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Figure S1. Structure of the pTOWug2-836 plasmid used in gTOW experiments

in this study.

(A) A map of pTOWug2-836. (B) The nucleotide sequence of the target-gene

cloning site of p TOWug2-836 (5' to 3' direction). The target gene cloning site, the

BamHI and Xhol sites used to prepare the host vector and the locations of

primers used to check the inserts are indicated.
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Figure S2. Cloning of the target gene into pTOWug2-836.
A part of chromosome VI is shown as an example. The details of this figure are
explained in the Method section of the main text.
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Figure S3. Reproducibility of the gTOW6000 data.

The data from two independent experiments were compared. Pearson’s
correlation coefficients (r) are shown.
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Figure S4. Relationship between CNL and max growth rate.

(A) Moving average of the CNL and the max growth rate of each 100 genes.
X-axis shows the number of bin ordered by the CNL. (B) Relationship between
the CNL and the max growth rate shown in A. Approximated curve is shown in

black line.
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Figure S5. Relationship between CNL and frequency of no-growth.

(A) Moving average of the CNL and the frequency of no-growth of each 100
genes. X-axis shows the number of bin ordered by CNL. (B) Relationship

between CNL and frequency of no-growth shown in A. Approximated curve is
shown in black line.
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Figure S6. Protein complex components tend to be highly expressed.

The protein abundance data were obtained from Ghaemmaghami et al. (2003),
and the data for protein complex members were obtained from MIPs (mips;
ftp://ftpmips.gsf.de/yeast/catalogues/complexcat/complexcat _data_18052006).

The protein abundance unit is molecules per cell. The error bars indicate the
standard error of the mean (SEM).
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Figure S7. An example of genes that were not affected by the frameshift

mutation.

The charts on the left show the chromosomal regions containing the target

genes. The sites of frameshift mutations are shown in yellow arcs. A red circle
indicates an RNA gene (NMET). The graphs on the right show the CNLs of
wild-type genes and the frameshift mutants of the target genes. The average

results for two independent experiments are shown with the standard deviations,

excluding YNL024C-A/KSH1, for which only one experiment each was

performed for the wild-type and frameshift mutant. The case of overlapping
genes (YGL167C/IPMR1 and YGL168W/HURT1) (A), and the case of an RNA

gene (NMET1) (B) are shown.
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Figure S8. Unknown DNA elements are the determinants of the low CNLs within

the locus of DIE2 and IRCS.

The fragments that we analysed are shown in grey boxes with their names, and
the size of each fragment is shown above the box. The number on the right side
of the box indicates the copy number limit of the individual fragment. Fragments
causing the low limit are enclosed with red boxes. Each fragment was amplified
by PCR and cloned into pTOWug2-836. The average copy number and the
standard deviation (within parentheses) of more than two independent

experiments are shown.
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Figure S9. Yeast DSGs tend to be highly expressed.

The distribution of 115 DGSs ordered by their native protein levels. Each bin
contains genes ordered by their native protein level (Ghaemmaghami et al.,
2003). The protein abundance unit is molecules per cell. The error bars indicate
the standard error of the mean (SEM).



Spearman’s rank correlation = 0.16 (P > 0.05)
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Figure S$10. Correlation between the copy number limit and protein abundance.
Genes with upper copy number limits <10. The protein abundance data were
obtained from Ghaemmaghami et al. (2003). The protein abundance unit is

molecule per cell.
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Figure S11. Results of 2D-gTOW experiments (plate assay).
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Figure S11 continued
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Figure S11 continued
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Figure S11. Results of 2D-gTOW experiments (plate assay).
In each experiment, yeast strains transformed by the indicated pTOW-DSG and
pRS423ks-partner (candidate) were spread onto —His—Ura plates (left plates)
and then streaked onto —His—Ura (center plates) and —His—Leu-Ura plates (right

plates).
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Figure S12. Results of 2D-gTOW experiments (copy number determination)
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Figure S12 continued
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Figure S12 continued
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Figure S12 continued
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Figure S12 continued
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Figure S12. Results of the 2D-gTOW experiments for DSGs and their candidate
partners.

The legend for the graph is shown below. The copy numbers of pTOW in the
low-copy (—His—Ura) and high-copy (—His—Leu—Ura) conditions are shown in
the left panel, and the correlation between the copy numbers of pTOW (DSG)
and pRS423ks (candidate partner) are shown in the right panel. The result of the
VHS3 vs. PPZ2 experiment is shown as a negative example.
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Figure S13. TUB1 and TUBS3 are weak dosage suppressors (partners) of TUB2.
TUB1 and TUB3 encode a-tubulin; they were suggested to be the partners of
TUB2 (encoding p-tubulin) (Weinstein & Solomon, 1990). However, in our
2D-gTOW experiments, TUB1 and TUBS3 displayed little suppressive activity (A
and B). By contrast, RBL2 (encoding a chaperone for a Tub2 monomer)
exhibited sufficient suppressive activity (B). In B, a weakly expressing allele of
TUB2 (tub2d-100, see above) was used for 2D-gTOW experiments because
TUB?2 is too toxic to obtain any transformant by itself (A).
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Figure S14. Cloning site of pRS423ks.
The nucleotide sequence is shown in the 5' to 3’ direction.
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Figure S15. Construction of a frameshift mutant.

