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Supplemental Figure Legends

Supplemental Figure 1. Receiver operating characteristic curve for mutation validation.
Validation of somatic score for non-smoker patients (21214 and 34560). Somatic score was
obtained using cgatools v1.3. 223 mutations from patient 21214, and 187 from 34560 were
experimentally tested using the Sequenom technology. The patient specific ROC curves are
shown.

Supplemental Figure 2. The fraction of C:G>A:T transversions is most negatively
correlated with that of C:G>T:A transitions.

(A) A scatter plot showing the negative correlation between the fraction of C:G>A:T
transversions and that of C:G>T:A transitions. (B) A heatmap showing pairwise Spearman’s
rank correlations between all mutation types. Although correlations are generally high between
all mutation types due to their dependencies, the mutation type with the highest absolute
correlation with C:G>AT is C:G>TA.

Supplemental Figure 3. Somatic missense mutations are more likely to be deleterious than
germline variations.

Left panel, Polyphen predicted 59% damaging mutations in the somatic set compared to 15% in
the germline set (p=5e-90, chi-squared test). Right panel, 52% of the somatic missense mutations
are predicted to be deleterious according to SIFT in comparison to 18% for the germline variants
from normal tissues (p=3e-57, chi-squared Test).

Supplemental Figure 4. GISTIC analysis of SNP Array-based DNA copy number showed

recurrent gain and loss of multiple genes characteristic of NSCLC.
Negative log;o False Discovery Rates are plotted in red for Gain and in blue for Loss. Genes

representative of the most significant peaks are labeled with dotted grey lines. ADAR is at the
focus of the 1921.3 peak.

Supplemental Figure 5. ADAR amplification and over-expression.

DNA copy number for ADAR was calculated from SNP Array data processed via PICNIC (see
Methods). Segmented total copy number values for all SNPs bounding and within the boundaries
of ADAR were averaged and plotted against RNA-Seq-based expression for ADAR.



Supplemental Figure 6. Fraction of putative chimera transcripts detected from
transcriptome data supported by DNA-level evidence.

The percentage of fusion transcripts with supporting DNA reads for each sample is plotted. The
dotted horizontal lines represent the mean percentages. Taken together, 44% of 1,097 putative
chimera transcripts predicted by ChimeraScan from our transcriptome data have at least two
genomic sequencing reads supporting the same gene pair (top panel). Among the 291 putative
chimera transcripts with RNA-seq reads directly spanning the chimera junctions, 62% of them
have at least two genomic sequencing reads supporting the same gene pair (bottom panel).

Supplemental Figure 7. Experimental validation of four predicted gene fusion events.
PCR of lung cancer cell lines containing genomic fusions. Primers pairs that anneal to sequence

on either side of the fusion sites were used to amplify genomic DNA (Panel A) or cDNA (Panel
B) from cell lines containing the fusions indicated. Lymphocytes represent normal genomic
DNA. The negative control cell line H2009 does not contain the fusions. Amplification
products were run on 2% agarose gels. (Lymph = lymphocytes, NTC = no template control)

Supplemental Figure 8. CLTC-VMP1 fusion in H1299.

(A) Genome browser view showing the context of observed CLTC-VMP1 fusion. The fusion is
supported by 81 discordant RNA-seq reads (in red), and the supporting DNA reads from whole
genome sequencing are shown in blue. We were able to obtain a de novo assembly (in green) of
these reads. (B) Nucleotide sequence of the RNA fusion junction derived from de novo assembly
of discordant RNA-seq reads (top sequence), and the alignment of a subset of RNA-seq reads
directly mapped across the junction. (C) Putative amino acid sequence at the fusion junction, and
impacts on protein domain organization.

Supplemental Figure 9. HIF1A-SNAPC1 fusion and MLLT3-TMIGD1 fusion.

(A) A cluster of discordant reads DNA-seq reads (in blue) suggests a 50 kb deletion in H1299,
which juxtapose the HIF1A gene to its neighboring gene SNAPC1. Multiple discordant RNA-seq
reads suggest that there are aberrant splicing events connecting the first few exons of HIF1A to
the last few exons of SNAPCL. The predicted in-frame fusion protein product is 284 amino acids
in length, missing the critical C-terminal transactivation domain of the wild-type HIF1A protein.
(B) The MLLT3-TMIGD1 fusion in H838 resulted from an inter-chromosomal translocation
between chromosome 9 and chromosome 17 (discordant DNA reads in purple and RNA reads in
red). The fusion was predicted to be out-of-frame, therefore, no productive fusion protein
product was expected.

