlap	
  (-­‐r	
  -­‐f	
  50).	
  

	
  

Identification	
  of	
  breakpoint	
  clusters	
  

CGRs	
   were	
   identified	
   using	
   a	
   custom	
   method	
   composed	
   of	
   two	
   steps	
   (Fig.	
   2A).	
   First,	
   somatic	
  

breakpoint	
  calls	
  from	
  a	
  single	
  sample	
  that	
  were	
  found	
  within	
  100kb	
  of	
  each	
  other	
  were	
  merged	
  using	
  

clusterBed	
   from	
   the	
   BEDTools	
   suite.	
   Second,	
   "chains"	
   were	
   formed	
   from	
   genomic	
   loci	
   sharing	
  

breakpoint	
  calls	
  in	
  common.	
  Initially,	
  a	
  chain	
  is	
  formed	
  when	
  two	
  loci	
  are	
  linked	
  to	
  one	
  another	
  by	
  one	
  

or	
  more	
  HYDRA-­‐MULTI	
  calls.	
  Loci	
  are	
  chained	
  together	
  through	
  an	
  iterative	
  process	
  by	
  looping	
  through	
  

the	
  loci	
  and	
  updating	
  the	
  composition	
  of	
  chain	
  as	
  they	
  grow	
  due	
  to	
  the	
  addition	
  of	
  new	
  loci.	
  At	
  each	
  

iteration,	
  the	
  locus	
  is	
  added	
  to	
  a	
  pre-­‐existing	
  chain	
  if	
  that	
  locus	
  shares	
  an	
  SV	
  breakpoint	
  call	
  with	
  any	
  

other	
  locus	
  in	
  that	
  chain.	
  Moreover,	
  if	
  that	
  same	
  locus	
  also	
  shares	
  a	
  SV	
  call	
  with	
  one	
  or	
  more	
  additional	
  

(previously	
   unlinked)	
   chain,	
   all	
   chains	
   linked	
   by	
   that	
   locus	
   are	
  merged	
   into	
   a	
   single	
   chain.	
   The	
   end	
  

result	
  of	
   this	
   simple	
  algorithm	
   is	
   that	
  all	
   loci	
  within	
  a	
   chain	
  are	
   linked	
   to	
  one	
  another	
  by	
  a	
   series	
  of	
  

HYDRA-­‐MULTI	
  breakpoint	
  calls,	
  and	
  no	
  two	
   loci	
   from	
  distinct	
  chains	
  are	
   linked	
  by	
  a	
  call.	
   "Breakpoint	
  

clusters"	
  were	
  defined	
  as	
  chains	
  comprising	
  3	
  or	
  more	
  breakpoints.	
  	
  

	
   We	
   then	
  merged	
  breakpoint	
   clusters	
   that	
  were	
  within	
  1mb	
  of	
   each	
  other.	
   This	
   last	
   step	
  was	
  

added	
   to	
  minimize	
   fragmentation,	
  where	
   subsections	
   of	
   the	
   same	
   apparent	
   rearrangement	
  may	
   be	
  

reported	
  separately	
  due	
  to	
  false	
  negative	
  breakpoint	
  calls.	
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Simulation	
  of	
  breakpoint	
  cluster	
  identification	
  

We	
  performed	
  four	
  simulations	
  to	
  test	
  the	
  specificity	
  of	
  breakpoint	
  cluster	
   identification.	
   In	
  all	
  cases	
  

we	
  identified	
  clusters	
  exactly	
  as	
  for	
  the	
  real	
  data	
  and	
  report	
  the	
  mean	
  of	
  100	
  replicates.	
  For	
  the	
  Monte	
  

