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1 Supplemental Methods

1.1 Biospecimen collection and ethical consent

Tumour specimens were obtained from three tumour banks (BCCA Vancouver, breast tumour tissue repos-
itory; Alberta CBCF Breast Tumour Bank Edmonton, Cambridge UK, Addenbrooke’s Hospital breast tu-
mour bank) each with local REB/IRB approval for genomic studies of nucleic acids from breast cancer
patients. This project was conducted under local BCCA REB/IRB projects H06-00289, H08-1230, H06-
3199. The source of germline DNA was from peripheral blood lymphocytes in all but 4 cases. In these
4 cases histologically normal adjacent breast tissue was used. Initial case selection was based on clinical
immunohistochemistry to define primary triple negative breast cancers obtained from surgical specimens,
prior to the initiation of any chemotherapy or radiotherapy. Tumours typed as ER-, HER2- and PR- were ini-
tially selected for further review and re-validation of the IHC. Cases found to be ERBB2 amplified on copy
number analysis, but IHC -ve for ERBB2, were rejected. The complete sequence level genome landscapes
of these tumours will be described elsewhere (Shah et al, submitted).

1.2 Histopathological review

Tissue sections were subject to expert histopathological review (GT) to assess the presence of invasive tu-
mour, pre-malignant or benign changes, lymphocytic infiltration, necrosis and tumour cellularity. Tumour
cellularity was scored visually in a semiquantitative fashion on sections taken from the cryosectioning runs
used to isolate nucleic acids from each tumour. Cellularity values were binned such that ‘low cellularity’
corresponds to samples with <40% malignant cells, ‘moderate cellularity’ corresponds to 40% - 70% ma-
lignant cells, and samples with>70% malignant cells were considered to have ‘high cellularity’. All but one
sample classified as low cellularity were excluded from further analysis. The ER-, PR- HER2- immunophe-
notype was reconfirmed on sections or TMA cores from the cases included for analysis and additionally
CK5/6 and EGFR were assessed by IHC. Subsequently SNP6.0 copy number analysis was also used to
confirm the absence of HER2 amplification in each case.

1.3 Library construction and sequence data generation

SOLiD whole genome shotgun libraries for 17 tumour/normal pairs were generated as previously described
(McKernan et al., 2009) and aligned to the human reference genome (hg18, NCBI36) using BioScope.
Illumina libraries were prepared as described in (Morin et al., 2011) and aligned using BWA (Li and Durbin,
2009). Paired end RNAseq libraries were generated as described in Wiegand et al (Wiegand et al., 2010).
Sequence reads were aligned using a modified version of BWA (base version 0.5.5 (Li and Durbin, 2009)
to a reference consisting of the human genome reference (NCBI build 36, hg18) and a database of known
exon-exon junctions obtained from different annotation databases (Ensembl (Flicek et al., 2010), RefSeq
(Pruitt et al., 2007), AceView (Thierry-Mieg and Thierry-Mieg, 2006)). Sequences representing exon-exon
junctions were designed to require at least a 4 base pair overlap for split-reads. Considering a read length
of 50 base pairs, 46 base pairs on either side of the exon-exon junction were concatenated to represent each
exon-exon junction.

1.4 APOLLOH probabilistic framework description

A full representation of the APOLLOH framework as a probabilistic graphical model is given in Figure S1

1



1.4.1 Hidden state space

The full state space consists of 18 genotype states, K. At each position t, the state space is restricted to Kct

given copy number ct (Table 1, main text). The initial state distribution, π, is conjugate Dirichlet distributed
with hyperparameter δπ (Table S1), acting as the prior on G0. π is initialized with the maximum a posterior
(MAP) using δπ only. Positions that have are homozygous deleted are assumed to have zero depth and
ignored if they managed to pass the initial depth filter. Similarly, positions with hemizygous deletion (i.e. 1
copy) status are re-labeled to copy neutral in order to guard the model against unexpected mixtures of both a
and b reads. Remaining LOH regions are categorized as deletion and copy-neutral LOH by post-processing,
referring back to original copy number status.

