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Figure 1: Distribution of the number of individuals in each family.
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Supplemental Figure 2
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Figure 2: Accuracy versus time tradeoff for the Nesterov Algorithm on chromosomes 4, 5, 18 and
21 from the Chinese Han group in HapMap3. The numbers indicate the sub-window size w. The
dashed line marks the error rate for MaCH on the same data set.
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Supplemental Figure 3
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Figure 3: Accuracy versus time tradeoff for the Nesterov Algorithm on chromosomes 5, 8, 14 and
15 from the Yoruba group in HapMap3. The numbers indicate the sub-window size w. The dashed
line marks the error rate for MaCH on the same data set.
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Supplemental Figure 4
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Figure 4: Raw Mendel-Impute output and final imputed dosages after EM clustering for an
untyped SNP from the simulated Illumina experiment.The dosage is the posterior mean of the
reference allele count for the given SNP. Note that the nuclear norm regularization outputs raw im-
puted values that are biased towards zero. On the other hand, EM clustering is able to successfully
restore very reasonable dosages on the correct scale between zero and two.
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Supplemental Note 1

In this section, we describe a competing MM algorithm to Nesterov’s method and present numerical

results showing the superiority of the latter.

MM algorithm

Recall that we seek to solve the following optimization problem

min f(Z) + λ‖Z‖∗.

Given the current iterate Zk, the MM algorithm capitalizes on the function

Q(Z | Zk) =
1

2

p∑
i=1

‖PΩi(X
i) + P⊥Ωi

(Zk)− Z‖2F,

majorizing the loss f(Z). Here

P⊥Ω (Y)ij =

{
yij if (i, j) 6∈ Ω,

0 otherwise

denotes the projection operator orthogonal to PΩ(Y). Majorization is understood to mean

Q(Zk | Zk) = f(Zk) and Q(Z | Zk) ≥ f(Z).

To prove these tangency conditions, one simply notes that Q(Z | Zk) adds back the missing square

terms that distinguish ‖PΩi(X
i) − P⊥Ωi

(Z)‖2F from ‖Xi − Z‖2F and forces them to equal 0 when

Z = Zk. If we complete the square of ‖PΩi(X
i)− P⊥Ωi

(Z)‖2F, then we can rewrite Q(Z | Zk) as

Q(Z | Zk) =
1

2

p∑
i=1

‖PΩi(X
i) + P⊥Ωi

(Zk)−Mk‖2F +
p

2
‖Mk − Z‖2F,

where

Mk =
1

p

p∑
i=1

PΩi(X
i) +

1

p

∑
i

P⊥Ωi
(Zk).

For computational efficiency, the first term defining Mk should be pre-computed and stored. The

second term is a Hadamard product W ∗ Zk, where entry wjk of W reduces to the proportion

1− p−1
∑p

i=1 1{(j,k)∈Ωi} of platforms lacking typing on the person-SNP pair (j, k).

The MM algorithm minimizes the regularized surrogate function

Q(Z | Zk) + λ‖Z‖∗ =
p

2
‖Mk − Z‖2F + λ‖Z‖∗ + ck

5
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Figure 5: Comparison of iteration counts for matrix completion methods over a grid of regularization
parameters on the Daly data set.

with respect to Z. Here the constant ck = 1
2

∑p
i=1 ‖PΩi(X

i) + P⊥Ωi
(Zk) −Mk‖2F is irrelevant.

Minimization gives the next iterate Zk+1 and drives the penalized loss (1) downhill. Minimization

of the surrogate function relies on two facts. First, the penalty involves only the singular values of

the matrix Mk. Second, the surrogate loss p
2‖M

k−Z‖2F is minimized by aligning the eigenstructure

of the matrix Z with the eigenstructure of the matrix Mk, regardless of the singular values of Z.

Thus, if Mk admits the singular value decomposition Mk = Udiag(mk)VT , then the optimal Zk+1

shares its singular vectors with Mk (Lange, 2012). The singular values zk+1
i = (mk

i −λ/p)+ of Z are

shrunken versions of the singular values of Mk. The pressure exerted by the nuclear norm penalty

forces this shrinkage. The resulting procedure is summarized in Algorithm 1. Standard theory for

the MM algorithm (Lange, 2010) shows that Zk monotonically converges to a global minimum of

the objective function (1).

1 Pre-compute X̄ = p−1
∑

i PΩi(X
i) and W = (wjk) = (1− p−1

∑
i 1{(j,k)∈Ωi}) ;

2 Initialize Z0 ;
3 repeat

4 Mk ← X̄ + W ∗ Zk ;

5 Compute SVD Mk = Udiag(mk)VT ;

6 zk+1 ← (mk − λ/p)+ ;

7 Zk+1 ← Udiag(zk+1)VT ;

8 until objective value converges;

Algorithm 1: MM algorithm for minimizing the penalized loss (1).

Comparison of Nesterov’s method and the MM algorithm with the Daly Data

The preceding discussion suggests that the Nesterov method is preferable because it enjoys faster

convergence than the MM algorithm. However, the question is complicated for two reasons. First,

6



λ

T
im

e 
(s

ec
)

1

2

3

4

without warm start

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

10−1.5 10−1 10−0.5 100 100.5 101 101.5

0.02

0.04

0.06

0.08

with warm start

●

●●
●

●
●

●
●

●
●●

●
●●●

●
●

●
●●

●●

●

●●●

●

●

●●●
●●●

●
●●●●●

●

10−1.5 10−1 10−0.5 100 100.5 101 101.5

Method

● Nesterov

MM

QN(1)

QN(2)

QN(3)

QN(10)

Figure 6: Comparison of run times (sec) for matrix completion methods over a grid of λ values on
the Daly data.

since the MM algorithm is a fixed point algorithm, the quasi-Newton (QN) acceleration derived

by (Zhou et al., 2011) could boost its performance significantly and should be explored. Second,

any application of penalized estimation requires tuning a penalty constant such as λ. Therefore,

algorithmic efficiency should be evaluated as the time to solve the optimization problem (1) over a

grid of decreasing λ values. For large values of λ, the solution coincides with Zλ = 0m×n. Near the

maximum singular value λmax of X̄, the solution starts to diverge from this trivial value. Hence,

the grid starts at λmax.