Carlo	
   simulation,	
   the	
   genomic	
   coordinates	
   of	
   tumor-­‐specific	
   somatic	
   breakpoints	
   were	
   randomly	
  

shuffled	
   using	
   bedtools	
   shuffle,	
   excluding	
   assembly	
   gaps.	
   To	
   emulate	
   the	
   filtering	
   of	
   HYDRA-­‐MULTI	
  

breakpoint	
   calls,	
   breakpoints	
  were	
  only	
  placed	
  within	
  uniquely-­‐mappable	
   regions	
  of	
   the	
   genome,	
   as	
  

defined	
  by	
  the	
  UCSC	
  wgEncodeCrgMapabilityAlign100mer	
  track,	
  and	
  were	
  not	
  allowed	
  to	
  overlap	
  with	
  

simple	
   or	
   satellite	
   repeats.	
   For	
   the	
   other	
   simulations,	
   a	
   random	
   subset	
   of	
   1000	
   Genomes	
   calls,	
  

validated	
   germline	
   SVs,	
   and	
   "rare"	
   individuals	
   specific	
   SVs	
   were	
   sampled	
   to	
   match	
   the	
   number	
   of	
  

tumor-­‐specific	
  somatic	
  SVs	
  identified	
  in	
  each	
  sample.	
  	
  

	
  

Genome	
  annotation	
  enrichment	
  analysis	
  	
   	
  

To	
  assess	
  whether	
  breakpoint	
  clusters	
  are	
  enriched	
  in	
  SV	
  hotspots	
  or	
  genomic	
  regions	
  prone	
  to	
  read	
  

mapping	
   artifacts,	
   we	
   assessed	
   overlap	
   between	
   our	
   breakpoint	
   calls	
   and	
   segmental	
   duplications	
  

(Bailey	
   et	
   al,	
   2001),	
   known	
   fragile	
   sites	
   in	
   the	
   human	
   genome	
   (Fungtammasan	
   et	
   al.	
   2012),	
   simple	
  

repeats,	
  microsatellites,	
  and	
  assembly	
  gaps.	
  For	
  each	
  comparison,	
  we	
  counted	
  the	
  observed	
  number	
  of	
  

overlaps	
  between	
  breakpoints	
  and	
  the	
  above	
  genome	
  annotations.	
  Using	
  pybedtools	
  (Dale	
  et	
  al.	
  2011),	
  

we	
   then	
  conducted	
  a	
  Monte	
  Carlo	
   simulation	
  by	
   shuffling	
   the	
  genomic	
   locations	
  of	
  each	
  breakpoint	
  

and	
  each	
  annotation	
  100	
  times,	
  and	
  for	
  each	
  iteration	
  we	
  counted	
  the	
  number	
  of	
  overlaps	
  found	
  using	
  

the	
   randomized	
   locations.	
   We	
   assessed	
   potential	
   enrichments	
   between	
   breakpoints	
   and	
   genome	
  

annotations	
   by	
   measuring	
   the	
   log2	
   ratio	
   of	
   observed	
   count	
   of	
   intersections	
   versus	
   the	
   median	
  

intersection	
  count	
  from	
  the	
  100	
  MC	
  simulations.	
  	
  

	
  

Read-­‐depth	
  analysis	
  

We	
   used	
   bedtools	
   coverage	
   from	
   the	
   BEDTools	
   software	
   suite	
   to	
   measure	
   read	
   depth	
   in	
   genomic	
  

windows	
   containing	
   5kb	
   of	
   uniquely	
   mappable	
   sequence,	
   as	
   defined	
   by	
   the	
  

wgEncodeCrgMapabilityAlign100mer	
  track.	
  There	
  were	
  a	
  total	
  of	
  534,957	
  windows	
  with	
  a	
  mean	
  size	
  of	
  