1.4.2 Emission model

Each read at a given position t ∈ P can be modeled as a Bernoulli trial. Given Nt independent Bernoulli
trials, the number of reads mapping to the reference base, at, is modeled using a binomial distribution. The
observed likelihood is a mixture of 18 univariate binomial distributions modeling input data reference read
counts a1:T and total depth N1:T with parameter µ̄g conditioned on genotype g ∈ K.

p(at|Gt = g) = Binomial(at|µ̄g, Nt) (1)

The parameter µ̄g is modeled using a two-component mixture,

µ̄g = sµN + (1− s)µg (2)

where µg is the unobserved reference allelic ratio for tumour cells in genotype state g ∈ K, and µN is a
fixed global allelic ratio of normal cells. µg are unobserved parameters; µN is set to 0.5 but is adjustable to
accommodate the possibility of reference skew in the data. The observed likelihood becomes

p (at|Gt = g, µN ) =

(
Nt

at

)
(µ̄g)

at (1− µ̄g)Nt−at (3)

=

(
Nt

at

)
(sµN + (1− s)µg)at (1− sµN − (1− s)µg)Nt−at

The normal proportion parameter is prior Beta distributed with hyperparameters αs and βs and the tumour
reference parameter is prior Beta distributed with hyperparameters αµg and βµg ,

p(µg|αµg , βµg) = Beta(µg|αµg , βµg) (4)

p (s|αs, βs) = Beta (s|αs, βs) (5)

The application of the priors help prevent over-fitting and avoid problems for the binomial due to fewer data
points in genotype states of higher copy number regions. s and µg are both initialized as the MAP estimate
using the pseudocounts alone.

1.4.3 Position-specific transition model

The transition component of the framework uses a position-specific transition matrix At which is an 18×18
matrix specifying probabilities for distance-dependent (Colella et al., 2007) and copy-number permitted
transitions between genotypes at each position t. We employ a unique set of transition probabilities for each
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position t to capture two key ideas which are each encoded in matrix Tt and indicator function Ct. Rows of
At are normalized such that they sum to 1.

p(Gt = j|Gt−1 = i, ct) = Tt(i, j)× Ct(j)
= At(i, j) (6)

1.4.4 Genotype transitions

The genotype state transition is specified by a position-specific stochastic transition matrix, Tt ∈ R18×18,
for each position t. There are two design goals that require modeling probabilities at each site:

1. The genomic distance between adjacent positions in P are non-uniform, thus, we employ a distance
dependent strategy used in (Colella et al., 2007) whereby the transition probabilities are generated by
an exponential function modeling a priori knowledge for transitioning between genetic events. The
distance dt between positions t and t − 1 in base-pairs, and the expected length between transitions,
L are used to define a function ρt. L was determined empirically by observing the average length of
segments in 104 breast tumours (Shah et al. submitted), which was 2 Megabases (Mb) rounded to the
nearest Mb.

ρt = 1− 1

2

[
1− e(

−dt
2L

)
]

(7)

2. The genotype transition matrix applies strong probabilities (ρt) for self-transitions and transitions
between genotypes of same zygosity status. For example, genotype states AA, BBB, and AAAAA
have LOH zygosity status, and therefore should have similar transition probabilities. More formally, a
transition from genotype Gt−1 = i to a genotype Gt = j such that i and j have same zygosity status,
should have probability ρt.

Tt(i, j) =

{
ρt i = j or sameZS(i, j)

1−ρt
|Kct |−1 otherwise

(8)

where sameZS(i, j) is a function that returns true if genotype states i and j have same zygosity
status.

1.4.5 Copy number transitions

In order to capture the transitions between genotypes of different copy number, we use a position-specific
indicator function, Ct, which defines allowable genotype transitions from Gt−1 = i into Gt = j such that j
can only be one of Kct for the given ct at position t.

