
Supplementary methods 

Processing small RNA sequencing data  

The small RNA sequencing data were processed with miRDeep2 software (Friedlander et al. 

2008). The 3’ adapter sequences were trimmed from the sequencing reads. If a read is less than 

18 nucleotides (nt) after trimming, it is removed from further analysis. The trimmed reads were 

mapped onto mouse genome (mm9) using Bowtie software (Langmead et al. 2009), requiring no 

mismatch in the first 18 nt and no more than 5 alignments in the genome. The best alignment for 

each mappable read was reported. The miRNA promoters in Figure S7 were identified using a 

previously described method (Marson et al. 2008). 

 

Processing of ChIP-seq data 
The ChIP-seq reads of 8 epigenomic marks (H3K36me3, H3K27ac, H3K4me1, H3K4me2, 

H3K4me3, H3K27me3, H2A.Z, and 5-hmC) in three time points were mapped onto the mouse 

genome (mm9) with Bowtie software (Langmead et al. 2009) allowing 1 mismatch. The number 

of sequence reads for each genomic segment (200 nt) was counted and then normalized by the 

total number of mappable reads. The standardized sequence counts were log-transformed, 

multiplied by 10 and rounded to the nearest integer:   
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where [n] is the largest integer no larger than n, and        is the normalized ChIP-seq read count 

for epigenomic mark m on genomic segment w at time t.  

 

Counting ChIP-seq reads in genomic segments 
The mouse genome was segregated into 200 nt segments. The number of overlapping sequencing 

reads on each genomic segment was counted for each ChIP-seq experiment. A genomic segment 

was judged as not associated an epigenomic mark if the ChIP-seq experiment produced less than 

5 reads on this segment.   

 

Drawing average signals around different groups of regions 
The average signals of an epigenomic mark on a list of genomic segments were plotted with the 

“sitepro” function in CEAS (Cis-regulatory Element Annotation System) (Shin et al. 2009). We 

set 50 nt as the profiling resolution and 3,000 nt as the size of flanking regions from the center.  



Hierarchical clustering 
A hierarchical clustering of GATE identified clusters was done with the fitted λ parameters, 

using the R function hclust with Euclidean distance and average linkage. We wanted to cut the 

hierarchical tree to derive at least 10 groups and to cut on long branches. Cutting between 27.3 

and 30.8 served this purpose, which gave rise to 14 groups (Figure S3).   

 

The distribution of temporal correlations between two epigenomic marks  
The Pearson correlation coefficient (PCC) between two epigenomic marks was calculated for 

every genomic segment as follows. Each epigenomic mark was represented as a vector of length 

3 (3 time points), and a PCC was calculated for two vectors. Promoter segments were pulled 

together and an empirical distribution of their PCCs were plotted (red curve, Figure S9). 

Similarly, empirical distributions for enhancer and gene body segments were derived.   

To generate a background distribution of the PCCs, time-independent epigenomic data were 

simulated with the estimated Poisson parameters of the two epigenomic marks. PCCs were 

computed from these time-independent data and were used to derive the background distribution.  

 

The temporal correlations of mCpG, mCpH, and 5-hmC 

MeDIP-seq and MRE-seq data were used to estimate to the intensities of 
m

CpG and 
m

CpH. Let 

Intensity[
u
CpG:MRE] represent MRE-seq read counts and Intensity[

m
CpN:MeDIP] represent 

MeDIP-seq read counts. We define  

    Intensity[
m
CpG] = Intensity[CpG] - Intensity[

u
CpG:MRE], and 

    Intensity[
m
CpH] = Intensity[

m
CpN:MeDIP] - (Intensity[CpG] - Intensity[

u
CpG:MRE]), 

where Intensity[CpG] is a constant. This constant does not affect the calculation of temporal 

correlations, and thus 

    PCC[5-hmC, 
m
CpG] = PCC[5-hmC, -MRE], and 

PCC[5-hmC, 
m
CpH] = PCC[5-hmC, MeDIP+MRE], 

where 5-hmC, MRE, and MeDIP and normalized read counts. PCC is the temporal Pearson 

correlation defined in the previous section.  

 

The EM algorithm for parameter estimation 

E-step 



Let      be the (0,1) cluster membership indicator of genomic segment  .        if genomic 

segment   is in cluster  ; otherwise,       .      is the missing data. The Q-function is 
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where  (   ) is the value of   obtained from the previous step. 

M-step 

The parameter estimate  (   ) is obtained by maximizing the Q-function. 
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The Baum-Welch algorithm (Miklos and Meyer 2005) is used to maximize (1) and obtain 

parameter estimate  ̂.  

 

Implementing a Baum-Welch algorithm 
In a Baum-Welch algorithm, two probabilities are computed iteratively, namely the forward 

probability and the backward probability.  

Forward probability 

Let     
 ( )    (                              ). We have 
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Because        for all  , we have 
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Finally, 
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where    (              ), representing the data from 3 time points.  

Backward probability 

Let     
 ( )    (                    |             ).     

 ( ) can be computed as  
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where     (   ). In particular,     
 ( )       

 ( )   . 

 

Computational details 

Parameter re-estimation: a Baum-Welch algorithm for estimating b,   and H. 

Within an EM step (Step  ), we call the maximization step as Step   . In this step, a Baum-Welch 

algorithm is implemented to maximize (1) and estimate b,   and H. After calculating the forward 

and backward probabilities for the HMM in each time point, the joint conditional probability for 

each genomic segment is specified as: 
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The marginal conditional probability for      is 
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where     
(   ) is the z value got from Step     . 

With marginal posterior probability   
   

(   )( ), each     
(   )  is estimated by: 
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Re-clustering genomic segments and estimating z, π 

After estimating  ( ) and  ( ) in Step  ,  ( ) and  ( ) can be updated as 
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Simulation study 
We simulated 4 epigenomic marks on 6,000 genomic segments from 4 clusters. Epigenomic data 

were simulated in three time points. Each data point in cluster   was sampled from a HMM with 

the transition probability matrix    and the emission distribution of Poisson(    
 ), where i is the 

hidden state and m is the epigenomic mark (Table S2).  

The simulated data mimicked real data in three aspects. First, the real data formed 4 large 

clusters (groups) corresponding to enhancers, promoters, gene bodies, and repeats. Second, the 

simulated data had different temporal patterns for different clusters. Furthermore, different 

hidden states of the same genomic segment emitted data with different emitting distributions, 

mimicking the change of regulatory functions. Finally, the number of simulated time points is the 

same as the time points of the ES cell differentiation experiment.  

The simulated data were provided to the GATE model as input data. The parameters used for the 

program are: maxiteration = 1000, nstep = 20, ndistance = 0.001, initial = 2. We ran the program 



for cluster numbers 2 to 8 and used BIC to choose the best cluster number. Four was found to be 

the best cluster number.  

We compared the clustering accuracy of GATE with K-means algorithm. The average 

misclassification rate (the proportion of genomic segments that are incorrectly clustered) of K-

means was 23.91%, which was 133 times larger than that of GATE (0.18%). The optimized 

cluster number (4) was used for k-means clustering with the algorithm of Hartigan and Wong. 

The GATE estimated parameters (   )  were close to real parameters (Table S3). More 

importantly, 99.10% of the hidden states were correctly predicted (Table S4). This is a useful 

feature because the hidden states reflect when the regulatory function changes.  
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