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1. Derivation of EBD2 statistics:  

 

In the manuscript we characterize EBD as a read depth pseudocount.  By weighing read level data by 

base quality and mapping quality we are better able to guard against sequencing errors that may 

introduce false alternative alleles; a problem that is more acute in low coverage sequencing.   

By inspiration, the squaring EBD stems from the pooled chi-squared statistic.  We first establish the 

null hypothesis that each site is monomorphic; i.e. observations of alternative bases are due to 

sequencing or mapping error.  For each site, s, we calculate the chi-squared statistic as follows 

(Eq.S1).   
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[Eq. S1] 

In this equation i is indexed from 1 to I, where I is the total number of sample.  For each site s, the 

!! = !!,!!
! !!"#!!! = !!,!!

!  where k=1...K is the number of reads for alternative and reference 

nucleotides respectively.  !! is the total read depth over all samples for a given site.  The numerator 

sums the variance over all samples.  The denominator is the expectation under the null hypothesis.  

We can approximate this equation when!! !!,! + !!,! !is close to zero, which is a reasonable 

assumption for low coverage sequencing.  This simplifies to the squared read depth of the alternative 

divided by the expected read depth of sequencing error.  Functionally, squaring the EBD value 

enhances the downward weighting of poor base and mapping quality, particularly in cases where the 

alternative allele occurs by sequencing error.   

 

2. Derivation of site scoring statistics: 

We derive the site-scoring statistic by taking inspiration from Fisher's 1954 test of heterogeneity 

which is based on the index of dispersion (Bennet and Hsu 1961).  The index of dispersion is defined 

as the ratio of variance to the mean for a single set of observation within a trial.  The test of 

heterogeneity, in contrast, computes the ratio of variances due to a series of different trials (Eq. S2).  

In our case, each sample BAM represents a single trial and the population represents the set of trials.   

!"#ℎ!"!!!!!!! − !"#!!!"!ℎ!"!#$%!&!'"( = !
!!,! − ! !!,! + !!,!
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[Eq. S2] 
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In our model, e, is the population probability of an alternative allele.  The null hypothesis assumes 

that the population probability, e, is the same as the sample probability.  Further this population 

probability is due to sequencing error as described in Section 1.  In the test of heterogeneity the 

numerator represents the sum of variances for each sample.  The denominator is the variance of the 

null hypothesis.  Practically, this value of this statistic is increased if the site is truly polymorphic, i.e. 

there is extra-binomial variation.  

Equation S2 performs well on real data, however we found that we could generate a more accurate 

statistic by utilizing a known property of bi-allelic SNPs. For a SNP, there are only three genotypes 

with corresponding own binomial parameters (0, 0.5, 1 for Ref/Ref, Ref/Alt, Alt/Alt respectively).   

The best fit statistic is achieved by utilizing the model that minimizes the value of Eq S3.  We thus 

compose a goodness of fit test under the alternative hypothesis as:  

!"# !!,! − 0 !!,! + !!,!
!, !!,! −

1
2 !!,! + !!,!

!
, !!,! − 1 !!,! + !!,!

!
!

!!!
 

[Eq. S3] 

The Variance Ratio Statistic (Eq. S4) is a ratio of these two statistics (Eq. S2 and Eq. S3).  The 

numerator represents the extra-binomial variation and the denominator acts as an approximate log 

likelihood where taking the minimum of the denominator maximizes the likelihood of the correct 

genotype. If there is high SNP variation in the denominator, then the statistic will be increased 

however if there is no SNP variation, then the signal will not be appreciably altered.  If a site has a 

true alternative SNP, we would expect that it would have high extra binomial variation as measured 

by Eq. S2 and low SNP variation as measured by Eq. S3. We do not use the site level index, s, for 

readability. 

!"#$"%&'!!"#$%!!"#"$%"$& = !! − ! !! + !! ! − !" 1 − !!
!!!

!"# !! − 0 !! + !! !, !! − !
! !! + !!

!
, !! − 1 !! + !! !!

!!!
 

[Eq. S4] 

We found that Eq. S4 outperforms the Fisher index of dispersion (Eq. S2) in sites where alternative 

bases are introduced by high mapping error (e.g. 10%) because it favors ‘typical’ genotype binomial 

ratios (0, 0.5 or 1) (data not shown)   

 

3. SNP Site Detection 



4 
 

Using EBD and the variance ratio scoring statistic, we generated an unfiltered SNP site list that 

contained 34,656,295 candidate SNP sites on all autosome chromosomes with a threshold site score 

greater than 1.5.   