Ct(j) =

{
1 j ∈ Kct

0 otherwise
(9)

If uncertainty in copy number is provided in the form of a vector of probabilities at each position, then
the copy number transition matrix can be remodeled to incorporate this information. Effectively, rather than
using binary values, Ct becomes a soft weighting matrix that introduces probability mass into all genotypes
in K,

Ct(j) = p(ct), j ∈ Kct , ∀ct (10)
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1.4.6 Learning and inference

We employ the expectation maximization (EM) approach for estimating model parameters, θ = {s, µ1:18, π1:18}.
In the expectation step, we compute the expectation of the complete-data likelihood resulting in the posterior
marginal probabilities γt(n),

p(Gt|a,N, θ(n−1)) =
p(a,N|Gt, θ

(n−1))p(Gt|θ(n−1))

p(a,N|θ(n−1))
(11)

∀t ∈ P using the current settings of parameters, θ(n−1). This calculation is done efficiently using the scaled
version of the forwards-backwards algorithm (Bishop, 2007),

γt(g) =
ft(g)bt(g)
∑T

t=1 logwt
(12)

where ft and bt are the forward and backward probabilities, respectively, at position t and genotype state
g ∈ K. Using scaled forward/backward probabilities at each position t such that they are normalized avoids
probabilities that quickly decrease to zero. Keeping track of the normalizing constant, wt, at each position
of the forward propagation conveniently gives us the log-likelihood, p(a,N|θ(n−1)) =

∑T
t=1 logwt.

The sum of the expected complete log-likelihood and the log priors gives the objective function for
iteration n of the M-step where the expectation is taken with respect to G|a,N,

Q(n) =

K∑

k=1

p
(
G0 = k|a,N, θ(n−1)

)
logMultinomial

(
G0|π(n−1)

)
(13)

+

T∑

t=1

K∑

i=1

K∑

j=1

p(Gt = i, Gt−1 = j|a,N, θ(n−1)) log At(i, j)

+
T∑

t=1

K∑

k=1

p
(
Gt = k|a,N, θ(n−1)

)
logBinomial

(
at|µ(n−1)

k , Nt

)

+ logBeta
(
s(n−1)|αs, βs

)

+
K∑

k=1

logBeta
(
µ

(n−1)
k |αµk , βµk

)

+ logDirichlet
(
π(n−1)|δπ

)

In the maximization step, we use the maximum a posteriori (MAP) estimate to update the parameters,
θ(n) = arg maxθ

{
p(θ(n−1)|a,N)

}
=
{
s(n), µ

(n)
1:18, π

(n)
1:18

}
. At is fixed and not re-estimated. The update

equation for the initial state distribution π is

π
(n)
k =

γ(n) (G0 = k) + δπ (k)− 1
∑K

k′=1

(
γ(n) (G0 = k′) + δπ (k′)− 1

) (14)

The normal proportion and tumour allelic ratio parameters of the binomial observation model are derived
by maximizing Qn and taking partial derivatives w.r.t s and µk for a given genotype state k ∈ K , equating
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to zero, and solving for the parameters.

∂Q(n)

∂µk
= (1− s)

(
āk

sµN + (1− s)µk
− b̄k

1− sµN − (1− s)µk

)
+

(
αµk − 1

µk
− βµk − 1

1− µk

)
(15)

∂Q(n)

∂s
=

K∑

k=1

(
(µN − µk)

(
āk

sµN + (1− s)µk
− b̄k

1− sµN − (1− s)µk

))
+

(
αs − 1

s
− βs − 1

1− s

)

(16)
where āk =

∑T
t=1 γ

(n) (Gt = k) at and b̄k =
∑T

t=1 γ
(n) (Gt = k) (Nt − at). The EM convergence criteria

is met when F (n) − F (n−1) < threshold, where F is sum of the log-likelihood and the log priors,

Fn = log
(
p(a,N|θ(n))

)
(17)

+ logBeta
(
s(n−1)|αs, βs

)

+

K∑

k=1

logBeta
(
µ

(n−1)
k |αµk , βµk

)

+ logDirichlet
(
π(n−1)|δπ

)

The converged parameters θ̂ are used to infer the optimal hidden state path of genotypes using the Viterbi
algorithm,

G1:T = arg max
G

{
p
(
G|a,N, θ̂

)}
(18)

Finally, the zygosity state can be decoded, resulting in the final sequence of zygosity status, ZS1:T .

