Supplemental Information

P-value based regulatory motif discovery using

positional weight matrices

Holger Hartmann, Eckhart W. Guthohrlein,
Matthias Siebert, Sebastian Luehr, and Johannes Séding

September 13, 2012

Contents
I.  Supplemental Figures 3
Il. Supplemental Tables 26
I1l. Supplemental Methods 29
1. Introduction 29
2. Availability 29
3. Theory 29
3.1. Calculating the background model probability for an l-mer . . . .. ... ... .. 29
3.2. Calculating the match P-value measuring the significance of a binding site . . . . . 30
3.3. Calculating the enrichment P-value measuring the significance of a set of binding
SIteS . . e 34
3.4. Time complexity for computing a motif enrichment P-value . . . . . ... ... .. 35
3.5. Correcting P-values for multiple testing . . . . . . ... ... ... ... ...... 36
3.6. Calculating conservation P-values . . . . . . .. .. .. ... ... ... 37
3.7. Weighted combination of P-values . . . . ... .. .. ... ... .. ........ 37
3.8. Calculating localization P-values . . . . . . .. .. . ... ... ... ... ... 38
4. Workflow of XXmotif 43
4.1, XXmasker . . . . .. e e e 44
4.2. Seeds enumeration stage . . . . . ... oL Lo 45
4.3. Seed extension stage . . . . . . ... 45
4.4. PWM merging stage . . . . . . . L L 46



4.5. PWM refinement stage . . . . . . . . . ... 47
5. Overview of the used published motif finders 47
5.1. PRIORITY . . . . . e e e e 47
52, MEME . . . . . . e 48
5.3. Weeder . . . . . . . e e 50
5.4. ERMIT . . . . . e 50
5.5. AMADEUS . . . . . . e e 51

List of Figures

W N ot N

Sensitivity benchmark, background model order . . . . . . . . ... ... ... ... 3
PWM quality benchmark, ROC curve example . . . .. ... ... ......... 4
PWM quality benchmark, excluding conservation information . . . . . . .. .. .. 5
Metazoan benchmark, top 1 results . . . . . . .. .. ... 0oL 6
Runtime comparison of motif finding tools . . . . . . . . ... ... .o 7
XXmotif E-values on random sequences. . . . . . . . . . .. ... 11

Human core promoter motifs discovered by XXmotif on repeat-masked sequences . 12
Human core promoter motifs discovered by XXmotif on repeat-masked sequences . 14

Sensitivity benchmark, detailed top 1 results, Harbisonset . . . . . ... ... ... 16
Sensitivity benchmark, detailed top 4 results, Harbisonset . . . . . . ... ... .. 17
Sensitivity benchmark, detailed top 1 results, Bulykset . . . ... ... ... ... 18
Sensitivity benchmark, detailed top 4 results, Bulykset . . . . ... ... ..... 19
Sensitivity benchmark, detailed top 1 results, Hughesset . . . . . . .. .. .. ... 20
Sensitivity benchmark, detailed top 4 results, Hughesset . . . . . . ... ... ... 21
PWM quality benchmark, detailed top 1 results . . . . . . .. ... ... ... ... 22
PWM quality benchmark, detailed top 4 results . . . . . . . ... . ... ... ... 23
PWM quality benchmark (filtered), detailed top 1 results . . . . . ... ... ... 24
PWM quality benchmark (filtered), detailed top 4 results . . . .. . ... ... .. 25
Splitting and recombination of the branch-and-bound P-value calculation . . . . . 32
Weighted combination of P-values . . . . . .. .. .. ... ... .......... 38
Overview of XXmotif with its main stages . . . . . . . . .. .. ... ... ... 44

List of Tables

1.
2.
3.

Detailed results of sensitivity benchmark . . . . . . ... ... ... 0. 26
GO analysis on genes with novel motifs discovered by XXmotif . . . . .. .. ... 27
Expression levels of genes with novel motifs discovered by XXmotif . . . . . . . .. 28



Part I.
Supplemental Figures

A TOP 1 B TOP 4
350 4 ®m Harbison 350 | ®m Harbison
E Bulyk E Bulyk
300 4 = Hughes 300 4 ®m Hughes
250 250
200 200
150 150
100 100
50 I 50
0 - 0-
S g9 92 I v 9@ 5 * 9 7 g 2 I »v oL N 2 9
3 8 8 8 8 B8 8 8 B8 B 5 8 8 8 8 8 B8 8 8 %
E £E E£E E E E E E E E E £E £ E£E E£E E£E E E £ E
X X X be X be X e X X X be X X be X be X X X
X X X X X X X X X X X X X X X X X X X X
c TOP 1 D TOP 4
350 1 m Harbison 350 7 m Harbison
E Bulyk E Bulyk
300 1 m Hughes 300 | m Hughes
250

200

150

100

50 I
0

Supplementary Figure 1: Number of correctly identified motifs of XXmotif on the ChIP-chip data set
of Harbison et al. (2004), depending on the order of the background model ranging from zero to nine.
Three experimental reference sets are used to judge the correctness of motifs (red, green, blue). (A) Top 1

prediction without conservation, (B) Top 4 prediction without conservation, (C) Top 1 prediction with
conservation, (D) Top 4 prediction with conservation.
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Supplementary Figure 2: ROC curve of the PWM found by XXmotif in the CBF1__SM ChIP-chip data
set and the corresponding partial area under curve (pAUC) value calculated from it. (A) All intergenic
regions having a ChIP-chip P-value < 0.001 are listed as true positives (TPs). (B) Only those TPs are
listed that have a binding site in the region that matches to at least one of the CBF1 PWMs from the

“Bulyk”, “Hughes”, or “Harbison set”.
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Supplementary Figure 3: PWM quality assessment on yeast ChIP-chip data from Harbison et al. (2004).
The curves quantify how well the scores of the reported PWMs can predict the ChIP enrichment of the
sequences. Each PWM is used to rank the intergenic regions by their maximum PWM score. For each
predicted PWM, a receiver operator characteristic (ROC) curve with the number of correct predictions
over the number of false predictions is computed, and the partial area under the ROC curve (pAUC)
deduced from it. The pAUC is the fractional area under the ROC curve within the 5% best-ranked false
predictions. For an ideal predictor, pAUC=1. The average pAUC scores are listed in the figure legends. (A,
B) cumulative distribution of the pAUC over all 247 ChIP-chip datasets that had at least ten significantly
enriched regions (P-value < 0.001). Regions with ChIP enrichment P-value < 0.001 are defined as correct
predictions, all other regions as false predictions. (C, D) As in A, B but using only datasets that have at
least five significantly ChIP-enriched regions with matches to the literature motif, and considering only

sequences that contain a match to the literature motif.