 

Figure S1:  Distribution of Variance Site Scoring for unfiltered SNPs: We plot the distribution of 

site scores calculated using the variance site scoring method. In this figure the score cut-off is located 

at log10 (1.5) =0.176.   Our unfiltered site list was composed of SNP sites with scores above 1.5. 

 

SNP Site Discovery 

In Table S3 we present the complete Unfiltered SNP site list with a total of 36,156,891 candidate 

SNP sites on autosomes with threshold site score threshold>1.5.  We also include a Filtered SNP site 

list is generated by applying four filtering criterions (See below) on the unfiltered SNP site list. We 

obtain a total of 34,142,062 SNP sites on autosomes for the filtered list. This sites list was released in 

the 1000 Genomes interim release (Materials and Methods).   
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We found that the majority of the SNPs discovered are novel (78.3%) and that the Ti/Tv of known 

and novel SNPs are close to each other and highly correlated (r2=0.97) across chromosome.  The false 

positive rate is low in the sense of microarray (OMNI chip) validation: only 1954 sites out of 

99,817non-polymorphic OMNI sites (1.9%) are falsely identified (Table S1).   

 

SNP Site Filtering to increase specificity 

Filtering of the site list is an optional procedure that increases the specificity of SNP discovery, 

although with some reduction in sensitivity. We employed four widely used heuristics: (1) maximum 

population read depth; (2) minimum population read depth; (3) strand bias as tested by 2x2 

contingency table (rows are reference and alternative bases and columns are positive and negative 

strand), and (4) position bias.  For tests involving population read depth, we removed SNP sites that 

deviated from the median values for the remaining SNPs.  These criteria were fine-tuned on each 

sequencing platform to get remove SNP sites with an average Ti/Tv of ~1.4, a large deviation from 

genome wide expectations (Table S1).  For strand and position bias, the mean of the reference base 

and the alternative base were evaluated by Fisher exact test.  For each platform, we see progressive 

removal of low-quality SNPs and falsely discovered monozygotic OMNI sites.   

 

 

 

 

Table S1: Filtering Performance for each criterion by platform:  Progressive application of 

filtering criteria resulted in removal of low-quality SNPs (low Ti/Tv) and removal of falsely 

discovered monomorphic OMNI sites.  
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After filtering, we removed approximately 5.5% of all sites; this included >30% more OMNI mono 

sites.  This procedure also increased the overall Ti/Tv from 2.10 to 2.14.  The filtered sites also had a 

Ti/Tv ratio ranging from 1.30-1.74, a large deviation from genome-wide expectations.  Their Ti/Tv 

was not strongly correlated with that of unfiltered sites (r2=0.36).  

 We calculate a pre and post filtering sensitivity and specificity by comparing discovery to OMNI 

based microarray.   

!
Sensitivity! Specificity!

Before!Filtering! 97.9%! 98.1%!

After!Filtering! 93.6%! 98.7%!

Table S2:  Pre and Post Filtering Sensitivity and Specificity.  A total of 2,183,344 polymorphic 

and 99,817 monomorphic SNP sites were included in the OMNI microarray.  Prior to filtering, 

SNPTools was able to correctly identify 2,138,395 sites, but falsely identified 1,946 sites.  Post 

filtering, SNPTools correctly identified 2,043,844 sites but falsely identified 1,284 sites.  Filtering 

increased the specificity by 0.6% but reduced sensitivity by 4.3%   
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Chr$ Pre'Filtering$Total$ Ti/Tv$ Removed$
SNPs$

Removed$SNPs$
Ti/Tv$

Post'Filtering$
Total$ Ti/Tv$ Post'Filtering$Known$

SNPs$ Ti/Tv$ Post'Filtering$Novel$(dbSNP$
129)$

%$
Novel$ Ti/Tv$

1" 2,715,980" 2.21" 146,142" 1.59" 2,569,838" 2.24" 574,357" 2.25" 1,995,481" 22.4" 2.24"

2" 2,992,947" 2.09" 148,937" 1.48" 2,844,010" 2.12" 591,100" 2.14" 2,252,910" 20.8" 2.12"

3" 2,486,270" 2.07" 108,655" 1.43" 2,377,615" 2.1" 496,967" 2.12" 1,880,648" 20.9" 2.09"