1.4.7 Implementation

APOLLOH is implemented in Matlab; the forward-backward and Viterbi algorithms are implemented in C.
The run-time (O

(
K2T

)
) and memory (O (KT )) usage of the algorithm for about 1.5 million positions on

a single-core is about 20 minutes and 3GB based on an average of 41 iterations.
The source code and compiled executable (usable on Linux x64 architecture) can be downloaded at

http://compbio.bccrc.ca/software/apolloh/

1.5 Copy number analysis of WGSS data

The WGSS-derived copy number results used as input in APOLLOH were generated using a modified
version of a paired tumour-normal strategy described previously (Chiang et al., 2009; Shah et al., 2009).
This algorithm, called HMMcopy, was developed in-house and can be downloaded at http://compbio.
bccrc.ca/software/hmmcopy/. The genome was divided into fixed windows of 1kb, and read depth
is extract for each window in the tumour and normal. In this study, we applied two additional preprocessing
steps prior to segmentation in order to achieve more accurate copy number estimates. First, we applied a
filter to remove repetitive regions that are highly mappable. Second, we corrected GC content bias to remove
wave-like patterns in the tumour and normal, separately, using a loess curve fit between GC content and read
depth. A log ratio is computed for each window by computing proportion between the GC corrected tumour
value and GC corrected normal value.
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Divide the genome into fixed genomic windows

First, the genome was divided into fixed genomic windows of 1kb, reducing the analysis to a set of approx-
imately 2.5 to 3 million loci, R.

Extract read depth for normal and tumour

Next, separately for the normal and tumour genomes of each patient, we extracted the total read depth for
each window in R using BAMtools (Barnett et al., 2011), resulting in a vector of read count data from the
normal, NR =

(
n1, . . . , n|R|

)
and tumour, TR =

(
t1, . . . , t|R|

)
, respectively.

Removing windows that are highly mappable

Using ”ENCODE Duke Uniqueness of 35bp sequences” track from UCSC (http://genome.ucsc.
edu/cgi-bin/hgTrackUi?db=hg18&g=wgEncodeMapability), we filtered windows that were
within repetitive regions, resulting in being highly mappable by aligners. Windows that had mappability
score of ≥ 0.9 were excluded. This removed extreme amplified positions which would have otherwise
posed as confounding outliers in downstream segmentation analysis.

GC content correction of normal and tumour read counts

We performed GC content bias correction to the tumour and normal of each patient separately. We applied
a global loess fit between GC content and read depth for windows in R. Due to computational restrictions
of fitting 3 million data points, we further excluded outlier windows based on read depths being in the upper
and lower 1% quantile, and randomly sampled 20,000 of the remaining windows for generating the loess
curve. Finally, the read depth of all windows, NR and TR, are corrected by scaling the observed value by
the loess fitted value (Equation 19).

corrected read depth =
observed read depth

loess fitted value
(19)

Normalizing copy number in tumours

The GC corrected normal NR and tumour TR counts are normalized independently to generate N̄R =(
n̄1, . . . , n̄|R|

)
and T̄R =

(
t̄1, . . . , t̄|R|

)
, respectively, where n̄i = ni∑

j nj
and t̄i = ti∑

j tj
, i ∈ {1, . . . , |R|}.

To obtain the final tumour copy number observed at each loci r ∈ R, we applied another normalization step
by taking the log2 ratio between tumour and normal copy number, TN(i) =log2

(
t̄i
n̄i

)
, i ∈ {1, . . . , |R|}.