£ 85
S§SS
Organism Name Source Set Size FIITL
CREBH1 CC 2338
E2F4 CC 201
E2F4 CC 79
ESR1 C-DSL 496
ETSH CC 1192
E2F1 Expr 266
Human NFYA Expr 344
Ths HNF1A CC 206
HNF4A CC 1475
HSF1 CC 328
IRF/NFKB GO 586
NFKB CC 270
TP53 Expr 38
SRF CC 172
YY1 CC 713
IRF/NFKB GO 329
Mouse MEF2C CC 25
TFs MYOD1 CC 102
MYOD1 CC 102
C.elegans GATA Expr 1342
Hsf CC 183
Fly Mef2 CC+Expr 208
TFs Dref CC 116
Myc/Max/Mad  DamlD 714
hsa-let-7a Expr 177
hsa-let-7b Expr 182
hsa-miR-1 Expr 65
Human hsa-miR-16 Expr 90
MIRNAS hsa-m!R-34a Expr 89
hsa-miR-34a Expr 367
hsa-miR-106b  Expr 88
hsa-miR-124 Expr 116
hsa-miR-373 Expr 43
Mouse mmu-miR-155  Expr 95

Supplementary Figure 4: Top 1 benchmark results on 24 target sets for transcription factors from
human, mouse, worm, and fly, as well as 10 target sets of microRNAs from human and mouse from the
metazoan target set compendium (Linhart et al., 2008). The plot is adapted from Linhart et al. (2008):
The “Source” column indicates the experimental procedure or database from which the target set was
derived: Gene expression microarrays (Expr), ChIP-chip (CC), ChIP-DSL (C-DSL), DamID (van Steensel
et al., 2001), or Gene Ontology (GO) database (Ashburner et al., 2000). The black and gray boxes indicate
the similarity of the predicted PWM to the reference motif in TRANSFAC of miRBase. Darker shades

indicate closer similarity. “Set Size”: number of sequences within the input set.
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Supplementary Figure 5: Runtime of tested tools on the metazoan benchmark. All jobs were run on a
single core Xeon 2.9 GHz CPU.
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Supplementary Figure 6: Cumulative distribution of E-values reported by XXmotif on sets of random

sequences with different numbers of sequences (N = 10, 100, 1000 sequences) and lengths (

= 100,

300, 1000). (A) Second order background model, multiple occurrences per sequence. (B) Second order
background model, zero or one occurrence per sequence. (C) Eighth order background model, multiple
occurrences per sequence. (D) Eighth order background model, zero or one occurrence per sequence.
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Supplementary Figure 7: Full list of human core promoter motifs discovered by XXmotif up to E-value
0.1 on 1871 human core promoter regions (300 bp to +100 bp around TSS) from the eukaryotic pro-
moter database (A) without masking and (B) with masking of core promoter sequences using RepeatMasker
(www.repeatmasker.org) prior to analysis.
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Supplementary Figure 13

dashed line marks the maximum euclidian distance of 0.25 until which the motif is counted as correctly

identified.
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dashed line marks the maximum euclidian distance of 0.25 until which the motif is counted as correctly
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Supplementary Figure 15

corresponds to the pAUC value for the specific dataset.
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Part Il.
Supplemental Tables

A Harbison Bulyk Hughes Sum

TOP1 TOP4 TOP1 TOP4 TOP1 TOP4 TOP1 TOP4
MEME 35 98 18 57 19 65 72 220
PRIORITY 70 92 33 43 36 53 139 188
MEME-M 67 97 35 53 39 70 141 220
Weeder 65 86 43 54 40 53 148 193
AMADEUS 74 96 32 42 45 65 151 203
MEME-D 74 105 34 57 45 74 153 236
MEME-DC 74 106 35 59 46 76 155 241
PRIORITY-D 79 93 36 45 41 58 156 196
PRIORITY-DC 79 93 34 44 43 51 156 188
XXmotif-5-noref 91 104 43 51 54 61 188 216
XXmotif-noref 92 109 42 61 56 70 190 240
XXmotif 99 128 58 78 63 93 220 299
XXmotif-C 105 133 53 75 65 85 223 293
ERMIT 88 115 36 51 56 7 180 243
cERMIT 88 119 39 60 50 80 177 259

B Harbison Bulyk Hughes Sum

TOP1 TOP4 TOP1 TOP4 TOP1 TOP4 TOP1 TOP4
MEME 33 99 18 54 20 65 71 218
PRIORITY 68 90 32 44 37 51 137 185
MEME-D 68 98 31 55 44 67 143 220
PRIORITY-D 73 87 32 38 40 48 145 173
MEME-M 69 103 38 58 41 72 148 233
AMADEUS 73 97 31 46 46 67 150 210
Weeder 70 87 40 55 41 52 151 194
MEME-DC 75 105 38 64 49 80 162 249
PRIORITY-DC 82 95 37 44 47 55 166 194
XXmotif-5-noref 91 104 43 51 54 61 188 216
XXmotif-noref 92 109 42 61 56 70 190 240
XXmotif 99 128 58 78 63 93 220 299
XXmotif-C 105 133 53 75 65 85 223 293
ERMIT 91 117 37 63 48 81 176 261
cERMIT 94 117 43 63 53 83 190 263

Supplementary Table 1: Detailed results of the motif sensitivity benchmark. The tools are sorted by
the sum of the top 1 predictions. Highest number per benchmark set is given in bold face. Methods above
the separator take only intergenic regions with a ChIP-chip P-value < 1073 as input, methods below the
separator take all intergenic regions and require the associated P-value as additional information. (A)
XXmasker is applied only to the input sequences of XXmotif. (B) XXmasker is applied to the input
sequences of all tools.
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Motif Count Total Bonferroni Category Term

XX1 4 22 1.8 x 1073 CC G0:0022627 cytosolic small ribosomal subunit
6 22 4.2x1072 CC G0:0030529 ribonucleoprotein complex
4 22 1.2 x 107! BP G0:0006414 translational elongation
XX1rev —
XX2 11 25 7.7 x 10713 CC G0:0044445 cytosolic part
10 23 6.2x 10712 BP G0:0006414 translational elongation
10 23 6.5 x 1071 MF GO:0003735 structural constituent of ribosome
XX3 8 20 53x107° BP G0:0006412 translation
14 20 2.7x1074 BP GO0:0044267 cellular protein metabolic process
6 21 58x107% CcC G0:0005840 ribosome
5 20  5.1x1073 MF GO:0003735 structural constituent of ribosome
XX3rev —
XX4 62 97  7.3x107? CC G0:0044444 cytoplasmic part
9 91 2.7x 1074 BP GO0:0006414 translational elongation
10 94 2.7x1074 MF GO:0003735 structural constituent of ribosome
XX5 10 11 45x 1077 BP G0:0006414 translational elongation
10 12 23x107% MF GO0O:0003735 structural constituent of ribosome
XX6 14 98 7.0x107° BP G0:0008380 RNA splicing
83 106 6.3 x 1074 CC G0:0043226 organelle
35 108  2.3x1073 MF G0:0000166 nucleotide binding

Supplementary Table 2: Gene ontology analysis (Huang et al., 2009) on genes in the Eukaryotic
Promoter Database in which XXmotif detected one of the novel motifs.