The frameshift mutant of each target gene was created by inserting ‘cgca’
immediately after the start codon [a Fspl site (tgcgca) was thus introduced].
Consequently, the correct protein is not produced from the target ORF. To
construct the frameshift mutant, F_fs primer and R_fs primer were synthesized
for each target gene, and the PCR-amplified fragments were joined and cloned
into pTOWug2-836 by the gap-repair method. The information about the start
codon of each gene is obtained from the annotation of Saccharomyces Genome
Database (released on 28 July 2007).
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Figure S$16. Construction of the segmented genes.

For each target gene, Bndn_R primer and Bndn_F primer were synthesized in
order to construct “F” construct that contains 5’ region of the target gene, and “R”
construct that contains the ORF (without start codon) and 3 UTR.
PCR-amplified fragments were joined and cloned into pTOWug2-836 by the
gap-repair method. The information about the start codon of each gene is
obtained from the annotation of Saccharomyces Genome Database (released
on 28 July 2007).
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D: yEGFPdeg

ATGTCTAAAGGTGAAGAATTATTCACTGGTGTTGTCCCAATTTTGGTTGAATTAGATGGTGATGTTAATGGTCAC
M s K 6 E E L F T G Vv Vv P I L V E L D G D V N G H

AAATTTTCTGTCTCCGGTGAAGGTGAAGGTGATGCTACTTACGGTAAATTGACCTTAAAATTTATTTGTACTACT
K F s v s 6 E G E G DAT Y G KL TUL K F I CT T

GGTAAATTGCCAGTTCCATGGCCAACCTTAGTCACTACTTTAACTTATGGTGTTCAATGTTTTTCTAGATACCCA
G K L P V PW P TUL V TTTUL T Y G V Q CF S R Y P

GATCATATGAAACAACATGACTTTTTCAAGTCTGCCATGCCAGAAGGTTATGTTCAAGAAAGAACTATTTTTTTC
D H M K Q H DF F K S AMUPEG Y V Q E R T I F F

AAAGATGACGGTAACTACAAGACCAGAGCTGAAGTCAAGTTTGAAGGTGATACCTTAGTTAATAGAATCGAATTA
K D b G N Y KT RAZEV K F E G D TUL V N R I E L

AAAGGTATTGATTTTAAAGAAGATGGTAACATTTTAGGTCACAAATTGGAATACAACTATAACTCTCACAATGTT
K 6 T b F K E DG NI L GHI KL E Y N Y N S HN V

TACATCATGGCTGACAAACAAAAGAATGGTATCAAAGTTAACTTCAAAATTAGACACAACATTGAAGATGGTTCT
Yy I M A D K Q K N GG I K VvV N F K I R H N I E D G S

GTTCAATTAGCTGACCATTATCAACAAAATACTCCAATTGGTGATGGTCCAGTCTTGTTACCAGACAACCATTAC
vV Q9 L.A D H Y Q Q N TP I G D G P V L L P D N H Y

TTATCCACTCAATCTGCCTTATCCAAAGATCCAAACGAAAAGAGAGACCACATGGTCTTGTTAGAATTTGTTACT
L s T Q s A L S K D P N E K R D HM V L L E F V T

GCTGCTGGTATTACCCATGGTATGGATGAATTGTACAAACTGCCCATGTCTTGTGCCCAGGAGtctatcacaagt
A A G I TH G MD E L Y K L P M S C A Q E S I T S

ttgtacaaaaaagctggttctTAA
L Y K K A G S *

Figure S17. Construction of GFP and GFPdeg replaced plasmids.

(A) Constructions of GFP replaced plasmid. (B) Construction of GFPdeg

replaced plasmid. The promoter region and the terminator region of each target

highly expressed gene and yEGFP (or yEGFPdeg) were amplified by PCR using

indicated primers, and joined and cloned into pTOW40836. (C) The nucleotide

and amino acid sequences of yEGFP used in A. (D) The nucleotide and amino

acid sequences of yEGFPdeg used in B. The degron sequence from mouse

ornithine decarboxylase gene (cODC1) (Jungbluth et al., 2010) is colored with

yellow.
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Table S2. Statistical data of the 230 empty vector experiments.