Segmentation and copy number prediction via HMM

A 6-state version of a hidden Markov model (HMM) approach (Shah et al., 2006) was used to segment the
input data TN. Initialization and hyperparameters for the prior means of the Student’s-t distribution used
for this analysis were log2(([1, 1.4, 2, 2.7, 3, 4.5])/2).
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1.6 Application of APOLLOH to 23 triple negative breast cancers.

The analysis workflow is described in Methods and Figure S2. For extracting heterozygous positions from
the normal genomes, default settings were used for GATK’s UnifiedGenotyper (McKenna et al., 2010).
Heterozygous genotypes were accepted based on ”PASS” or ”.” in the reported UnifiedGenotyper ’Quality’
field. In the tumours, pileups were generated using SAMtools (Li et al., 2009) and reads in the corresponding
normal heterozygous positions were filtered by base quality of 10 and mapping quality of 20. Low depth
(>10 reads) and read-sink (<200 reads) positions were excluded.

APOLLOH parameters (described in Table S1) used in this analysis are given in a configuration file
packaged with the software (http://compbio.bccrc.ca/software/apolloh/).

1.7 OncoSNP analysis of Affymetrix SNP6.0 analysis

Affymetrix SNP6.0 genotyping arrays were analyzed for the 23 breast cancers. We determined regions
of loss of heterozygosity (LOH) using the OncoSNP software v1.0 Beta (Internal Release v2.19) (Yau
et al., 2010). Due to the absence of a complete set of matched normals, the unpaired tumour analysis
was used. OncoSNP was adapted for the Affymetrix SNP6 platform by using initial parameters settings
obtained by training 45 COSMIC (Bignell et al., 2010) breast cancer samples hybridized to SNP6 arrays.
Log ratios and B-allele frequencies were obtained from PennCNV-Affy (Wang et al., 2007) normalization
results. OncoSNP hyperparameters used in the analysis was provided as a standard configuration file with
the downloaded software. Other OncoSNP settings included using 15 iterations of expectation maximiza-
tion, 30 sub-sampling, and stromal setting activated. Two to eight copy ’Somatic’ LOH predictions made
by OncoSNP were consolidated as simply LOH while ’Mono-allelic amplification’ states were relabelled as
’Allele-specific copy number amplifications’ (ASCNA).

1.8 Analyses for comparing APOLLOH results and Affymetrix SNP6 data

1.8.1 WGSS and SNP6 platform comparison

For each predicted APOLLOH segment x with boundaries xstart and xend and segment median allelic ratio
ax, we computed the SNP6 median BAF yx for probes that overlapped x as,

yx = median(BAF (p)), {p : pstart ≥ xstart, pend ≤ xend} (20)

Spearman’s rank correlation is computed on y1:X and a1:X where X is the total number APOLLOH pre-
dicted segments.

To measure association with the dynamic range of clusters as shown in Figure ?? and Figure S3, we
computed Euclidean distance of the class centroids between LOH and HET and calculated the Spearman
rank correlation statistic with APOLLOH estimates of normal proportion s (Figure S4).

1.8.2 Model evaluation using SNP6 predictions

SNP6 LOH results, predicted using the OncoSNP (Yau et al., 2010) software, were used as truth for evalu-
ating APOLLOH model variants and SNVMix. OncoSNP was run using parameters and settings designed
for the Affymetrix SNP6.0 platform. Predicted states were redefined into comparable classes: deletion,
neutral and amplified LOH; allele-specific copy number amplification; and heterozygous. Positions that
intersected between the loci used in APOLLOH for each sample and the probes of the SNP6 array were
used for evaluation. Homozygous positions predicted by OncoSNP or HMMcopy (Supplemental Methods)
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were excluded from the evaluation. True positives (TP) are defined as positions that were predicted as LOH
by both APOLLOH and OncoSNP; false positives (FP) are positions where APOLLOH predicted LOH but
were predicted as HET or ASCNA by OncoSNP; false negatives (TN) make up positions that APOLLOH
called HET/ASCNA but OncoSNP predicted as LOH. Precision (TP/(TP+FP)), recall (TP/(TP+FN)), and
F-measure (Equation 21) were calculated for each sample and APOLLOH model variant. For ASCNA
performance, positives were ASCNA for APOLLOH (full model) and HET for APOLLOH-noCN.