28

Motif Quantile
(number) 10%  50%  90%
XX1 (21) 870 19.80 83.49
XX2(Kozak-long) (19) 0.28 29.02 182.78
XX3 (20) 9.30 31.13 152.53
XX4 (26) 0.13 16.37 117.80
XX5 (27) 7.60 36.58 258.9
XX6(Inr) (33) 196 26.32 85.55
XX1(rev) (17) 7.34 18.68  46.16
XX3(rev) (30) 428 19.17 6327
All EPD (1871) 0.07 15.84  83.30

Supplementary Table 3: Expression levels of genes (Lundberg et al., 2010) carrying one of the motifs
discovered by XXmotif. The genes were identified by XXmotif together with the motif in core promoter
regions given by the eukaryotic promoter database (EPD). Quantiles of expression levels of all genes in EPD
found to carry the motif are given in units of RPKM (reads per kilobase gene model and million reads).
Genes with motifs XX1 to XX4 are strongly expressed. Note that genes XX1 and XX3 have a much higher
expression than their reverse complements. Therefore, the binding orientation of the associated, unknown
factors seems important for the assembly of the transcription initiation complex, which underscores the
importance of XX1 and XX3 as true core promoter motifs despite their relatively infrequent occurrence.
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Part IIl.
Supplemental Methods

1. Introduction

These supplemental methods descriptions provide further details of the theoretical basis and the
efficient realization of significance calculations within XXmotif. Furthermore, it provides all the
parameters used for the tested motif finding tools within the benchmarks. This should support
repeatability of the results within the paper and point out the main ideas that allow an efficient
calculation of P-values from PWMs.

The remainder of this document is organized as follows: Section two describes from where X Xmotif
can be obtained. In the third section, we provide the theoretical basis for calculating match a
P-values for a site and a motif enrichment P-value for a set of sequences. The fourth section
gives a more detailed description of the XXmotif workflow. Finally, section five gives an overview
about the tools used in the benchmarks and the chosen parameters.

2. Availability

A command line version of XXmotif can be obtained as source code or binaries (64 Bit and 32
Bit versions for UNIX systems) from ftp://toolkit.lmb.uni-muenchen.de/xxmotif.

A web server is available at xxmotif.genzentrum.lmu.de.

3. Theory

In order to optimize the enrichment P-value for a motif PWM, it has to be possible to calculate
the significance of a specific site given the PWM (“match P-value”). This section provides the
theoretical basis to efficiently calculate P-values for PWMs.

3.1. Calculating the background model probability for an I-mer

To calculate the probability to find a given [-mer x by chance, a background model is used.
This model should be calibrated on a set having the same DNA properties as the input set,
but no enriched motifs (negative set). The simplest background model assumes no correlations
between the positions of the I-mer (0"-order background model), and hence, utilizes only monomer
probabilities of the nucleotides f(z;) on the negative set. According to this background model,
the probability to find an [-mer z is:

l

Pug() = [T f(:) 1)

i=1
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However, the independence assumption underlying this model is very inaccurate and leads to an
overestimation of the significance of poly A/T stretches or dinucleotide repeats, which are very
frequent in non-coding DNA.

Therefore, many motif finding tools use higher-order background models to capture these de-
pendencies. E.g., for a k*-order background model all (k+41)-mers within the negative set
are counted and probabilities f(x;...zk11) and conditional probabilities f(zri1|z1...x%) are
calculated. With these, the probability to find an [-mer x can be calculated as follows:

I
Prg(x) = f(x1...apn) [ flailwig. . zi1) (2)

i=k+2

The main drawback of this method is the huge amount of possible (k+1)-mers for large k’s
necessary to estimate from usually limited data. As poly A/T stretches and many dinucleotide
repeats of six or more nucleotides are overrepresented in genomic sequences, a k of at least 8 is
still useful. However, this leads to very few counts that are indistinguishable from noise for many
of the 262144 different 9-mers even for large negative sets.

To overcome this problem, XXmotif uses interpolated Markov models (Salzberg et al., 1998) which
automatically use lower-order probabilities if the negative set does not provide enough counts for
higher-order k-mers. Given a pseudocount factor a and the number of occurrences of a k-mer
n(zy...xy), the conditional probability f(zgi1|z1...2k) can be calculated as follows:

n(acl .. .wk+1) -+ 4af(xk+1|x2 e xk) (3)
n(zy...zx) + 4o

f(l’k+1‘l’1 N :L'k) =

In case of few k-mer counts, i.e., n(xy...xp41) = 0, the formula simplifies to the result for order
k — 1. However, if the k-mer counts are high, i.e., n(zy ...xgy1) > 4o, the formula corresponds
to the one for order k.

We used o = 10 as default value for XXmotif as it seems to be a good trade-off between noise
reduction and utilization of the counts of higher orders.

3.2. Calculating the match P-value measuring the significance of a binding site

To calculate the P-value of a specific site x of interest with length [ given a PWM, the probabilities
according to the background model Pyg(2) of all l-mers z that have a better or equal log-odds
score S(z) than the site of interest x have to be summed up:

P-value(z) = > Prg(2) , (4)

z€{2z:5(2)>S(z)}

where the log-odds score S(z) is calculated by summing up the logarithm of the probability
PWM(i, x;) to have nucleotide z; at position ¢ within the PWM divided by the background
probability f(z;) of this nucleotide:

d PWM(i, z;)
S(x) =Y log [ — —2"% 5
(=) Eg( ) ©)
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Since it is very time consuming to generate all 4 l-mers, P-value(z) cannot be efficiently obtained
by exhaustive enumeration of all l-mers with score S(z) > S(x). However, by using a branch-and-
bound technique, it is possible to generate exactly these high-scoring I-mers in linear time with
respect to the output size, i.e., the number of [-mers generated.

3.2.1. Branch-and-bound algorithm

Every PWM column contributes independently to the log-odds score (see Equation 5). Therefore,
given the prefix of length m of an [-mer, the maximum log-odds score of the remaining suffix
Smax,m+1 is easily calculated by summing up the maximum log-odds value of the corresponding
columns:

l . .

PWM(i, 7)
Smax,m+1 = max {10 () } 0
el i:%;l setrcary U B\ 1) o

If the maximum score of the suffix is not high enough to reach the threshold S(z), it is not
necessary to enumerate the suffixes and the current path can be abandoned. All paths reaching
the [-th cumn correspond to [-mers that are ‘similar enough’ to the PWM. Pseudocode for the
procedure is given in Algorithm 1.

Algorithm 1: CREATESIMILARKMERS (7, S;—1, zi—1)

Recursive generation of l-mers similar to a PWM with branch-and-bound. The initial call is
CREATESIMILARKMERS(1, 0, ¢), i.e., the algorithm starts in the first column with the neutral
element of addition for the score so far and the empty word for the preceding [-mer.

Data: PWM score matrix
Smax,j maximum possible score for columns j,. ..,
S(z) similarity threshold: score for site x

Input: ¢ current column
zi—1 generated (i — 1)-mer
S;_1 score of z;_1
foreach j € {A,C,G,T} do
Si = Si—1 + PWM, ;
if S; + S max,i+1 < S(z) then continue
2i & Zi—1-]
if i <[ then
L CREATESIMILARKMERS (i + 1, S, 2;)

else
L add z; to list of similar [-mers

The run time is approximately linear in the number of branches followed, that is, in the number
of [-mers generated plus the number of dead-end paths. Two optimizations are used to reduce the
number of futile bifurcations by trying highest scoring nucleotides first: (a) sort each column’s
entries in order of descending score, (b) reorder columns according to their highest scoring entry
in descending order.

Of course, the maximal number of similar I-mers is still 4. However, only high scoring matches
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are of interest during the search for significant motifs. This means that only a small fraction of
[-mers has to be considered for stringent thresholds.

