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1. Derivation of EBD? statistics:

In the manuscript we characterize EBD as a read depth pseudocount. By weighing read level data by
base quality and mapping quality we are better able to guard against sequencing errors that may

introduce false alternative alleles; a problem that is more acute in low coverage sequencing.

By inspiration, the squaring EBD stems from the pooled chi-squared statistic. We first establish the
null hypothesis that each site is monomorphic; i.e. observations of alternative bases are due to
sequencing or mapping error. For each site, s, we calculate the chi-squared statistic as follows
(Eq.S1).
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In this equation i is indexed from / fo I, where [ is the total number of sample. For each site s, the

a; =Yk ajx and r; = >k 7; . Where k=1...K is the number of reads for alternative and reference
nucleotides respectively. T is the total read depth over all samples for a given site. The numerator
sums the variance over all samples. The denominator is the expectation under the null hypothesis.
We can approximate this equation when e(ag; + 75 ;) is close to zero, which is a reasonable
assumption for low coverage sequencing. This simplifies to the squared read depth of the alternative
divided by the expected read depth of sequencing error. Functionally, squaring the EBD value
enhances the downward weighting of poor base and mapping quality, particularly in cases where the

alternative allele occurs by sequencing error.

2. Derivation of site scoring statistics:

We derive the site-scoring statistic by taking inspiration from Fisher's 1954 test of heterogeneity
which is based on the index of dispersion (Bennet and Hsu 1961). The index of dispersion is defined
as the ratio of variance to the mean for a single set of observation within a trial. The test of
heterogeneity, in contrast, computes the ratio of variances due to a series of different trials (Eq. S2).

In our case, each sample BAM represents a single trial and the population represents the set of trials.
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[Eq. S2]



In our model, e, is the population probability of an alternative allele. The null hypothesis assumes
that the population probability, e, is the same as the sample probability. Further this population
probability is due to sequencing error as described in Section 1. In the test of heterogeneity the
numerator represents the sum of variances for each sample. The denominator is the variance of the
null hypothesis. Practically, this value of this statistic is increased if the site is truly polymorphic, i.e.

there is extra-binomial variation.

Equation S2 performs well on real data, however we found that we could generate a more accurate
statistic by utilizing a known property of bi-allelic SNPs. For a SNP, there are only three genotypes
with corresponding own binomial parameters (0, 0.5, 1 for Ref/Ref, Ref/Alt, Alt/Alt respectively).

The best fit statistic is achieved by utilizing the model that minimizes the value of Eq S3. We thus

compose a goodness of fit test under the alternative hypothesis as:
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[Eq. S3]

The Variance Ratio Statistic (Eq. S4) is a ratio of these two statistics (Eq. S2 and Eq. S3). The
numerator represents the extra-binomial variation and the denominator acts as an approximate log
likelihood where taking the minimum of the denominator maximizes the likelihood of the correct
genotype. If there is high SNP variation in the denominator, then the statistic will be increased
however if there is no SNP variation, then the signal will not be appreciably altered. If a site has a
true alternative SNP, we would expect that it would have high extra binomial variation as measured
by Eq. S2 and low SNP variation as measured by Eq. S3. We do not use the site level index, s, for
readability.
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We found that Eq. S4 outperforms the Fisher index of dispersion (Eq. S2) in sites where alternative
bases are introduced by high mapping error (e.g. 10%) because it favors ‘typical’ genotype binomial

ratios (0, 0.5 or 1) (data not shown)

3. SNP Site Detection



Using EBD and the variance ratio scoring statistic, we generated an unfiltered SNP site list that
contained 34,656,295 candidate SNP sites on all autosome chromosomes with a threshold site score

greater than 1.5.
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Figure S1: Distribution of Variance Site Scoring for unfiltered SNPs: We plot the distribution of
site scores calculated using the variance site scoring method. In this figure the score cut-off is located

at logo (1.5) =0.176. Our unfiltered site list was composed of SNP sites with scores above 1.5.