5787bp.	
  We	
  corrected	
  for	
  GC	
  bias	
  using	
  a	
  normalization	
  procedure	
  that	
  expresses	
  copy	
  number	
  as	
  a	
  Z-­‐

score,	
   as	
   described	
   previously	
   (Quinlan	
   et	
   al.	
   2010).	
   This	
   Z-­‐score	
   is	
   simply	
   the	
   number	
   of	
   standard	
  

deviations	
   that	
   the	
   read-­‐depth	
   of	
   a	
   given	
   window	
   differs	
   from	
   the	
   mean	
   read-­‐depth	
   of	
   all	
   other	
  

windows	
  that	
  have	
  a	
  similar	
  GC	
  content	
   (defined	
   in	
  1-­‐3%	
   intervals),	
  as	
  calculated	
  by	
   fitting	
  a	
  normal	
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distribution.	
  To	
  estimate	
  the	
  approximate	
  copy	
  number	
  of	
  a	
  genomic	
  window	
  we	
  divided	
  the	
  raw	
  read	
  

depth	
  of	
  that	
  window	
  by	
  the	
  median	
  raw	
  read-­‐depth	
  of	
  all	
  other	
  windows	
  with	
  a	
  similar	
  GC-­‐content,	
  

and	
  multiplied	
  by	
  2.	
  While	
  this	
  calculation	
  assumes	
  diploidy	
  and	
  tumor	
  homogeneity,	
  which	
  may	
  not	
  

be	
  valid	
  for	
  many	
  tumors,	
  the	
  resulting	
  estimates	
  are	
  sufficient	
  to	
  estimate	
  the	
  number	
  of	
  CNA	
  states	
  

(if	
  not	
  their	
  true	
  absolute	
  value).	
  To	
  detect	
  CNAs	
  we	
  performed	
  circular	
  binary	
  segmentation	
  (Olshen	
  

et	
   al.	
   2004)	
   of	
   Z-­‐scores	
   using	
   the	
   DNAcopy	
   package	
   in	
   R	
   with	
   the	
   following	
   parameters:	
  

undo.splits="sdundo"	
   and	
   undo.SD=2	
   (http://cran.r-­‐project.org/).	
  We	
   defined	
   CNA	
   change-­‐points	
   as	
  

the	
  interval	
  between	
  two	
  adjacent	
  CNA	
  segments	
  (+/-­‐	
  5kb)	
  whose	
  median	
  Z-­‐score	
  differed	
  from	
  each	
  

other	
  by	
  at	
  least	
  one	
  median	
  absolute	
  deviation.	
  We	
  defined	
  somatic	
  change-­‐points	
  as	
  those	
  that	
  were	
  

found	
   in	
   a	
   single	
   tumor	
   sample	
   but	
   not	
   in	
   any	
   of	
   the	
   65	
   normal	
   sample,	
   requiring	
   100%	
   reciprocal	
  

overlap	
   between	
   change-­‐points	
   (bedtools	
   intersect	
   -­‐r	
   -­‐f	
   1)	
   and	
   the	
   same	
   direction	
   of	
   copy	
   number	
  

change.	
  	
  

	
   For	
   the	
   analysis	
   of	
   overlap	
   between	
   CNA	
   change-­‐points	
   and	
   HYDRA-­‐MULTI	
   breakpoint	
   calls	
  

(Supplementary	
  Table	
  7),	
  we	
  identified	
  overlapping	
  calls	
  using	
  bedtools	
  intersect,	
  allowing	
  10kb	
  of	
  bi-­‐

directional	
   slop.	
   This	
   is	
   fairly	
   strict	
   given	
   the	
   relatively	
   low	
   resolution	
  and	
   imprecision	
  of	
   read-­‐depth	
  

analysis.	
  To	
  assess	
  enrichment	
  we	
  divided	
  the	
  observed	
  number	
  of	
  breakpoints	
  that	
  overlapped	
  CNA	
  

change-­‐points	
   by	
   the	
   mean	
   number	
   of	
   overlaps	
   identified	
   using	
   100	
   sets	
   of	
   randomly	
   shuffled	
  

breakpoint	
   calls.	
   These	
  were	
   the	
   same	
   shuffled	
   calls	
   used	
   in	
   the	
  Monte	
  Carlo	
   simulation	
   to	
   test	
   the	
  