We evaluated the numerical speed and reliability of both methods on a toy data set (Daly et al.,

2001). These data contain 103 SNPs on chromosome 5q31 genotyped on 387 parent-offspring trios.

We consider only the 129 children; 8% of their genotypes are missing in the reduced data set. We

report two sets of experiments. In both we compare Nesterov’s method, the MM algorithm, and

the quasi-Newton accelerated MM algorithm over a fixed set of 41 λ values. The quasi-Newton

acceleration scheme relies on a user specified number of secant conditions. More secant conditions

tend to improve the rate of convergence at the expense of additional computational complexity. In

this test we use 1, 2, 3, and 10 secant conditions. In the first set of experiments, we compute the

solution at λ value starting from the matrix 0m×n. In the second set of experiments, we evaluate

the effect of warm starts, in which the solution computed at a given λ value is taken as the starting

value for the computation of the solution at the next λ value. Figure 5 compares the number of

iterations taken by each method; Figure 6 compares the time taken by each method.

Without warm starts, the left panel of Figure 5 clearly distinguishes the various methods for

small values of λ. The MM algorithm does the worst in terms of iteration counts, followed by

Nesterov’s Method. The quasi-Newton scheme does the best over the range of secant conditions

7



tested. Differences in computation times are less pronounced than differences in iteration counts

because computing the quasi-Newton updates imposes an additional overhead. However, as the

right panels of Figures 5 and 6 make evident, the tables are turned when warm starts are employed.

Both the unaccelerated MM and Nesterov’s method now outperform the quasi-Newton scheme,

with Nesterov’s method performing the best. Moreover, we see that warm starts drastically cut

the required computational effort. It should be clear from these comparisons that the Nesterov

algorithm with warm start is optimal. Indeed, being able to rapidly compute solutions over a range

of λ is the key to the speed gains enjoyed by our model-free imputation method.

Supplemental Note 2

By default fastPHASE uses cross-validation to choose either 10 or 20 haploytpe clusters. CHB

in general displays more linkage disequilibrium than YRI. With the exception of chromosome 5,

fastPHASE chose 10 clusters, while it chose 20 for chromosome 5. fastPHASE chose 20 clusters

for all YRI chromosomes. Thus, the exceptionally long run times for fastPHASE coincide when

the algorithm was prompted by the data to use larger clusters.

Supplemental Note 3

We present two toy problems to give some intuition on when Mendel-Impute is expected to

perform both poorly and well. Suppose we have a reference panel of four haplotypes of 3 SNPs

with equal frequency in the population panel: 101, 110, 011, 000. We constructed a study panel

of 32 individuals by randomly sampling with replacement two of the four haplotypes for each

individual. We masked the third SNP. Using a reference panel of all 16 unique possible genotypes,

we applied Mendel-Impute to impute the untyped third SNP. We performed 100 replicates of

this scenario. We repeated the same experiment using four haplotypes of 6 SNPs again with equal

frequency in the population panel: 101100, 110010, 011001, 000111. For the former we used a fixed

regularization parameter that resulted in a rank 3 approximation for the first scenario and a rank

4 approximation in the second for all replicates. Table 1 shows that Mendel-Impute struggled

with imputing the first scenario but enjoyed great success in the second scenario.

We should not be surprised that Mendel-Impute struggled on the first problem and performed

well on the second. In the first problem, the underlying haplotype variation is too rich for a

matrix completion framework to capture. There are four underlying signals, suggesting a rank

4 approximation, but matrix completion is limited to finding at most a rank 3 approximation

8



Number of SNPs in haplotype 3 6

Min 0 18
Mean 5.79 31.72
Median 3 32
Max 17 32

Table 1: Summary statistics for 100 replicates on the number of correctly imputed SNPs for
Mendel-Impute applied to 32 subjects with genotypes simulated from four haplotypes of length
3 and 6 SNPs. The third SNP was missing in both scenarios.

since the study panel matrix of genotypes is 48-by-3. The model is not flexible enough to capture

the variation in the data. In the second problem, however, the matrix completion framework is

limited to finding at most a rank 6 approximation since the study panel matrix is now 48-by-6.

Indeed, the rank 4 approximation, that was selected, is able to capture enough of the systematic

variation due to the underlying 4 haplotypes to correctly impute all the missing SNPs. The two

toy problems demonstrate that in order for Mendel-Impute to work, we need the number of

underlying haplotypes to be small relative to the number of SNPs in the haplotype block.

Supplemental Note 4

For the problem at hand k = 3. Making the following choices works well in practice. We initialize

π1 = f2, π2 = 2f(1 − f),and π3 = (1 − f)2 where f is the reference allele frequency in say the

reference panel. We set the parameters αj = απj + 1 where α is very large, typically on the order

of 1012 to apply a very strong prior. Let xi denote the raw Mendel-Impute output for the i study

subject for the SNP of interest. Then we first project xi onto the interval [0, 2]. We then initialize

µ3 = maxi xi, µ1 = 0,and µ2 = (µ1 + µ2)/2.
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