Max growth Copy# (-Ura) Copy# (-Leu-Ura)
rate
Average 2.2 22.9 205.2
sD™ 0.6 12.5 86.6
CV? 29.2 54.9 42.2

*1 Standard deviation
*2 Coefficient of variation

Table S3. Correlations between max growth rates and copy numbers obtained
in the gTOWG6000 analysis.

Max growth rate vs. U" Max growth rate vs. L* U vs. LU
ALL 0.18 0.35 0.16
Low-limit top 786 0.32 0.54 0.56

* U and LU indicate the copy number in the —Ura and -Leu-Ura conditions,
respectively.
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Table S7. Partner-seeking experiment results

. Verified?
Upper Candidate Type of
DSG Reference* _ . (Figures S11
limit partner interaction
and S12)
Physical
ABP1 4.2 ACT1 BioGRID ) . No
interaction
Physical
ABP1 4.2 SAC6 BioGRID ) . No
interaction
Physical
ACT1 1.2 COF1 BioGRID ) . No
interaction
_ Physical
ACT1 1.2 ABP1 BioGRID ) . No
interaction
Sandrock et al., Synthetic
ACT1 1.2 SAC6 No
1999 rescue
ARF1 1.0 SEC72 - - No
ARF1 1.0 GEA1 - - No
Physical
ARF1 1.0 GEA2 BioGRID ) . No
interaction
ARF1 1.0 FKS1 - - No
ARF2 5.5 SEC72 - - No
Physical
ARF2 5.5 GEA1 BioGRID ) . No
interaction
Physical
ARF2 5.5 GEA2 BioGRID ) . No
interaction
ARF2 5.5 FKS1 - - No
ARF2 5.5 GLO3 - - No
Park et al., Synthetic
BFA1 3.5 TEM1 Yes
2004 rescue
BGL2 9.8 GSC2 - - No
_ Negative
BGL2 9.8 GAS1 BioGRID . No
genetic
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interaction

Physical
COF1 3.2 ACT1 BioGRID ) . No
interaction
GAS1 4.2 BGL2 - - No
Palmer et al., Synthetic
GLN3 1.5 URE?2 Yes
2009 rescue
GSC2 51 BGL?2 - - No
_ Physical
GSP1 3.5 RNA1 BioGRID _ . No
interaction
MYO1 6.5 MLC1 - - Yes
Stevens & Dosage
MYO2 12.1 MLC1 . Yes
Davis, 1998 rescue
MYO4 6.5 MLC1 - - Yes
Physical
PEPA4 0.8 PAI3 BioGRID _ . No
interaction
Deng et al., Phenotypic
PIL1 8.1 LSP1 No
2009 enhancement
Clotet et al., Dosage
PPZ1 0.3 SIS2 Yes
1999 rescue
de Nadal et al., Synthetic
PPZ1 0.3 VHS3 Yes
1998 rescue
PPZ1 0.3 SIS1 - - No
Physical
PPZ2 9.3 SIS2 BioGRID ] ) Yes
interaction
Physical
PPZ2 9.3 VHS3 BioGRID ) . No
interaction
RTN1 15.1 YOP1 - - No
Sandrock et al., Synthetic
SAC6 2.0 ACT1 No
1999 rescue
Physical
SAC6 2.0 ABP1 BioGRID ) . No
interaction
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Wilson et al., Physical
SCS2 9.5 OPI1 No
2011 interaction
Oka & Nakano, Dosage
SEC23| 4.4 SAR1 No
1994 rescue
_ Physical N
SEC31 5.1 SEC13 BioGRID _ . No Additive
interaction
Ortiz et al., Dosage
SEC4 5.2 SEC2 Yes
2002 rescue
SRM1 6.5 RNA1 - - No
Physical
TEF1 0.6 EFB1 BioGRID _ . No
interaction
Kinzy & Dosage
TEF2 4.9 EFB1 No
Woolford, 1995 rescue
Physical
TPK1 0.9 BCY1 BioGRID _ _ Yes
interaction
Nehlin et al., Dosage
TPK2 21 BCY1 Yes
1992 rescue
Mazon et al., Phenotypic
TPK3 0.6 BCY1 Yes
1993 enhancement
" Abruzzi et al., Phenotypic | Yes (see also
TUB2 2.7 RBL2 _ _
2002 suppression Figure S13)
" Weinstein & Dosage Weak
TUB2 2.7 TUB1 _
Solomon, 1990 rescue (Figure S13)
4 Weak
TUB2 2.7 TUB3 - - _
(Figure S13)
Szallies et al., Synthetic
WwWm1 0.6 MCA1 No
2002 rescue

* BioGRID: http://thebiogrid.org/

* tub2-d100 was used in the experiment.
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