SNP Site Discovery

In Table S3 we present the complete Unfiltered SNP site list with a total of 36,156,891 candidate
SNP sites on autosomes with threshold site score threshold>1.5. We also include a Filtered SNP site
list is generated by applying four filtering criterions (See below) on the unfiltered SNP site list. We
obtain a total of 34,142,062 SNP sites on autosomes for the filtered list. This sites list was released in

the 1000 Genomes interim release (Materials and Methods).



We found that the majority of the SNPs discovered are novel (78.3%) and that the Ti/Tv of known
and novel SNPs are close to each other and highly correlated (r"=0.97) across chromosome. The false
positive rate is low in the sense of microarray (OMNI chip) validation: only 1954 sites out of

99,817non-polymorphic OMNI sites (1.9%) are falsely identified (Table S1).

SNP Site Filtering to increase specificity

Filtering of the site list is an optional procedure that increases the specificity of SNP discovery,
although with some reduction in sensitivity. We employed four widely used heuristics: (1) maximum
population read depth; (2) minimum population read depth; (3) strand bias as tested by 2x2
contingency table (rows are reference and alternative bases and columns are positive and negative
strand), and (4) position bias. For tests involving population read depth, we removed SNP sites that
deviated from the median values for the remaining SNPs. These criteria were fine-tuned on each
sequencing platform to get remove SNP sites with an average Ti/Tv of ~1.4, a large deviation from
genome wide expectations (Table S1). For strand and position bias, the mean of the reference base
and the alternative base were evaluated by Fisher exact test. For each platform, we see progressive

removal of low-quality SNPs and falsely discovered monozygotic OMNI sites.

Sum EBD > 1.5 Median Sum EBD < 0.2 Median p(strand bias)<1e-3 p(position bias)<1e-3

llumina filtered 236,027 374,165 723,134 842,739
Tilmv 1.34 1.35 1.25 1.29
mono 150 64 436 603
Sum EBD > 2.5 Median p(strand bias)<1e-5 p(position bias)<1e-5
SOLID filtered 26,220 260,930 280,126
TifTv 1.23 1.55 1.56
mono 17 53 183

Sum EBD > 2 Median Sum EBD < 0.05 Median p(strand bias)<1e-3 p(position bias)<1e-3

454 filtered 38,577 238,971 2,958 16,169
Ti/Tv 1.43 1.58 1.34 1.34
mono 31 25 2 36

Table S1: Filtering Performance for each criterion by platform: Progressive application of
filtering criteria resulted in removal of low-quality SNPs (low Ti/Tv) and removal of falsely

discovered monomorphic OMNI sites.



After filtering, we removed approximately 5.5% of all sites; this included >30% more OMNI mono
sites. This procedure also increased the overall Ti/Tv from 2.10 to 2.14. The filtered sites also had a
Ti/Tv ratio ranging from 1.30-1.74, a large deviation from genome-wide expectations. Their Ti/Tv

was not strongly correlated with that of unfiltered sites (r’=0.36).

We calculate a pre and post filtering sensitivity and specificity by comparing discovery to OMNI

based microarray.

Sensitivity Specificity
Before Filtering 97.9% 98.1%
After Filtering 93.6% 98.7%

Table S2: Pre and Post Filtering Sensitivity and Specificity. A total of 2,183,344 polymorphic
and 99,817 monomorphic SNP sites were included in the OMNI microarray. Prior to filtering,
SNPTools was able to correctly identify 2,138,395 sites, but falsely identified 1,946 sites. Post
filtering, SNPTools correctly identified 2,043,844 sites but falsely identified 1,284 sites. Filtering
increased the specificity by 0.6% but reduced sensitivity by 4.3%