3.2.2. Splitting the match P-value calculation for long PWMs

For long I-mers, enumeration of high scoring matches can still be very time consuming, especially
if the PWM has many degenerate columns. Therefore, we accelerate the calibration for [ > 8 by
splitting the motif into two parts, calculate P-values for both parts individually and combine
them to yield the final P-value (see Fig. 19). The left part of the l-mer () is set to length 8, the
right part (x;) to the remaining nucleotides, allowing to calculate P-values for l-mers with up to
17 nucleotides.

S2 A

S(X) =5+5

{52152 > 5(x) — 51}
:/

max
52 N :

S(X)—Sgnax ce o Gax S(X) S:

Supplementary Figure 19: Splitting and recombination of the branch-and-bound P-value calculation
for long l-mers (shown in log-space). The [-mer z = z;...z is divided into a left and a right part,
z21=21...28 and 2z, = zg...7. The background model probabilities for z; and z, are calculated with the
branch-and-bound algorithm CREATESIMILARKMERS. The P-value P(x) for an l-mer x is the background
model probability for a chance l-mer Z = (z),2;) to reach at least a total score of S(x). To calculate it, the
background probabilities of all pairs (z1, z;) with Si(z1) + Si(z:) > S(z) (dots in gray regions) have to be
summed up.

The P-value P(z) for an l-mer z with PWM score S(x) is the background model probability for
a chance [-mer z = (z],2;) to obtain at least a total score of S(x):

P(x) = Ppg (Si(21) + Se(2) > S(2) ) (7)

where, Pyg(-) denotes the probability of a k-mer according to the background model. We can
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separate the contributions of the left and right part of the [-mer by writing

P(x) = > Prg(21) Pog(2|21) - (8)
(21,2) : S1(21) 15 () > S (x)

or, equivalently,

P(x) =) Pug(a) > Prg(z|2) (9)

2r : Sr(20) >S5 (2)—S)1(2))
This calculation is illustrated in Figure 19.

If we neglected dependencies between both parts, we could simplify this expression to

P(x) ~ Z Pbg(zl) Z Pbg(zr) . (10)

zr 1 Sr(2r) >S5S (x)—S1(21)

The sums over z, (dark grey region in the Figure 19) could be precalculated for every score
threshold S with the branch-and-bound algorithm: Peum(S) = 3. .5 (55 Prg(2r) (dark grey
regions in the figure), which would reduce the computation of P(x) to a single sum,

P(z) ) | Ppg(21) Peum (S(2) = Si(21)) , (11)

making the P-values very efficient to compute.

To include higher-order dependencies between the left and right part of the I-mer, the P-values of
the right part have to be evaluated depending on the left part of the I-mer. The exact calculation
would be too time-consuming since it would involve calling the branch-and-bound algorithm for
each possible z1. We seek an approximation to equation 9 that looks similar to equation 10,

P(z) ~ Z Phg(21) Z Phg(z|PWM). (12)
2] 2r 1 Sr(2zr) >S5 (x)—S1(21)

The crucial aspect is that the new term Py, (2,[PWM) that replaces Pg(2:|21) does not depend
on z1, because we can then precalculate all sums on the right side as before.

The approximation Phg(2r|21) & Ppg(2:|PWM) should err on the conservative side, overestimating
the P-values in order not to report significant, false motifs. If we maximized over all possible zi,
we could get an exact upper bound: Phg(2r|21) < max ez, Prg(2z|2]). We obtain an approximate
yet more stringent upper bound by noting that only I-mers whose left 8 nucleotides match very
well to the PWM have a chance of achieving significant P-values at all. For these [-mers, our
approximation must be as good as possible. We therefore maximize over the set of 8-mers whose
probability according to the PWM is at least v of the maximum:

Z1 = {2: PWM(z) > v x max PWM(z{)}. (13)
In summary, we use the approximation

Prg(ai21) & Prg(z[PWM) = max Pog(z]2)) (14)
1 1

together with equation 12. The Ppg(2:[PWM) and their cumulated sums are precalculated,
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making the computation of P-values very efficient. We tried out values 0.1,0.5,0.8, 1.0 for v and
obtained best results for v = 0.8. Above this value, E-values may be unreliable in rare cases while
below this value the sensitivity on our small benchmark set decreases slightly.

3.3. Calculating the enrichment P-value measuring the significance of a set of
binding sites

After a match P-value is calculated for every site given the PWM, it is necessary to find the
optimal P-value threshold for considering a site as significant, i.e., for accepting a motif instance
as a true positive. This is determined using so-called order statistics. The possible sites are sorted
by their match P-value in increasing order (i.e., in order of decreasing significance). Now, for a
binomial distribution, the probability of finding exactly K sites in a set of N possible sites with
P-values at least as small as p is (Z) pK (1-— p)N —K " Accordingly, the probability of finding at
least K sites with P-values at least as good as the K-th best, Pk, is given by:

N
K N k N—k
Pe(nri)chment: Z (k) (PK) (1_PK) (15)
k=K
The optimal K* is the one with minimal Pe(gi)chmem:
K* = argmin {Poprichment (K)} (16)
Ke{l1,...,.N}

The P-value of the most significant set of binding sites is thus pE) and the K* best sites

enrichment?
are considered to be functional.

3.3.1. Multiple occurrence per sequence model

Using the multiple occurrence per sequence model (mops model) as the motif model of XXmotif
allows in principle to find a motif at every position in the input set. Hence, NV, the number of
different binding sites, equals the number of nucleotides in the input set M, subtracted by the
nucleotides at the sequence ends covered by the motif. Having L sequences and a PWM length

w,
N=M-L(W-1) (17)

However, overlapping binding sites are not allowed to be simultaneously occupied as this would
give excessively significant P-values for repetitive motifs. Hence, the number of motifs K within
the subset of functional motifs has to be smaller than N. Moreover, allowing XXmotif to find
motifs on both strands of the DNA increases N by a factor of two, whereas it is prohibited to
have a binding site at one strand that overlaps with a binding site of the same motif at the reverse
strand. Otherwise, palindromic motifs get too significant P-values, as these overlapping sites
would double the number of binding sites of palindromes.
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3.3.2. Zero or one occurrence per sequence model

Using the zero or one occurrence per sequence model (zoops model) as the motif model of XXmotif
allows at most one binding site per input sequence. Therefore, N is the number of sequences
and K can have values between 0 and N, as overlaps are not possible in this setting. Hence, the
P-value Py of a site used in equation 15 now refers to a per sequence P-value, which can be
calculated from the site’s match P-value p by calculating the probability to find a binding site
with length W at least as significant as p within sequence S:

Px=1—(1-p)¥I=W+t, (18)

i. e., the probability of the complementary event of not finding it at any of the |S|—W+1 possible
starting positions of the PWM in sequence S.

Instead of individual sequence lengths, the geometric mean length is used for all sequences. This
avoids problems resulting from equally scoring matches becoming disproportionately significant (or
insignificant) if found in very short (or very long) sequences. The geometric mean is adequate since
lengths are scaling variables that are best compared in terms of factors, not absolute differences.