4" 2,492,930" 2.04" 121,105" 1.44" 2,371,825" 2.07" 513,634" 2.1" 1,858,191" 21.7" 2.06"

5" 2,293,806" 2.06" 109,982" 1.44" 2,183,824" 2.1" 453,118" 2.12" 1,730,706" 20.7" 2.09"

6" 2,191,709" 2.14" 117,568" 1.6" 2,074,141" 2.17" 479,347" 2.19" 1,594,794" 23.1" 2.16"

7" 2,040,877" 2.08" 132,638" 1.43" 1,908,239" 2.12" 407,370" 2.14" 1,500,869" 21.3" 2.12"

8" 1,984,107" 1.95" 102,957" 1.37" 1,881,150" 1.98" 392,562" 1.99" 1,488,588" 20.9" 1.98"

9" 1,530,438" 2" 102,287" 1.49" 1,428,151" 2.04" 317,994" 2.06" 1,110,157" 22.3" 2.03"

10" 1,713,497" 2.17" 104,153" 1.44" 1,609,344" 2.21" 373,471" 2.22" 1,235,873" 23.2" 2.21"

11" 1,718,823" 2.09" 101,226" 1.29" 1,617,597" 2.14" 367,812" 2.15" 1,249,785" 22.7" 2.14"

12" 1,649,231" 2.16" 88,859" 1.43" 1,560,372" 2.21" 348,894" 2.23" 1,211,478" 22.4" 2.2"

13" 1,240,915" 2.11" 55,375" 1.55" 1,185,540" 2.14" 273,177" 2.16" 912,363" 23" 2.13"

14" 1,137,843" 2.15" 61,716" 1.53" 1,076,127" 2.19" 232,239" 2.21" 843,888" 21.6" 2.18"

15" 1,029,461" 2.12" 66,094" 1.67" 963,367" 2.15" 207,196" 2.15" 756,171" 21.5" 2.15"

16" 1,102,674" 1.93" 75,127" 1.51" 1,027,547" 1.97" 223,678" 1.95" 803,869" 21.8" 1.97"

17" 933,415" 2.39" 56,154" 1.73" 877,261" 2.43" 189,197" 2.43" 688,064" 21.6" 2.43"

18" 980,699" 2.16" 45,562" 1.52" 935,137" 2.19" 208,644" 2.2" 726,493" 22.3" 2.19"

19" 733,842" 2.32" 61,524" 1.49" 672,318" 2.4" 155,563" 2.38" 516,755" 23.1" 2.4"

20" 759,544" 2.32" 41,054" 1.5" 718,490" 2.37" 172,052" 2.36" 546,438" 23.9" 2.37"
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21" 476,012" 2.18" 33,798" 1.5" 442,214" 2.23" 101,560" 2.25" 340,654" 23" 2.23"

22" 451,275" 2.43" 37,428" 1.74" 413,847" 2.49" 106,483" 2.49" 307,364" 25.7" 2.49"

total" 34,656,295" 2.11" 1,918,341" 1.49" 32,737,954" 2.15" 7,186,415" 2.17" 25,551,539" 21.7" 2.15"

 

Supplement Table S3:  Pre and Post filtering SNP site list for 1000 Genomes Phase 1 BCM call set.34,656,295 SNP sites were originally discovered with an average 

Ti/Tv ratio of 2.11.  SNPs were filtered using 4 criteria (supplement) to produce a final list of 32, 737,954 SNPs with a Ti/Tv ratio of 2.15.  1,918,341sites (with Ti/Tv ratios 

ranging from 1.30-1.74) were removed from the unfiltered SNP list to form the filtered list.  21.7% of SNPs were previously discovered SNPs (dbSNP 129) and 78.3% of all 

sites were novel.    
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4. Expectation Maximization Algorithm for BBMM 

 

We model each BAM as a flexible mixture of three binomials that represent each of the genotype 

classes.  These genotype classes each have two variables, a weight coefficient wv and a binomial 

probability pv,  In order to compute the value of these parameters we utilize the Expectation 

Maximization (EM) algorithm (Dempster et al. 1977).  We begin by introducing a latent variable zs,v 

as a binary assignment variable which has a 1 of V representation !!,!!!!!,!",!! = 1 (Bishop, 2006).  

The probability of the latent variable at any site is then given by the weight coefficient,!!! such 

that!!(!!) = !!!!,!! .   Similarly the observed data likelihood can be written as ! !!, !! !! =

!"#$%"&' !! + !!, !! !!,!! .  The marginal distribution of the data is obtained by summing over the 

joint distribution all states of z, ! !!, !! !! !(!!)! .  This simplifies into the sum of the weighted 

observed data likelihoods.   