specificity	
   of	
   CGR	
   detection,	
   as	
   described	
   above.	
   For	
   the	
   comparison	
   of	
   CNA	
   change-­‐points	
   and	
  

breakpoint	
  clusters	
  (Supplementary	
  Fig.	
  4C),	
  a	
  breakpoint	
  call	
  was	
  judged	
  to	
  overlap	
  a	
  cluster	
  if	
  it	
  was	
  

found	
  within	
  50kb,	
   and	
  breakpoint	
   clusters	
  were	
   randomly	
   shuffled	
  100	
   times	
   to	
  obtain	
  enrichment	
  

values,	
  as	
  described	
  above	
  for	
  breakpoint	
  calls.	
  

	
   For	
  estimation	
  of	
   copy	
  number	
   states,	
  we	
  extracted	
  all	
  CNA	
  change-­‐points	
  within	
  100kb	
  of	
  a	
  

breakpoint	
   cluster.	
  We	
   used	
   this	
   generous	
   definition	
   in	
   order	
   to	
   compensate	
   for	
   imprecise	
   change-­‐

point	
   detection	
   and	
   false	
   negative	
   HYDRA-­‐MULTI	
   breakpoint	
   calls,	
   thus	
   helping	
   to	
   ensure	
   that	
   the	
  

number	
   of	
   CNA	
   states	
   at	
   a	
   breakpoint	
   cluster	
   was	
   not	
   underestimated	
   (which	
   could	
   lead	
   to	
  

misclassification	
   of	
   stepwise	
   rearrangements	
   as	
   one-­‐off	
   CGRs).	
   To	
   estimate	
   the	
   number	
   of	
   copy	
  

number	
  states	
  at	
  breakpoint	
  clusters	
  we	
  used	
  a	
  greedy	
  clustering	
  algorithm	
  that	
  operates	
  on	
  a	
  sorted	
  

list	
   of	
   predicted	
   copy	
   numbers	
   taken	
   from	
   change-­‐points.	
   The	
   algorithm	
   merges	
   the	
   values	
   into	
   a	
  

group	
  if	
  the	
  smaller	
  value	
  is	
  at	
  least	
  80%	
  of	
  the	
  larger	
  value,	
  and	
  then	
  recalculates	
  the	
  copy	
  number	
  by	
  

taking	
  the	
  mean	
  of	
  the	
  values	
  in	
  the	
  group.	
  The	
  only	
  exception	
  is	
  that	
  the	
  two	
  copy	
  number	
  values	
  for	
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a	
   given	
   change-­‐point	
   cannot	
   be	
   placed	
   into	
   the	
   same	
   group.	
   When	
   this	
   happens,	
   a	
   new	
   group	
   is	
  

initiated	
  and	
  the	
  process	
   is	
   repeated	
   for	
   the	
  remaining	
  values.	
  We	
  chose	
  this	
  greedy	
  algorithm	
  after	
  

testing	
  more	
   conventional	
  methods	
   including	
   k-­‐means	
   clustering,	
   hierarchical	
   clustering,	
   and	
   kernel	
  

density	
  estimation.	
  These	
  methods	
  routinely	
  underestimated	
  the	
  number	
  of	
  copy	
  number	
  states	
  at	
  a	
  

nontrivial	
   fraction	
   of	
   breakpoint	
   clusters,	
   leading	
   to	
  misclassification	
   of	
   stepwise	
   rearrangements	
   as	
  

one-­‐off	
  CGRs.	
  