Removed

Removed SNPs

Post-Filtering

Post-Filtering Known

Post-Filtering Novel (dbSNP

%

Chr  Pre-Filtering Total Ti/Tv SNPs Ti/Tv Total Ti/Tv SNPs Ti/Tv 129) Novel Ti/Tv
1 2,715,980 2.21 146,142 1.59 2,569,838 2.24 574,357 2.25 1,995,481 22.4 2.24
2 2,992,947 2.09 148,937 1.48 2,844,010 2.12 591,100 214 2,252,910 20.8 2.12
3 2,486,270 2.07 108,655 1.43 2,377,615 2.1 496,967 2.12 1,880,648 20.9 2.09
4 2,492,930 2.04 121,105 1.44 2,371,825 2.07 513,634 2.1 1,858,191 21.7 2.06
5 2,293,806 2.06 109,982 1.44 2,183,824 2.1 453,118 212 1,730,706 20.7 2.09
6 2,191,709 214 117,568 1.6 2,074,141 2.17 479,347 2.19 1,594,794 23.1 2.16
7 2,040,877 2.08 132,638 1.43 1,908,239 2.12 407,370 2.14 1,500,869 21.3 2.12
8 1,984,107 1.95 102,957 1.37 1,881,150 1.98 392,562 199 1,488,588 20.9 1.98
9 1,530,438 2 102,287 1.49 1,428,151 2.04 317,994 2.06 1,110,157 22.3 2.03
10 1,713,497 2.17 104,153 1.44 1,609,344 2.21 373,471 2.22 1,235,873 23.2 2.21
11 1,718,823 2.09 101,226 1.29 1,617,597 2.14 367,812 2.15 1,249,785 22.7 2.14
12 1,649,231 2.16 88,859 1.43 1,560,372 2.21 348,894 2.23 1,211,478 22.4 2.2
13 1,240,915 2.11 55,375 1.55 1,185,540 214 273,177 2.16 912,363 23 2.13
14 1,137,843 2.15 61,716 1.53 1,076,127 2.19 232,239 2.21 843,888 21.6 2.18
15 1,029,461 2.12 66,094 1.67 963,367 2.15 207,196 2.15 756,171 21.5 2.15
16 1,102,674 193 75,127 1.51 1,027,547 1.97 223,678 1.95 803,869 21.8 1.97
17 933,415 2.39 56,154 1.73 877,261 243 189,197 243 688,064 21.6 2.43
18 980,699 2.16 45,562 1.52 935,137 2.19 208,644 2.2 726,493 22.3 2.19
19 733,842 2.32 61,524 1.49 672,318 2.4 155,563 2.38 516,755 23.1 2.4
20 759,544 2.32 41,054 1.5 718,490 2.37 172,052 2.36 546,438 23.9 2.37




21 476,012 2.18 33,798 1.5 442,214 2.23 101,560 2.25 340,654 23 2.23
22 451,275 243 37,428 1.74 413,847 2.49 106,483 2.49 307,364 25.7 2.49

total | 34,656,295 2.11 1,918,341 1.49 32,737,954 2.15 7,186,415 2.17 25,551,539 21.7 2.15

Supplement Table S3: Pre and Post filtering SNP site list for 1000 Genomes Phase 1 BCM call set.34,656,295 SNP sites were originally discovered with an average
Ti/Tv ratio of 2.11. SNPs were filtered using 4 criteria (supplement) to produce a final list of 32, 737,954 SNPs with a Ti/Tv ratio of 2.15. 1,918,341sites (with Ti/Tv ratios
ranging from 1.30-1.74) were removed from the unfiltered SNP list to form the filtered list. 21.7% of SNPs were previously discovered SNPs (dbSNP 129) and 78.3% of all

sites were novel.



4. Expectation Maximization Algorithm for BBMM

We model each BAM as a flexible mixture of three binomials that represent each of the genotype
classes. These genotype classes each have two variables, a weight coefficient w, and a binomial
probability p,, In order to compute the value of these parameters we utilize the Expectation

Maximization (EM) algorithm (Dempster et al. 1977). We begin by introducing a latent variable z;
as a binary assignment variable which has a 1 of V representation Y.,y rq qa Zs» = 1 (Bishop, 2006).
The probability of the latent variable at any site is then given by the weight coefficient, w;,, such

that p(zg) = [[, wy,?s?. Similarly the observed data likelihood can be written as p (7, as|zg) =

[I, Binomial(ry + ag, py)?sv. The marginal distribution of the data is obtained by summing over the

joint distribution all states of z, )., p(r, as|lzs)p(zs). This simplifies into the sum of the weighted

observed data likelihoods.