3.3.3. One occurrence per sequence model

XXmotif also provides a one occurrence per sequence model. It is implemented by using the
same framework as for the zero or one occurrence per sequence model, however, the number of
motifs K is not optimized using order statistics, but manually set to N. Subsequently, the final
P-value is the likelihood to find N times an instance with the N’th best P-value. As only the
N’th best P-value contributes to the final result, this option should only be used if it is known
that all sequences contain the motif, otherwise the zero or one occurrence per sequence option is
recommended.

3.4. Time complexity for computing a motif enrichment P-value

Let N be the number of sequences in the input set, L., their average length, and [ the length
of the PWM. We first consider the simpler case [ < 8 for which we do not split the [-mers into
two parts. The branch-and-bound algorithm to generate the list of M [-mers with a score larger
than the cut-off takes time O(4M). The calculation of background probabilities Ppg(z) for all M
l-mers z with equation 2 takes time O(M1). Sorting the resulting list by Ppg(2) and computing
a cumulative version of the list takes O(M log M) and O(M ), respectively. Looking up in the
cumulated list the P-values for all N L,, possible starting positions of the motif takes O(N Ly ),
and sorting the list by P-values takes O(N Lyy log N L,,). Computing the order statistics for a
given number K of motif occurrences (eq. 15) takes time O(N Lay). (Computing the binomial
coefficients takes constant time per coeflicient, since it can be done iteratively from the coefficient
of the previous term.) In summary, the time complexity is

O(M x (I +log M) + NLaylog NLyy) . (19)
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By splitting the [-mers into pieces of length 8 and I — 8, we effectively limit the complexity to
nearly the one at a PWM length of min{8,/ — 8}.

For comparison, the method of Zhang et al. (2007) has a time complexity of O(M1+ K N Lqy, x MI).
Here, the dominant second term describes the time complexity to compute the probability of
observing at least K PWM matches with a score larger than the threshold in a set of input
sequences of total length N L, that are distributed according to a Markov background model, and
where M is the number of l-mers scoring above the threshold. This is slower than our algorithm
by a factor of almost K M. The huge difference in efficiency to XXmotif’s P-value calculation
stems from the fact that the method of Zhang et al. treats the case of overlapping motif instances
in an exact manner, whereas XXmotif simply forbids overlapping motif instances.

The most important advantage of XXmotif’s P-value calculation is that for each K it only takes
an additional time of order O(N L,y) for calculating the new order statistics, since the previously
calculated cumulated list of P-values can be used. In contrast, the exact method of Zhang et al.
(2007) and approximation by Touzet and Varré (2007) need the same amount of time for each new
score threshold and therefore each new value of K. This makes them unsuitable for optimizing
PWNMs.

3.5. Correcting P-values for multiple testing

Finally, multiple testing has to be taken into account: Any PWM in the whole motif space has the
same chance to achieve a certain significance by coincidence. Hence, for calculating the E-value
which corresponds to the expected number of motifs with a given P-value, a Bonferroni correction
is applied. This is a conservative method that multiplies the calculated P-value by the number of
different motif models that could be tested. Since in principle infinite slightly different PWMs
exist in the motif space, it is necessary to define a parameter Neg which defines the effective
number of possible PWM columns. Hence, for a PWM with length W, the respective E-value is
calculated as follows:

E-value = P-value NJ§ (20)

In the seed enumeration stage of XXmotif, the motif model consists of one out of ten different
IUPAC characters per position (A, C, G, T, M, R, W, S, Y, K). However, only the four nucleotides
A, C, G, and T are independent, the remaining characters are partly similar to each other. Hence,
Neg should be set to a value between four and ten, with Neg = 6 is used as default. In the
refinement stage of XXmotif, we use Nog = 10 to account for the strong similarities between
different PWM columns, but still capture the higher number of different PWMs than IUPAC
strings of the same length. In case of the seed enumeration stage, for which gaps are allowed
in the IUPAC string, additionally to the factor NCV{I{ , a factor of two per gap position is used to
capture the higher amount of motifs to test if a certain number of gaps is present. To improve
the agreement between empirical and reported E-values (Supplemental Fig. 6), we also scale the
log E-value down by a factor of two.
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3.6. Calculating conservation P-values

Like enrichment P-values, conservation P-values are calibrated on the negative set, if available.
Otherwise, the input set is used. They are calculated as the probability to find at most m
mutations from the first sequence to n other sequences within the alignment, given the frequency
of every nucleotide within the site. As this nucleotide composition ¢ = fge(A4,C,G,T) is taken
into account, different mutation rates within regions of different A/T content are included.

Z’/LC

j= Of(an) (21)

Pconsmnc ZZ

For each site it is tested how many sequences have no gaps in the alignment and the maximal n is
used. To preclude that related informative sequences are lost if a closely related sequence was
not alignable and therefore has only gaps at the site position, a preprocessing step is used to fill
gaps in closely related species with the nucleotides of the a more distantly related species. This
procedure can be considered as an upper bound estimation for the mutation within the site.

To calculate a combined conservation P-value for the K best sites according to the PWM, we use
the formula for the distribution of the product of independent pairwise P-values given by Bailey
and Gribskov (1998):

PE) A, SE (—logp)’

cons ~ D il (22)
where p is the product of conservation P-values of the K considered sites:
K
b= H Pcons,i (23)

3.7. Weighted combination of P-values

Given two independent P-values p; and po, these can be combined to a single P-value using the
formula:

Peomp = Pr[P1 Py < pip2] = pip2 (1 — log (p1p2)) (24)

However, this formula for independent P-value combination implicitly assumes that both P-values
are similarly important. If the first source of information p; is much more important than the
second source of information py, meaning that most non-random events (TPs) have much smaller
p1’s than po’s, combined P-values can be even worse in distinguishing non-null-model events than
the single P-value of the more important source of information.

E.g., if py = 107 and ps = 0.1, Peomp = 1076(1 —1og(107%) = 1.5 x 107° > p;

This scenario is very common for XXmotif. Here, enrichment P-values p; are combined with
conservation P-values pa which often are only slightly significant. This low information stems from
TF turnover events, which cancel out any conservation information even for functional binding
sites, or, if the species are too closely related, even completely conserved binding sites are not
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significant.

Therefore, it is desirable to assign a weight w €]0, 1[ to the source of information which is less
important and calculate a P-value for the weighted score o = p1p¥ (see Fig. 20). This can be
calculated analytically:

I 1 L
~ 1 oo 0—wow _ p1py — pi’ paw
P = Pr[P, P¥ < Y = ow / —dP; = - 2 : ) 25
comb I‘[ 1479 —p1p2] ow + Q% Péu 2 1—w 1—w ( )

For the weight w = 1/3, which is the default value used in XXmotif, the example calculation from
above gives Pyomp, = 6.96 x 1075, which is 1.44 times more significant than the single P-value.

g

0

Py

0
0 P, 1

Supplementary Figure 20: Weighted combination of P-values. The probability that the product of P;
and P3" is less than g is equal to the shaded area. This in turn is composed of a rectangle with area o'/
and the area under P; Py over [p"/% 1].