! !!, !! = !! ∗ !"#$%"&'(!! + !!,
!!!!,!",!!

!!) 

Where 

!"#$%"&' !! + !!, !! = !!!!!
!! !!!!(1 − !!)!!,. 

 

To being the E-step, we assign values to the parameters!!!,!!!.  We then define the expectation the 

joint log likelihood with respect to the conditional distribution of !!,! with respect observed data and 

the previous parameters values as the following function O.   

 O !,!|!!! ,!! = log! (! !!, !! !!,! , !,! ! !(!!,!|!!! ,!!! , !!, !!)!! , ! = 0,1,2.. 

For the M-step, we obtain an updated set of parameters !!!!!,!!!!!  by maximizing the above 

expectation.   

!!!!!,!!!!! = max
!,!

O !,!|!!! ,!!  



10 
 

We compute the updated parameters by taking the partial derivative of the function O, and solving for 

each of the parameters.  These derivations can be found in Bishop (Bishop 2006) 

.   

5. Imputation and Phasing 

 

Our imputation method derives from genetic coalescence based methods.  However directly applying 

the Li and Stephens (Li and Stephens 2003) PAC method is computationally expensive – the 

estimation of multi-haplotype mosaic model by HMM is demanding due to the large number of 

hidden status (O (I2) states and O (I4) transitions).   We improve computational time by restricting the 

number of population haplotypes that are used to create the mosaic.  In our model, we employed a 

“constrained” template haplotype sampling scheme so that we can sample in constant time.   

Pseudocode for Imputation and Phasing 

 

To estimate haplotypes, we first initialize all haplotypes by randomly generating a possible haplotype 

given the set of observed GL for each individual.  For each sample, we search for a set of 4 parental 

haplotypes Hi* (also denoted as F0, F1, M0, M1) by proposing haplotypes from the population given 

observed genotype likelihoods for each sample and accepting or rejecting it according to a Metropolis 

Hastings acceptance criteria.  We iterate this step, w times.  Although the candidate space for 

Guess the haplotype of all samples randomly 
Repeat b+m times, where b is the number of burn in cycles and m is the number of MCMC 
iterations { 

For each individual i { 
  Sample four haplotypes from the population randomly 
  For w iterations { 
   Change one of the four haplotypes 

    Accept the trial according to M-H criteria.   
  } The remained haplotypes are the parental haplotypes for individual i 
  Impute phased genotypes based on parental haplotypes.   

} 
} 
Repeat m cycles and output the haplotype probabilities and genotype likelihoods 

!
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sampling is large~!(!!), by using the MH sampler to propose new parental haplotypes from the 

population of haplotypes, the sampler can evaluate the proposal in constant time !~! ! (Figure S2a).  

Once we have settled on a set of parental haplotypes, we can refine the sample’s haplotype Hi, using a 

4 state Hidden Markov Model, where the state of each site can be denoted as (F0, M0), (F0, M1), (F1, 

M0), (F1, M1), i.e. a mosaic combination of the four parental haplotypes Hi*where the transition 

matrix is calculated from the recombination rate and genotype likelihoods and emission matrices is 

calculated from the mutation rate.  We solve for the hidden states using the forward-backward 

algorithm (Bishop 2006).  We iterate these steps, m times (Figure S2b) to produce accurate phased 

genotypes.   

Figure S2:  Imputation of phased genotypes using a constrained Li-Stephens method:  
Genotypes and haplotypes are imputed using a constrained mosaic haplotype model. (a). While 
mosaic haplotype model initializes each individual’s haplotype as a mosaic of all haplotypes in the 
population, this is computationally expensive.  Our model models the individuals as a mosaic of 4 
parental haplotypes.  This is more computationally tractable.  (b)  Given each individual’s genotype 
likelihoods, 4 parental haplotypes are sampled from the population by a w-step Metropolis Hastings 
(MH) sampler.  Once all parental haplotypes are established, genotypes and haplotypes for each 
individual are imputed given their parental haplotypes.  This is repeated for m iterations until 
convergence.   