	
  

Monte	
  Carlo	
  simulation	
  of	
  progressive	
  rearrangement	
  

To	
  assess	
  the	
   likelihood	
  that	
  an	
  extreme	
  CGR	
  was	
  due	
  to	
  one-­‐off	
  rather	
  than	
  stepwise	
  mutation,	
  we	
  

performed	
  a	
   simulation	
  based	
  on	
   the	
  method	
  of	
  Stephens	
  et	
  al.	
   (2011).	
  For	
  each	
  observed	
  CGR,	
  we	
  

performed	
  a	
  Monte	
  Carlo	
  simulation	
  in	
  which	
  the	
  observed	
  SV	
  breakpoint	
  calls	
  were	
  applied	
  in	
  random	
  

order	
   to	
   a	
   progressively	
   mutated	
   synthetic	
   chromosome.	
   We	
   estimated	
   the	
   probability	
   that	
   the	
  

observed	
  CGR	
   is	
   caused	
  by	
   stepwise	
   rearrangement	
   (the	
  null	
   hypothesis)	
   by	
  dividing	
   the	
  number	
  of	
  

simulation	
  runs	
  that	
  produced	
  the	
  same	
  or	
  fewer	
  copy	
  number	
  states	
  as	
  observed	
  in	
  the	
  real	
  data	
  by	
  

the	
  total	
  number	
  of	
  successful	
  simulation	
  runs.	
  	
  

	
   To	
   perform	
   simulations	
   we	
   used	
   a	
   modified	
   version	
   of	
   SVsim	
   (G.	
   Faust,	
   unpublished),	
   a	
  

structural	
  variation	
  simulator.	
  We	
  simulate	
  rearrangements	
  on	
  multiple	
  chromosomes,	
  but	
  we	
  do	
  not	
  

allow	
  rearrangements	
  between	
  chromosomes.	
  We	
  use	
  a	
  diploid	
  genome	
  for	
  our	
  simulations	
  to	
  more	
  

accurately	
  mirror	
  natural	
  conditions	
  and	
  to	
  help	
  mitigate	
  the	
  loss	
  of	
  genomic	
  regions	
  via	
  deletions.	
  This	
  

is	
  more	
  conservative	
  than	
  a	
  haploid	
  simulation	
  in	
  that	
  it	
  generally	
  results	
  in	
  fewer	
  CNA	
  states.	
  During	
  

the	
   simulation,	
   we	
   take	
   into	
   account	
   the	
   orientation	
   of	
   mutated	
   chromosomal	
   segments	
   when	
  

determining	
   the	
   relationship	
   between	
   readpair	
   orientation	
   and	
   event	
   type.	
   To	
   select	
   breakpoint	
  

locations	
  within	
  multi-­‐copy	
   regions	
  generated	
  by	
  a	
  prior	
  duplication,	
  we	
   randomly	
   select	
  one	
  of	
   the	
  

breakpoint	
  loci,	
  and	
  then	
  select	
  the	
  second	
  locus	
  that	
  is	
  closest	
  to	
  it	
  on	
  the	
  mutated	
  chromosome.	
  If	
  a	
  

breakpoint	
  cannot	
  be	
  applied	
  due	
  to	
  a	
  prior	
  deletion,	
  we	
  attempt	
  to	
  apply	
  the	
  rearrangement	
  to	
  the	
  

homologous	
  chromosome;	
  if	
  it	
  cannot	
  be	
  applied	
  to	
  the	
  homolog,	
  we	
  abort	
  the	
  simulation	
  run	
  and	
  try	
  

again.	
  At	
  the	
  end	
  of	
  each	
  successful	
  run,	
  we	
  count	
  the	
  number	
  of	
  distinct	
  copy	
  number	
  states	
  across	
  

the	
  entire	
  mutated	
  genome.	
  As	
  our	
  ability	
  to	
  observe	
  copy	
  number	
  states	
  in	
  actual	
  data	
  is	
  restricted	
  to	
  

the	
   resolution	
   of	
   our	
   read-­‐depth	
   analysis,	
   we	
   only	
   count	
   states	
   in	
   our	
   simulations	
   that	
   appear	
   in	
  

regions	
  exceeding	
  10kb	
  in	
  length.	
  We	
  continue	
  this	
  process	
  until	
  1000	
  successful	
  simulation	
  runs	
  have	
  

completed	
  for	
  each	
  CGR.	
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Identification	
  of	
  templated	
  insertion	
  events	
  

To	
   identify	
   templated	
   insertion	
   events	
   and	
   small-­‐scale	
   rearrangements	
   at	
   SV	
   breakpoints,	
   we	
  

examined	
   contigs	
   whose	
   split-­‐alignments	
   were	
   found	
   to	
   validate	
   HYDRA-­‐MULTI	
   calls,	
   but	
   that	
  

contained	
  at	
  least	
  20bp	
  of	
  unaligned	
  sequence	
  directly	
  at	
  the	
  breakpoint,	
  as	
  determined	
  by	
  BWA-­‐SW.	
  