3.8. Calculating localization P-values

If motif instances cluster together at a fixed distance relative to a specified fixed point, e.g.,
TSS or nucleosome, motif identification is facilitated by introducing a P-value that captures the
differences of this clustering to a random distribution. To decide whether for a motif of size [ the
instances are significantly clustered within a region A, a cluster P-value P,; is calculated using
the formula

Py = f; N (Peeg)® (1 = Poee)V ™% with P, __ Al
o = k reg reg WM Fres = T
k=K

where K is the number of motifs within the tested region, N is the number of all motif instances,
|A| is the size of the region where the motifs are clustered and L is the length of the sequences.
To find the most significant clustering all possible regions A are tested and the region with the
best P,; is selected if it is significant, i.e., Py < 1075.
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3.8.1. Positional quasi P-value

Since P, cannot be smaller than 1/ (L — [+ 1) it is only possible to calculate a quasi P-value,
which cannot directly be combined with the enrichment P-value by simply using the formula for
combining P-values shown in equation 25.

We define our positional quasi P-value for position z; and a given cluster region Ag ranging from
positions z, to z. by

Cfzil<z<L—lt1Alz—pul<d)
Pla) = L—1+1

where

d = max{|zx — pul, D}

and
Ze + 25
2
=[] - ==
2 2

To simplify the expression for p(zx) and see how it depends on p, D and L — [ + 1 one can first
note that
|min{L — I+ 1,u+d}| — [max{l,u —d}] +1

L—-1+1

p(zr) =

and write this formula as

Ag
——F for |z, —pu| <D
plaw) = ¢ F ot ] (26)
_Alw) for |z, —pu| < D
L—-1+1 -
where

Ag = |min{L -1+ 1,u+ D}| — [max{l,up — D}]| +1

and
A(zg) = min{L — I+ 1, p + |z — p|}] — [max{l, p — |z — p|}] +1

as can be seen for two different values for p and z; in the following figure:
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|
[ .

1 Zk L-1+1
Then for z; > p:
A(zg) = |min{L — 1+ 1, 2.} | —[max{1,2u — z;}] + 1
2k

|2(z — p) + 1| for z, < 2p—1

Zk for zp, > 2pu—1

For z;, < p we obtain:
A(zg) = min{L — [+ 1,2p — 2z} | — [max{1, 2, }| +1
2k

|12(p — 2z) + 1] for zx >2p—L+1—-1

L—1l+1—2z,4+41 forzz <2u—L+4+1-1
We can summarize equations 27 and 28:

2L for z, > 2u —1 (a)
A(zg) = 1 |22k — p| + 1] for2u —L+1—-1<z,<2u—1 (b)

L—-1+41—-2;,+1 forz <2u—L+1-1 (c)
7 |
_ | ‘
‘ '
1 2k L—-1l+1
b | |
(b) ‘ Alz) ‘
| I |
‘ | .‘
Y |
! \
1 %k L—-1+1
(c) — A(zg) —

(28)
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Case (a) can only occur when L — 1 +1>2u—1,i.e, p < ===

Case (c) can only occur when 2 — L+1—12>1,1i.e., p > ===

To substitute equation 29 into equation 26, we can now distinguish two cases:

L—-1+2
1. < —
H=""
Ag fory—D <z, <pu+D (b)
p(Zk) (L—l—i—l): Zk for2,u—1§zk (d)
12|z —p| +1] for1 <z, <pu—DV (a)
(c)

Ay forpy—D <z, <pu+D (c)
L—I+1—zp+1 for zp <2u—L+1—1 (

a)
12|z — p| + 1] for 2u—L+4+1-1<z, <pu—DV (b)
w+ D <z, <L-Il+1 d)

p(z) (L=1+1) =
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When we sort the values p(zy) in ascending order (indexed by i), we get

2D+1 for1<i<2D+1
p(i) =41 for 2D +1<i <A § x (L—1+1)""
? for A< L—-I1+1

where

Y
~.

L-I+1

3.8.2. P-value combination of the positional quasi P-value

Suppose our positional P-value po(i), which may not be uniformly distributed and therefore is no
true P-value, is calculated according to

Ag = min{L -1+ 1,p+ D} | — [max{l,p— D}| +1

Ag
——— for|i—p| <D
pa(i) = L—g—i—l
L—-1+1

for i —p| > D

Suppose the match of the PWM at position i € {1,...,L — [+ 1} is quantified by a true P-value
p1(i). We would now like to calculate the true combined P-value for p = p1(i) p2(i) at a specified
position ¢, which is the probability that a better combined P-value could be achieved at any start
position in a sequence of length L — [ + 1:

P-value(p) = P(miin{pl (1) p2(i)} < p)
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We start by calculating 1— P-value(p):

L—I+1

P (miin{pl( ) p2(i)} > p) H P (p1(i) pa(i) > p)

L—1+1 Ag ;
— 11 P(pi >
11 (p“” me{l)—k+1’L—l+1}'_p)

Ao L—I+1

. L—-1+1 , L—-1+1
“[P(m0zp “5 7)) I P(nzp ")
i=1 0 L

i=Ao+1

L—]4+1\%0 L+l L—1+1
~(trmn) U ()

i=Aop+1

= P-value(p) can be calculated as follows:

L—141\% P! L—1+1
P-value(p) =1 — (1 —p Ay ) exp ( Z log (1 P )

i=A0+1
o L=Il+1 . : :
if p A < 0.1, we can expand the logarithm into a Taylor series:
2 3 4 ok
T x x L—-Il+1
log(1+ ) $+7+E+ﬂ+ +g+ fOl“:L‘—fp i

=- by using a first order approximation one finally gets:

L—l+1)A0

P-value(p) =1 — (1 P X
0

L—1+1 1 1 L—-l+1 1
exp<p(Ll+1) > - +§p%LAJ+1F o5 +.”>

1=Ag+1 i=Ao+1 t
——— ———
Li(Ap+1) Ir(Ap+1)
L—14+1\20 > 1
=1- (lp A ) exp (Zk‘(p (Ll+1))klk(Ao+1)>
0 k=1""
L—141\%0 Lt g
Ag . {2
i=Ag+1

4. Workflow of XXmotif

In this section we describe the workflow of XXmotif in more detail. In a nutshell, starting with
an optional run of XXmasker, [IUPAC strings are extended, merged together to obtain a PWM
model and refined by optimizing the P-value (see Fig. 21).
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Supplementary Figure 21: Overview of XXmotif with its main stages. After an optional step to mask
confounding sequence regions (blue), P-values of all 5-mers and gapped palindromic 6-mer seed patterns
are evaluated, and the best seeds are recursively extended by an optional gap and motif position (red).
Patterns are converted into PWMs and fed to the PWM stage (green). Here, similar PWMs are merged
and then iteratively refined by optimizing the motif enrichment P-value. Finally, merging and refinement
stages are iterated till convergence.

4.1. XXmasker

XXmotif is more sensitive to reporting false motifs due to duplicated, homologous sequence
stretches in the poisitive seugence set, because XXmotif with its greedy motif extension strategy is
able to detect a motif even if it occurrs in only two sequences if the motif is long enough to make
it statistically significant. Most other motif discovery methods would not be able to elongate such
a motif sufficiently to make it significant. can discover motifs even if they occur only twice in the
positive sequences if they are long enough to produce a significant F-value. . However, this high
sensitivity becomes problematical if the input sequences contain homologous parts, repeats or low
complexity regions. These stretches of DNA are typically longer than 20 nucleotides and occur
multiple times, typically as perfect repeats. In order to avoid an assignment of high P-values to
these features, we have developed XXmasker, which is an optional tool that masks these sequence
regions prior to the main algorithm of XXmotif.