 

Algorithm Development 
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The imputation and phasing process begins by dividing S sites into chunks of pre-set size.  Smaller 

chunk sizes provide for more accurate modelling of local recombination rates but must be balanced 

against computational requirements.   We select chunks of length 1024 in order to allow for parallel 

computation (See Section 6 below).  For each chunk we setup a matrix of GLs for Ref/Ref, Ref/Alt, 

and Alt/Alt g= (g1...gS,) with S total variant sites (in the chunk) and a matrix H= (H1…, Hk,…,H2S) of 

haplotypes for each sample.  To model recombination we create a vector r=(r1,...,rS-1) which is the 

probability of recombination, or “jump” probability between pairs of consecutive loci.  Like 

Fearnhead and Donnelly, (Fearnhead and Donnelly 2001) we model this probability as !!∗!
!!!!!∗!

  where 

di is the distance between marker s and s+1 and ρ is the average recombination rate for the chunk.    

To mimic the effects of recombination we model the loci as a Markov chain (1…S) with transition 

probability (T) between haplotypes, k, for individual i at locus s.   

! !!" = !∗ !!" = !)is equal to: 

(1 − !!) ∗ (1 − !!)!!!"!!∗ = !!!"#!!"#ℎ!ℎ!"#$%&"'(
(1 − !!) ∗ !!!!"!!∗ = !!!"#!!"#!ℎ!"#$%&"'!!"#!!∗ ≠ !!!"#!!ℎ!!!"ℎ!"!!

!! ∗ !!!!"!!∗ ≠ !!!"#!!"#ℎ!ℎ!"#$%&"'(
 

For each locus, s, we calculate four emission probabilities (e).  These emission probabilities represent 

the four phased genotypes (0/0 –Ref/Ref, 1/0 –Ref/Alt, 0/1 –Ref/Alt, and 1/1 – Alt/Alt).  The 

probabilities are calculated as the weighted sum of the product of a scaled mutation, µ, event for each 

genotype multiplied by the genotype likelihood for each genotype.    

! 0 0 ! = 1 − ! ∗ 1 − ! ∗ !!! !"# !"# + 1 − ! ∗ ! ∗ !!! !"# !"# + ! ∗ 1 − ! ∗ !!! !"# !"# + ! ∗ ! ∗ !!! !"# !"#
! 1 0 ! = 1 − ! ∗ 1 − ! ∗ !!! !"# !"# + 1 − ! ∗ ! ∗ !!! !"# !"# + ! ∗ 1 − ! ∗ !!! !"# !"# + ! ∗ ! ∗ !!! !"# !"#
! 0 1 ! = 1 − ! ∗ 1 − ! ∗ !!! !"# !"# + 1 − ! ∗ ! ∗ !!! !"# !"# + ! ∗ 1 − ! ∗ !!! !"# !"# + ! ∗ ! ∗ !!! !"# !"#
! 1 1 ! = 1 − ! ∗ 1 − ! ∗ !!! !"# !"# + 1 − ! ∗ ! ∗ !!! !"# !"# + ! ∗ 1 − ! ∗ !!! !"# !"# + ! ∗ ! ∗ !!! !"# !"#

 

 

The M-H Sampler: 

In our “constrained Li- Stephens”(Li and Stephens 2003) algorithm, the sample haplotype is modelled 

as a mosaic combination of 4 parental haplotypes.  To select these 4 parental haplotypes, we use an 
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M-H sampler to propose parental haplotypes by using the transition (T) and emission (e) matrices 

previously calculated.  We initialize this process by randomly generating haplotypes for each 

individual and then randomly drawing four parental haplotypes, Hi* from the population.  We then 

calculate the likelihood of the current proposal p(Hi|Hi*,T,e).  We then update one of the four parental 

haplotypes with a randomly drawn haplotype from the population.  The proposed parental haplotypes 

are represented as Hi**.  We calculate the M-H acceptance probability as: 

!(!!∗∗,!!∗) = min![1, P(!!|!!
∗∗,!, !)

P(!!|!!∗,!, !)!
] 

We accept the probability!!(!!∗∗,!!∗): 

• if p !! !!∗∗,!, ! > !p !! !!∗,!, ! , we accept the proposed parental haplotypes, i.e. 

!!∗ = !!∗∗ 

• if p !! !!∗∗,!, ! < !! !! !!∗,!, ! , we draw a random number from 0 to 1 and accept 

!!∗∗ if the random number is less than !(!!|!!
∗∗,!,!)

!(!!|!!∗,!,!)!
.   

• Otherwise we keep the original four parental haplotypes, i.e. !!∗ = !!∗ 

 

In order to ensure adequate mixing of the parental haplotypes, we use a w-step M-H sampler, where w 

= number of folds * number of samples. Increasing the number of folds increases the probability that 

all population haplotypes are sampled at least one time, during each M-H and HMM iteration.   