We	
  then	
  aligned	
  these	
  contigs	
  to	
  the	
  reference	
  genome	
  with	
  YAHA	
  (Faust	
  and	
  Hall	
  2012),	
  an	
  algorithm	
  

that	
  allows	
  for	
  highly	
  sensitive	
  determination	
  of	
  split	
  alignments	
  (options:	
  kmer	
  size	
  15,	
  -­‐M	
  15	
  -­‐P	
  0.8	
  -­‐H	
  

5000).	
   Alignments	
   were	
   visualized	
   with	
   a	
   modified	
   version	
   of	
   PARASIGHT	
   (J.	
   Bailey	
   and	
   E.	
   Eichler,	
  

unpublished:	
  http://eichlerlab.gs.washington.edu/jeff/parasight)	
  and	
  scrutinized	
  for	
  insertions	
  derived	
  

from	
  elsewhere	
  in	
  the	
  genome,	
  as	
  well	
  as	
  for	
  small-­‐scale	
  rearrangements	
  directly	
  at	
  the	
  breakpoint.	
  	
  

	
  

Estimating	
  breakpoint	
  allele	
  frequencies	
  

To	
  measure	
   the	
   intra-­‐tumor	
   allele	
   frequency	
   of	
   breakpoint,	
  we	
   aligned	
   all	
   the	
   raw	
   reads	
   from	
  each	
  

dataset	
   to	
   the	
   assembled	
  breakpoint-­‐containing	
   contigs.	
   For	
   each	
   contig	
  we	
  extracted	
   the	
   200bp	
  of	
  

sequence	
  flanking	
  the	
  breakpoint	
  and	
  aligned	
  raw	
  reads	
  to	
  the	
  200bp	
  fragments	
  using	
  BWA	
  (default	
  

options).	
   To	
   consider	
   an	
   alignment	
   as	
   positively	
   genotyping	
   the	
   presence	
   of	
   the	
   variant	
   allele,	
   we	
  

required	
  that	
   it	
  spanned	
  the	
  breakpoint	
  with	
  at	
   least	
  20bp	
  on	
  both	
  sides.	
  To	
  genotype	
  the	
  reference	
  

allele,	
  we	
  extracted	
  the	
  200bp	
  flanking	
  each	
  of	
  the	
  two	
  breakpoint	
  positions	
  in	
  the	
  reference	
  genome,	
  

and	
   performed	
   alignment	
   as	
   above.	
   The	
   intra-­‐tumor	
   breakpoint	
   allele	
   frequency	
   is	
   given	
   by	
   the	
  

number	
  of	
  reads	
  that	
  align	
  to	
  the	
  variant	
  junction	
  (breakReadCount)	
  divided	
  by	
  the	
  average	
  number	
  of	
  

reads	
   aligning	
   to	
   the	
   respective	
   reference	
   junctions	
   (refReadCount1	
   and	
   refReadCount2):	
  

breakReadCount	
   /	
   (breakReadCount	
   +	
   ((refReadCount1	
   +	
   refReadCount2)	
   /	
   2)).	
   In	
   order	
   to	
   consider	
  

allele	
  frequency	
  measurements	
  as	
  sufficiently	
  precise	
  for	
  comparing	
  simple	
  and	
  complex	
  variants,	
  we	
  

required	
  that	
  at	
  least	
  3	
  reads	
  identified	
  the	
  variant	
  allele.	
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