Nucleotides are masked by XXmasker if at least one out of the following three conditions is
satisfied:

1. The nucleotide is within a homologous region:

To detect homologous regions, BLAST is used with E-value cutoff 1 and the soft masking
option ("-F m S"). For this, a database is incrementally built with all input sequences, where
the first input sequences is kept completely and parts of the remaining sequences are masked
in all regions in which BLAST detects sufficient homology to any of the already considered
sequences. The very stringent F-value cutoff assures that no informative regions are masked,
the BLAST masking option avoids that low-complexity segments cause homologous parts
to fall below the E-value threshold.

0—10

2. The nucleotide is within a low complexity region:
We define a low complexity region to be a DNA stretch of at least 50 nucleotides consisting
of at most two different nucleotides.

3. The nucleotide is within a repeat:
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We define a repeat region as a DNA stretch of at least 50 nucleotides consisting of perfect
repeats with a repeat length in between 3 and 10.

Generally, we chose very strict parameters for all of these conditions to be satisfied. However, in
some cases a relaxation of the F-value cutoff, or the masking of imperfect low complexity and
repeat regions might be a possibility to further improve the performance.

4.2. Seeds enumeration stage

XXmotif starts by enumerating all 5-mers with at most two IUPAC characters (M, R, W, S, Y,
K) as well as all palindromic and tandemic 6-mers with gaps of size 0 — 11 between the first and
last three positions (seeds stage; Fig. 21). For each of these seed patterns, a P-value is calculated
using the binomial distribution which is corrected for multiple testing to obtain the corresponding
E-value.

To calculate the P-value for an IUPAC string U, the probabilities of all [-mers x matching to U
have to be summed up. Therefore, in case of gaps in the IUPAC string, probabilities of I-mers
with any nucleotide at these positions have to be considered:

PU) =) P(x)

zelU

where P(x) is calculated as shown in section 3.1. The probability to find K out of N possible
binding sites matching U is calculated using the binomial distribution.

. (N ko N—k
Penrlchment - Z k (P(U)) (1 P(U)) (30)

k=K

To account for multiple testing, E-values are calculated as described in section 3.5

4.3. Seed extension stage

Seeds are extended using a beam search approach, i.e., not only the one most promising path is
followed, but the B most promising paths are examined. This allows for a very efficient extension,
while avoiding local minima which may arise more likely by using only the best path.

As all IUPAC degenerations of a non-degenerate seed are highly overlapping and would therefore
extend to similar IUPAC strings, it is possible to reduce runtime by extending only a small subset
of these. Therefore, we extend only the five most promising degenerate seeds per non-degenerate
seed, giving a total of 5120 5-mer (5 x 4°), 3840 gapped palindromic and 3840 gapped tandemic
6-mer degenerate seeds (5 x 12 x 43).

All of these seeds are extended individually as long as the E-value improves. Possible extensions
are IUPAC characters (A, C, G, T, M, R, W, S, Y, K) at the beginning and the end of the
current [UPAC string, allowing gaps of size zero to three. Larger gap sizes are not necessary
as it is very unlikely that the extended ITUPAC string is more significant than the unextended
version (see section 3.5, multiple testing). Extensions having a lower E-value than the unextended
version are sorted and the three most significant ones (circles in Fig. 21) are iteratively extended.
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Afterwards, extended ITUPAC strings are converted into PWMs by calculating the frequencies of
every nucleotide within the matching sites.

Since identical IUPAC strings can be reached from different seeds, all extensions are stored in a
hash allowing for a fast extraction of already calculated results.

4.4. PWM merging stage

Similar PWMs are merged in order to create a list of non-redundant motifs. First, all motifs are
ranked by FE-value, and, beginning with the motif having highest significance, similarity tests
are performed. Therefore, all less significant motifs are compared to it, and, if similar enough,
merged. Afterwards, this procedure is repeated for the second most significant motif and so on.
The criteria for these similarity tests are the following:

1. The divergence between the two PWMs calculated with a normalized Euclidian distance is
smaller than 0.25 in an overlapping region of at least length six. This criterion is frequently
used to assign a motif to be correctly found in diverse benchmarks, e.g., Gordéan et al.
(2010), Georgiev et al. (2010):

(a,b) = \fw Z Z (as.r, — bip)? (31)

Le{A,C,G,T}

where a and b are the regions of both PWMs that are overlapping and w is the size of the
overlap.

2. The overlapping region has an average entropy over the six positions with highest information
content of at least 0.5 for both PWMs. This assures that the overlap is within important
parts of both PWMs. The restriction to only six positions guarantees that uninformative
positions within a binding site do not negatively influence the score:

6
Z Z aj 1, logs 0. 2L5 (32)

j=1 \Le{A,C,G,T}

Cb\r—l

where a consists of the six PWM columns of the overlap with highest information content.

The use of entropy as a criteria for measuring motif similarity was first described by Gordan
et al. (2010).

3. At high merging threshold, the binding sites of both motifs have to overlap at least 40%
with the binding sites of the other motif. When the mreging threshold is set to “medium”,
the binding sites of the motif with less sites have to overlap at least 40% with the binding
sites of the other motif. At low threshold, the fraction of overlaping sites is 20%. This
criterion assures that no motifs are merged that are only similar in a small overlapping
region but different in the surrounding.

Criteria 1 and 2 were also used in our motif sensitivity and metazoan benchmark in order to
determine successful motif discovery.
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The merged PWM is built from all binding sites of both PWMs and 10% pseudocounts (Durbin
et al., 2006). If the length of both motifs is not the same, the length of the motif with the better
E-value is chosen. Afterwards, an E-value is calculated for the merged motif. If this E-value is
better than the E-values of both unmerged motifs, only the merged motif is kept. Otherwise, only
the better of the original motifs is kept.

4.5. PWM refinement stage

The set of non-redundant motifs is now iteratively refined by selecting the most significant motif
instances and motif lengths. To decide which sites are functional, putative binding sites are
sorted by P-value. For each K, we calculate the probability for observing by chance at least K
binding sites with a P-value equal to or better than the K-th best. The K that optimizes the
P-value is used to select the sites contributing to the refined PWM (order statistics, see section
3.3). Afterwards, the PWM is updated using 10% pseudocounts (Durbin et al., 2006) and the
refinement step is repeated.

To decide whether a different motif length is more significant, all PWMs including up to two more
or fewer positions at both ends are tested. For every tested length, order statistics is used to select
the most significant motif set. However, the refined PWM with this new length might influence
the sorting of the putative binding sites and thus the P-value. Therefore, two iterations of motif
set optimization and PWM creation are performed. Afterwards, the motif length having the best
P-value is chosen for a new iteration of the refinement stage. To improve runtime, only sites of
the unoptimized PWM with a log-odds score greater zero are tested for the most significant motif
set.

The observed P-values are corrected for multiple testing, and the refinement step is repeated
as long as the E-value improves. Finally, the merging and refinement stages are iterated until
convergence.

5. Overview of the used published motif finders

In this section we give a short overview of the tools used and describe the parameters chosen
for all benchmarks. Generally, we used the default parameters of each tool and added useful
optional parameters if provided, e. g., the possibility to search on both strands or to use a multiple
occurrence per sequence model. The only exception is MEME, for which we used additional
arguments suggested within Bailey et al. (2010).