P(rs,a5) = Z w,, * Binomial(rs + ag, py,)

v=rr,ra,aa

Where

Binomial(rs + ag, py,) = (r5+as) Py (1 —py)'s.

as

To being the E-step, we assign values to the parametersp,®, w,,°. We then define the expectation the
joint log likelihood with respect to the conditional distribution of zg,, with respect observed data and

the previous parameters values as the following function O.
O(p,w| pt' Wt) =252y log ((p(as' TS|ZS,17' D, W) )p(zs,vlpvtv thv as 1s),t =0,1,2.

For the M-step, we obtain an updated set of parameters (p,*?, w,t*1) by maximizing the above

expectation.

pvt+1: th+1 — rgﬁ,xo(p'wl pt,Wt)



We compute the updated parameters by taking the partial derivative of the function O, and solving for

each of the parameters. These derivations can be found in Bishop (Bishop 2006)

5. Imputation and Phasing

Our imputation method derives from genetic coalescence based methods. However directly applying
the Li and Stephens (Li and Stephens 2003) PAC method is computationally expensive — the
estimation of multi-haplotype mosaic model by HMM is demanding due to the large number of
hidden status (O (I) states and O (I’) transitions). We improve computational time by restricting the
number of population haplotypes that are used to create the mosaic. In our model, we employed a

“constrained” template haplotype sampling scheme so that we can sample in constant time.

Pseudocode for Imputation and Phasing

Guess the haplotype of all samples randomly
Repeat b+m times, where b is the number of burn in cycles and m is the number of MCMC
iterations {
For each individual i {
Sample four haplotypes from the population randomly
For w iterations {
Change one of the four haplotypes
Accept the trial according to M-H criteria.
} The remained haplotypes are the parental haplotypes for individual
Impute phased genotypes based on parental haplotypes.

}
Repeat m cycles and output the haplotype probabilities and genotype likelihoods

To estimate haplotypes, we first initialize all haplotypes by randomly generating a possible haplotype
given the set of observed GL for each individual. For each sample, we search for a set of 4 parental

haplotypes H;* (also denoted as FO, F1, M0, M1) by proposing haplotypes from the population given
observed genotype likelihoods for each sample and accepting or rejecting it according to a Metropolis

Hastings acceptance criteria. We iterate this step, w times. Although the candidate space for
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sampling is large~0 (I*), by using the MH sampler to propose new parental haplotypes from the
population of haplotypes, the sampler can evaluate the proposal in constant time ~O (I)(Figure S2a).
Once we have settled on a set of parental haplotypes, we can refine the sample’s haplotype H;, using a
4 state Hidden Markov Model, where the state of each site can be denoted as (FO, M0), (FO, M1), (F1,
MO), (F1, M1), i.e. a mosaic combination of the four parental haplotypes H;*where the transition
matrix is calculated from the recombination rate and genotype likelihoods and emission matrices is
calculated from the mutation rate. We solve for the hidden states using the forward-backward
algorithm (Bishop 2006). We iterate these steps, m times (Figure S2b) to produce accurate phased

genotypes.
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Figure S2: Imputation of phased genotypes using a constrained Li-Stephens method:
Genotypes and haplotypes are imputed using a constrained mosaic haplotype model. (a). While
mosaic haplotype model initializes each individual’s haplotype as a mosaic of all haplotypes in the
population, this is computationally expensive. Our model models the individuals as a mosaic of 4
parental haplotypes. This is more computationally tractable. (b) Given each individual’s genotype
likelihoods, 4 parental haplotypes are sampled from the population by a w-step Metropolis Hastings
(MH) sampler. Once all parental haplotypes are established, genotypes and haplotypes for each
individual are imputed given their parental haplotypes. This is repeated for m iterations until
convergence.