F measure =
2× precision× recall
precision× recall (21)

Evaluation using exome data was computed the same as above. LOH predictions for the exome data were
generated using the full APOLLOH model.

1.9 Comparison of transcriptome allelic ratios (TAR)

RNAseq pileups for each sample were generated using SAMtools (Li et al., 2009), and positions that inter-
sected the loci used in the APOLLOH analysis (i.e. heterozygous positions in the normal genome) of each
WGSS sample were extracted. Transcriptome allelic ratios were first converted to symmetric counts,

ARi =
max(ai, bi)

ai + bi
(22)

where a is the reference count and b is the non-reference count for each position i. Each position of the
RNAseq is then classified with the corresponding zygosity based on the APOLLOH call of the same loci in
the genome.
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p(G0|π) = Multinomial(G0|π)
P (π|δπ) = Dirichlet(π|δπ)

p(at|Gt = g, ct) = Binomial(at|µ̄g, Nt)

p(µg|αµg , βµg) = Beta(µg|αµg , βµg)

p (s|αs, βs) = Beta (s|αs, βs)

µ̄g = s · µN + (1− s) · µg

p(Gt = j|Gt−1 = i) = At(i, j) = Tt(i, j)× Ct(i, j)

Ct(i, j) =

{
1 i ∈ Kl, j ∈ Kk

0 otherwise

Tt(i, j) =

{
ρ i = j or sameZS(i, j)
1−ρ
|Kct |

otherwise

1

Figure 1: Probabilistic graphical model of APOLLOH. Shaded nodes are known or observed quantities;
open nodes are random variables of unknown quantities. Arrows represent conditional dependence between
random variables. The latent variables Gt ∈ K represent the genotype state at position t. π is the initial
state distribution on G0 and is Dirichlet distributed with hyperparameter δπ. APOLLOH is an HMM that
employs a position-specific transition model At that is fixed with transition probabilities in Tt that are
restricted based on copy number from Ct. The emission component models the number of symmetric
reference counts at and depth Nt, using a mixture of binomial distributions conditional on Gt = g. µg
and s are Beta (prior) distributed with hyperparameters αg and βg. Parameters µ, s and π are estimated
using expectation maximization, and the genotype sequence G1:T is inferred using Viterbi algorithm. See
Table S1 for variable definitions.
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Figure 2: Workflow of the analysis for APOLLOH. Three inputs are required: 1) Heterozygous positions
found in the normal DNA predicted by genotyping tools such as SNVMix(Goya et al., 2010); these genomic
positions are the sites of interest in the analysis; 2) Reference counts at these positions in the tumour DNA
sequencing data are obtained by extracting alignment read counts using SAMtools (Li et al., 2009); 3) Copy
number status for the tumour are predicted by HMM-Dosage. APOLLOH uses the inputs to infer the geno-
type and subsequently zygosity status is determined for each position of interest. Transcriptome RNAseq
data was analyzed for expressed allelic imbalance, and mono-allelic expression (MAE) was determined as
homozygous genotypes using SNVMix (Goya et al., 2010).
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Figure 3: Benchmarking of WGSS allelic ratios against SNP6 genotyping array B-allele frequencies (BAF)
for 23 breast cancer samples. Each datapoint represents an APOLLOH segment whose median allelic ra-
tio is plotted against median BAF across probes that overlap the segment (Methods). WGSS allelic ra-
tios (max(refCount, nonRefCount)/depth) and BAF (max(A− intensity, B− intensity)/Total−
intensity) were computed as symmetric values. LOH allelic ratios and B-allele frequencies are distributed
within a range, which is likely due to differing normal cell contamination proportions. The Spearman rank
correlation coefficient was 0.72 (p < 0.001).
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Figure 4: Correlation of estimated normal proportion with cluster distances (A) and correlation (B) from
APOLLOH WGSS allelic ratios and SNP6 B-allele frequency (BAF). (A) For each of the 23 breast cancer
samples, Euclidean distance was computed between cluster centroids (2-dimensional median) of APOLLOH
predicted LOH and HET classes. Example clusters are shown in Figure 3A. Spearman rank correlation (rho
=−0.8063, p < 0.001) was computed between euclidean distances and estimated normal proportion param-
eter s across the 23 samples. (B) The correlation between APOLLOH segment allelic ratio and SNP6 BAF
are plotted against normal proportion for the 23 samples. Examples of correlations for 3 samples are shown
in Figure 3A. The association between APOLLOH-SNP6 correlation and estimated normal contamination
is significantly, negatively correlated (rho = -0.7055, p < 0.001).
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Methods).
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Figure 6: Distribution of the proportion of (A) genome altered (Table S6B) and (B) number of genes (Ta-
ble S6C) by APOLLOH predicted LOH (green) and ASCNA regions (red). The proportion of the genome
altered by LOH ranges from 13-67%, with a median of 49%. The number of genes altered by LOH ranges
from 1694 to 10,446, with a median of 6941.
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Figure 7: Genome-wide gene frequency landscape of APOLLOH loss of heterozygosity (LOH) predictions
for 23 TNBC samples. Events are categorized into homozygous deletion (HOMD), deletion LOH (DLOH),
copy neutral LOH (NLOH), amplification LOH (ALOH), overall LOH (Total LOH), balanced copy number
amplification (BCNA), allele-specific copy number amplification (ASCNA), and heterozygous or retention
(HET).