5.1. PRIORITY

PRIORITY (Narlikar et al., 2006) is a PWM-based method that refines the motif model using
Gibbs-sampling, a Markov chain Monte Carlo (MCMC) method that approximates sampling from
a joint posterior distribution by sampling iteratively from individual conditional distributions
(Gelfand and Smith, 1990). PRIORITY uses informative priors based on common structural
classes of transcription factors to improve the sampling and provides the opportunity to add more
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priors to the procedure if more information is available, e. g., a nucleosomal prior (PRIORITY-
N, Narlikar et al. (2007)), a discriminative prior (PRIORITY-D, Gordan et al. (2010)), an
alignment-free conservation prior (PRIORITY-C, Gordan et al. (2010)), or a combination of these.

PRIORITY can only be run with a zero-or-one occurrence per sequence model and cannot optimize
the motif length. As sampling is not deterministic, PRIORITY is run many times and the resulting
motif is set to the best of these trials.

We used PRIORITY version 2.1.0 for all benchmarks.

5.1.1. Parameters PRIORITY

PRIORITY was run using default parameters, consisting of the supplied third order background
model, the default motif length 8, and 50 trials. From the command line it is started using

java -jar priority.jar -nogui

5.1.2. Parameters PRIORITY-D

To start PRIORITY using the discriminative prior (Gordan et al., 2010), the corresponding prior
has to be created. This can be done using a Perl script supplied by the PRIORITY-package:
./discr_from_pos_and_neg.pl 8 input.fasta negset.fasta input.prior

Now, we added the directory containing the D-prior to the PRIORITY params file and started
the tool as before.

5.1.3. Parameters PRIORITY-DC

To start PRIORITY using the discriminative conservation prior (Gordéan et al., 2010), at first
the sequences of all homologous regions have to be provided in a separate directory (homologs/).
Afterwards, the DC-prior is created using two Perl scripts supplied by the PRIORITY-package:

./generate_fastalike_cons_simple.pl input.fasta homologs/ 8 input.info

./generate_fastalike_cons_simple.pl negset.fasta homologs/ 8 negset.info

./discr_INFO_from_pos_and_neg.pl 8 input.fasta negset.fasta input.info \
negset.info input.prior

PRIORITY is now started as before, by adding the directory containing the DC-prior to the
params file.

5.2. MEME

MEME (Multiple Em for Motif Elicitation, Bailey and Elkan (1994)) is a PWM-based motif finding
tool that iteratively refines candidate PWMs by an expectation maximization (EM) algorithm. It
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allows to find the optimal motif length and provides the possibility to add higher-order background
models and the priors used by PRIORITY to improve the motif search.

MEME was used in version 4.3.0 in our analysis.

5.2.1. Parameters MEME

As suggested by Bailey et al. (2010), depending on the complexity of the organism, two different
parameter settings were used:

./meme input.fasta -dna -revcomp -mod zoops -minsites 20 -nmotifs 4

- Yeast data sets: -minw 7 -maxw 12
- Metazoan data sets: -minw 8 -maxw 20

5.2.2. Parameters MEME- M

To test MEME with a higher order background model, we trained a fifth order background model
using the script fasta-get-markov supplied with the MEME-package:

./fasta-get-markov -m 5 > background.b
Hence, MEME was run using an additional argument:

-bfile background.b

5.2.3. Parameters MEME-D

Bailey et al. (2010) demonstrated that the performance of MEME can be further improved by using
the discriminative prior from the Hartemink lab (Gordan et al., 2010) as additional information.
Therefore, we created the prior file input.prior using a Perl script from the Hartemink lab as
shown in section 5.1.2.

Afterwards, we used the script hartemink2psp supplied with the MEME-package to translate
this prior to the psp format, which can be used as input for MEME:

cat input.prior | hartemink2psp -mod zoops -revcomp -width 8 > input.psp

Now, MEME can be run with the discriminative prior using an additional argument:
-psp input.psp
5.2.4. Parameters MEME-DC

Furthermore, MEME can be run using conservation information by incorporating the discriminative
conservation prior from the Hartemink lab (Gordan et al., 2010) as additional information. To
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create this prior again Perl scripts from the Hartemink lab have to be used as shown in section
5.1.3.

Now, as for the discriminative prior, the hartemink2psp script supplied by the MEME-package
is used to translate the prior and MEME is started with the -psp input.psp argument.

5.3. Weeder

Weeder (Pavesi and Pesole, 2006) is a pattern-based motif finding tool that exhaustively enumerates
the motif space. It tolerates mismatches within the patterns and does not need the exact pattern
length as input. Internally, the sequences are represented as a suffix tree, which also allows to
efficiently enumerate longer patterns. However, it is not possible to use conservation information.

Weeder was used in version 1.4.2 for our analysis.

5.3.1. Parameters

Weeder was started using the optional arguments S, to process both strands of DNA, and M, to
use a multiple occurrence per sequence model:

./weederlauncher.out input.fasta speciescode medium S M

where speciescode was replaced by the respective two letter code.

5.4. ERMIT

ERMIT (Georgiev et al., 2010) is a pattern-based motif finding tool that incorporates quantitative
experimental evidence to find a motif pattern that is enriched in sequences with high evidence
values. It starts with [IUPAC 5-mers and elongates them as long as their enrichment score improves.
To incorporate conservation information, binding sites are filtered to the ones that fit to the
pattern in all species.

ERMIT was used in version 1.01 for our analysis.

5.4.1. Parameters ERMIT

To run ERMIT, input files have to be parsed from FASTA format into a special format, and
a summary file has to be created (sequence_file) that contains the location of the input file.
Furthermore, an evidence file has to be created with the probabilities assigned to every sequence
identifier, and a summary file is needed (evidence_file) containing the location of this evidence
file. Now, ERMIT can be started using the command line statement:

./cERMIT evidence_file sequence_file output chip_chip

where chip_chip specifies the data type of the input sequences. As the required evidence values
per sequence were only available for the yeast ChIP-chip experiments from the Harbison data set
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(Harbison et al., 2004), this data type was always set to chip_chip.

5.4.2. Parameters cERMIT

To run ERMIT with conservation information (cERMIT), the homologous regions of an alignment
have to be parsed to the file format required by ERMIT and stored separately for each species.
Afterwards, the locations of each of these files have to be added to the summary file sequence_file.
Now, cERMIT can be started as before:

./cERMIT evidence_file sequence_file output chip_chip

5.5. AMADEUS

AMADEUS (Linhart et al., 2008) is both a pattern- and a PWM-based motif finding tool that
starts by enumerating all k-mers of a given length, which are in the following merged depending
on their similarity and refined by an EM-algorithm. However, it is neither possible to optimize
the motif length, nor to incorporate conservation information.

AMADEUS was used in version 1.0 for our analysis.

5.5.1. Parameters

To run AMADEUS from the command line, a parameter file (params.txt) has to be created.
Therefore, paths for files with all sequences, input set identifiers and negative set identifiers have
to be supplied. We used the default parameters, motif length 8, and running mode normal for
our analysis:

java -Xmx3000m -jar AmadeusPBM_v1.0.jar file params.txt
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