Supplemental Figure 10. Cytogenetic characterization of cell line samples.
For each of 19 cell lines, one representative image of spectral karyotyping (SKY) results was
illustrated.



Supplemental Figure 11. Splice site mutation in AKT3 and the associated aberrant splicing
event

A splice site mutation is associated with an exon skipping event in AKT3 in H1155. We
identified a novel mutation in serine/threonine protein kinase AKT3 that alters the GT essential
splice donor sequence after exon 6. From the RNA-seq data, we observed four reads spanning a
novel exon-exon junction between exons 5 and 8, skipping the three exons in between. The
resulting protein product has a 45 amino acid in-frame deletion in the essential protein kinase
domain.

Supplemental Figure 12. Examples of differential isoform expression intumors.
RNA-seq depth coverage for four genes from the tissue samples was plotted using Integrated
Genome Browser. Tracks for tumors (in red) and their respective adjacent normal tissues (in
blue) were arranged next to each other. Shaded rectangles represented the exons that have
consistent differential expression between normal and tumor samples in all three patients.

Supplemental Figure 13. Number of variants in lung cancer samples after removing the
known germline variants.

All single nucleotide variations (SNVs) called by the Complete Genomics pipeline were filtered
against known germline variants, including those in the dbSNP database, the 1000 genome
project, the 69 fully sequenced genomes by Complete Genomics, and the NHLBI GO Exome
Sequencing Project (ESP). Shown in the plots are the numbers of remaining protein-altering
variants only (A)and all remaining variants (B) in each sample. The variants in the normal
genomes represent ‘private’ SNPs that are not in current database of known germline variants.
We observed an average of 315 such private protein-altering SNPs per normal genome. By
contrast, most of our cell line samples harbor a much higher number of filtered variants.

Supplemental Figure 14. Summary of genomic alterations by Circos plots in lung tumor
and cell line genomes.

Various types of genomic alterations in the lung tumor and cell line genomes using Circos plots
(Krzywinski etal. 2009) (A-D). High-confidence candidate structural variations (SVs) are
shown as lines, with red lines representing inter-chromosomal SVs and blue lines indicating
intra-chromosomal SVs. Regions of loss of heterozygosity (LOH) and allelic imbalance (Al) are
shown in green. Copy number alterations are shown as bar plots with copy number gain shown
in red and copy number loss in blue (the scale ranges from —2 to 4). The copy number alteration
and LOH/AI data of tissue samples were derived from whole genome sequencing data while that
of cell lines were derived from Illumina Human Omni2.5-4 SNP array results. For cell lines,
copy number and LOH/AI results of chromosome Y were not processed and were not shown.
Each surrounding red dot represents the number of high-confidence filtered SNVs within a 1
million base pair window. Cell line names or tumor genome ids are shown at the center of each



circular view. Cell lines tend to exhibit higher number of SVs compared to tumor tissue samples,
for the lack of matched normal samples in our germline filter. The pattern of structural variations
is very diverse among these samples, similar to what was reported previously for breast cancer
cell lines. Of note, H2073 contains a large number of SVs, particularly for small inversions,
which is consistent with that fact that this cell line was isolated from the primary tumor after
chemotherapy.

Supplemental Figure 15. Validation of called genomic mutations by transcriptome
sequencing data.

The top panel shows the numbers of SNVs that are covered by 10 or more RNA-seq reads, and
they display significant variability. The lower panel shows the percentage of candidate SNVs
that are supported by RNA Seq data. On average, 75% of the SNV (the dotted line) that are
covered by10 or more RNA-seq reads are supported by the presence of variant reads.

Supplemental Figure 16. Comparison of variant calls between Complete Genomics whole -
genome sequencing and CCLE targeted sequencing.

14 cell lines in our collection were also analyzed in the recently published targeted-sequencing
data from the Cancer Cell Line Encyclopedia (CCLE). On average, 94% (the dotted line) of all
the mutations published by CCLE were also called by our Complete Genomics data, representing
a possible 6% false negative rate in our data.
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Supplemental Figure 7
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Supplemental Figure 10 A
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Supplemental Figure 16
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