The Hidden Markov Model (HMM): 

Haplotypes exhibit cluster like patterns (Scheet and Stephens 2006).  We can model the assumption 

that each allele will originate from a particular cluster with an HMM, where the transition (T) matrix 

can account for the assumption that nearby markers will likely arise from the same haplotype cluster 

(linkage disequilibrium) but that they will also be subject to recombination that scales with the 

distance between loci.  In order to estimate the underlying haplotype states given the parental Hi* 

haplotypes, we utilize the forward backward algorithm (Bishop 2006)(Bishop 2006).  As Baum’s 
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forward backward algorithms have been discussed in depth by numerous authors (Browning and 

Browning 2007; Greenspan and Geiger 2004; Scheet and Stephens 2006; Bishop 2006; Li et al. 2011), 

we direct you to those references for more details.   

Haplotype Merging: 

The chunks are linked together to produce haplotypes by merging over the whole chromosome.  All 

chunks are loaded into memory and the haplotypes are then merged using a 50kb sliding window by 

evaluating the phase position by position and finding the best match.   

6. MCMC and Chunk Size for Genotype Imputation  

 

Two key parameters affect the accuracy and speed of imputation: "chunk size" or number of sites to 

be imputed and the number of MCMC sampling cycles.  We generated several genotype imputation 

call sets of chromosome 20 using different parameter settings and evaluated the results by comparing 

the genotype concordance against known genotypes from HapMap3, OMNI and Affymetrix Axiom 

data sets. We measure the error by the discordance rate (%) for the genotype classes, Alt/Alt, Ref/Alt 

and Ref/Ref and also evaluate an overall discordance rate and a non-ref/ref discordance rate.  The best 

overall discordance rate was 0.61%, 0.67% and 0.62% when compared to HapMap3, OMNI and 

Axiom respectively was with MCMC =200, and chunk size =1024. 

 

Reference MCMC Chunk 
Size Ref/Ref Ref/Alt Alt/Alt Total Non-Ref 

HapMap3 

30 1024 0.36% 1.14% 1.44% 0.78% 1.67% 

50 1024 0.31% 1.04% 1.37% 0.71% 1.52% 

65 1024 0.29% 0.99% 1.32% 0.68% 1.45% 

100 1024 0.26% 0.94% 1.26% 0.64% 1.36% 

100 512 0.27% 0.92% 1.25% 0.63% 1.36% 

200 1024 0.25% 0.89% 1.21% 0.61% 1.30% 

OMNI 30 1024 0.43% 1.67% 1.59% 0.82% 2.53% 
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50 1024 0.40% 1.52% 1.53% 0.76% 2.34% 

65 1024 0.39% 1.44% 1.46% 0.73% 2.24% 

100 1024 0.37% 1.45% 1.43% 0.72% 2.21% 

100 512 0.37% 1.35% 1.40% 0.69% 2.14% 

200 1024 0.35% 1.34% 1.35% 0.67% 2.07% 

Axiom 

30 1024 0.27% 1.82% 1.55% 0.75% 2.25% 

50 1024 0.24% 1.69% 1.50% 0.70% 2.10% 

65 1024 0.23% 1.62% 1.45% 0.67% 2.01% 

100 1024 0.21% 1.58% 1.41% 0.65% 1.93% 

100 512 0.22% 1.53% 1.40% 0.64% 1.91% 

200 1024 0.21% 1.52% 1.37% 0.62% 1.86% 

Table S4: Impact of MCMC cycles and chunk size on Chr20 Imputation Accuracy: (a) 
Discordance rates for imputed genotypes on chr20, created using different Chunk Sizes and MCMC, 
compared to genotypes from three array datasets, HapMap3, Illumina OMNI and Affymetrix Axiom.  
MCMC of 200 produced the lowest error rate. 

 

While imputation accuracy can be improved with increased expenditure of computation resources, we 

found, as shown in Figure S2 for whole genome imputation, that after 1000 CPU equivalent months, 

that the improvement in error rate is marginal.  A CPU month is a unit of computation defined as 1 

CPU core of Intel Xeon E5520 working for 1 month.  
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Figure S2:  Computational burden of Imputation: We find that after 1000CPU months, increased 

MCMC cycles only result in marginal improvements in Genotype error.   

 

!

!

! !
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