Algorithm Development
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The imputation and phasing process begins by dividing S sites into chunks of pre-set size. Smaller
chunk sizes provide for more accurate modelling of local recombination rates but must be balanced
against computational requirements. We select chunks of length 1024 in order to allow for parallel
computation (See Section 6 below). For each chunk we setup a matrix of GLs for Ref/Ref, Ref/Alt,
and Alt/Alt g= (g,...gs) with S total variant sites (in the chunk) and a matrix H= (H,..., Hj,...,Hss) of
haplotypes for each sample. To model recombination we create a vector r=(ry,...,rs.;) which is the

probability of recombination, or “jump” probability between pairs of consecutive loci. Like

dixp
2n+dixp

Fearnhead and Donnelly, (Fearnhead and Donnelly 2001) we model this probability as where

d; is the distance between marker s and s+/ and p is the average recombination rate for the chunk.

To mimic the effects of recombination we model the loci as a Markov chain (1...S) with transition

probability (T) between haplotypes, &, for individual i at locus s.
P(H;s = k*|H;s = k)is equal to:

(1-1r)*(1—r) if k* =k for both haplotypes
(1—r15) *r5if k* = k for one haplotype and k™ # k for the other
1y * 175 if k™ # k for both haplotypes

For each locus, s, we calculate four emission probabilities (e). These emission probabilities represent
the four phased genotypes (0/0 —Ref/Ref, 1/0 —Ref/Alt, 0/1 —Ref/Alt, and 1/1 — Alt/Alt). The
probabilities are calculated as the weighted sum of the product of a scaled mutation, p, event for each
genotype multiplied by the genotype likelihood for each genotype.

P(1/0)s = (1 — ) * (1 — u) * GL;(Alt/Ref) + (1 — ) * p * GL;(Ref /Ref) + p* (1 — u) * GL(Alt/Alt) + pu+ p + GLy(Ref /Alt)

P(0/1)s =0 —p)* (A —u)*xGL;(Ref /Alt) + (1 — ) xu* GL;(Ref /Ref) + u = (1 — u) = GL (Alt/Alt) + u = u = GL;(Alt/Ref)

{P(O/O)S =1 —-w*Q—p *GL;(Ref /Ref) + (1 — ) » ux GL,(Ref /Alt) + u = (1 — u) = GL;(Alt/Ref) + u * u * GL,(Alt/Alt)
P(1/1)s=Q — ) » 1 — p) = GL(Alt/Alt) + (1 — p) * p = GLs(Alt/Ref) + p+ (1 — ) * GLs(Ref /Alt) + pu = p + GLs(Ref /Ref)

The M-H Sampler:

In our “constrained Li- Stephens”(Li and Stephens 2003) algorithm, the sample haplotype is modelled

as a mosaic combination of 4 parental haplotypes. To select these 4 parental haplotypes, we use an

12



M-H sampler to propose parental haplotypes by using the transition (7)) and emission (e) matrices
previously calculated. We initialize this process by randomly generating haplotypes for each
individual and then randomly drawing four parental haplotypes, H;* from the population. We then
calculate the likelihood of the current proposal p(H;|H;*,T,e). We then update one of the four parental
haplotypes with a randomly drawn haplotype from the population. The proposed parental haplotypes
are represented as H;**. We calculate the M-H acceptance probability as:

P(H;|H;",T, e)

A(H;*,H;) = min [1,

We accept the probability A(H;™, H;):

* ifp(H;|H",T,e) > p(H;|H;,T,e), we accept the proposed parental haplotypes, i.c.
H; = H”
o ifp(H;|H",T,e) < p(H;|H/,T,e), we draw a random number from 0 to 1 and accept

P(HilH;"T.e)

H;" if the random number is less than pu—
p(Hi|H;,Te)

* Otherwise we keep the original four parental haplotypes, i.e. H;' = H;

In order to ensure adequate mixing of the parental haplotypes, we use a w-step M-H sampler, where w
= number of folds * number of samples. Increasing the number of folds increases the probability that

all population haplotypes are sampled at least one time, during each M-H and HMM iteration.

The Hidden Markov Model (HMM):

Haplotypes exhibit cluster like patterns (Scheet and Stephens 2006). We can model the assumption
that each allele will originate from a particular cluster with an HMM, where the transition (7) matrix
can account for the assumption that nearby markers will likely arise from the same haplotype cluster
(linkage disequilibrium) but that they will also be subject to recombination that scales with the
distance between loci. In order to estimate the underlying haplotype states given the parental H*

haplotypes, we utilize the forward backward algorithm (Bishop 2006)(Bishop 2006). As Baum’s
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forward backward algorithms have been discussed in depth by numerous authors (Browning and
Browning 2007; Greenspan and Geiger 2004; Scheet and Stephens 2006; Bishop 2006; Li et al. 2011),

we direct you to those references for more details.

Haplotype Merging:

The chunks are linked together to produce haplotypes by merging over the whole chromosome. All
chunks are loaded into memory and the haplotypes are then merged using a 50kb sliding window by

evaluating the phase position by position and finding the best match.

6. MCMC and Chunk Size for Genotype Imputation

Two key parameters affect the accuracy and speed of imputation: "chunk size" or number of sites to
be imputed and the number of MCMC sampling cycles. We generated several genotype imputation
call sets of chromosome 20 using different parameter settings and evaluated the results by comparing
the genotype concordance against known genotypes from HapMap3, OMNI and Affymetrix Axiom
data sets. We measure the error by the discordance rate (%) for the genotype classes, Alt/Alt, Ref/Alt
and Ref/Ref and also evaluate an overall discordance rate and a non-ref/ref discordance rate. The best
overall discordance rate was 0.61%, 0.67% and 0.62% when compared to HapMap3, OMNI and

Axiom respectively was with MCMC =200, and chunk size =1024.

Reference | MCMC gilz‘:“k Ref/Ref | Ref/Alt | Alt/Alt | Total Non-Ref
30 1024 0.36% 1.14% 1.44% 0.78% 1.67%
50 1024 0.31% 1.04% 1.37% 0.71% 1.52%
65 1024 0.29% 0.99% 1.32% 0.68% 1.45%

HapMap3
100 1024 0.26% 0.94% 1.26% 0.64% 1.36%
100 512 0.27% 0.92% 1.25% 0.63% 1.36%
200 1024 0.25% 0.89% 121% 0.61% 1.30%

OMNI 30 1024 0.43% 1.67% 1.59% 0.82% 2.53%
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50 1024 0.40% 1.52% 1.53% 0.76% 2.34%
65 1024 0.39% 1.44% 1.46% 0.73% 2.24%
100 1024 0.37% 1.45% 1.43% 0.72% 2.21%
100 512 0.37% 1.35% 1.40% 0.69% 2.14%
200 1024 0.35% 1.34% 1.35% 0.67% 2.07%
30 1024 0.27% 1.82% 1.55% 0.75% 2.25%
50 1024 0.24% 1.69% 1.50% 0.70% 2.10%
65 1024 0.23% 1.62% 1.45% 0.67% 2.01%
Axiom
100 1024 0.21% 1.58% 1.41% 0.65% 1.93%
100 512 0.22% 1.53% 1.40% 0.64% 1.91%
200 1024 0.21% 1.52% 1.37% 0.62% 1.86%

Table S4: Impact of MCMC cycles and chunk size on Chr20 Imputation Accuracy: (a)

Discordance rates for imputed genotypes on chr20, created using different Chunk Sizes and MCMC,
compared to genotypes from three array datasets, HapMap3, [llumina OMNI and Affymetrix Axiom.
MCMC of 200 produced the lowest error rate.

While imputation accuracy can be improved with increased expenditure of computation resources, we

found, as shown in Figure S2 for whole genome imputation, that after 1000 CPU equivalent months,

that the improvement in error rate is marginal. A CPU month is a unit of computation defined as 1

CPU core of Intel Xeon E5520 working for 1 month.
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Figure S2: Computational burden of Imputation: We find that after 1000CPU months, increased

MCMC cycles only result in marginal improvements in Genotype error.
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