16



NEUT
AMP

HEMD
HOMD

HET

ASCNA
LOH
NLOH

HET

ASCNA
LOH

HOMD

NLOH

OncoSNP
SNP6 data

APOLLOH
Full model

HMMcopy
WGSS copy 

number segments

B 
Al

le
le

 F
re

qu
en

cy
Al

le
lic

 R
at

io
Lo

g 
R

at
io

SA030
Chromosome 17

SA224
Chromosome 17
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Figure 10: The number of genes with germline stop codon and synonymous variants that were affected by
LOH is shown for each of the 23 tumour samples. Normal heterozygous positions in determined by GATK
(and used in the APOLLOH analysis were annotated with codon effects using snpEff (Cingolani, 2012). For
all variant loci that was annotated with having a stop codon and overlapped LOH regions, the remaining
allele corresponding to the amino acid or the stop codon were labeled as ”A” and ”S”, respectively. For
loci annotated as synonymous, the remaining allele corresponding to the reference and non-reference were
labeled as ”R” and ”N”, respectively.
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Figure 11: Correlation of OncoSNP predicted normal contamination and RNAseq allelic ratio. The median
symmetric (max(refCount, nonRefCount)/depth) allelic ratio of RNAseq data within predicted LOH
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Figure 12: Number of WGSS and SNP6 probe positions with RNAseq coverage. The number of normal
heterozygous positions predicted by GATK (McKenna et al., 2010) from the WGSS data (red) with coverage
in the RNAseq data is consistently higher across the cohort when compared to the number of SNP probes
on the Affymetrix SNP6 platform.
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Figure 13: Number of monoallelic expression (MAE) of genes associated with estimated normal (stromal)
contamination. The left plot represents MAE genes induced by genomic LOH. The right plot represents
MAE genes that have balanced copy number amplification (BCNA), allele-specific copy number amplifica-
tion (ASCNA), or heterozygous or retention (HET) genomic allelic imbalance states. The line of best fit is
shown for each plot. The strong correlation for HET/BCNA/ASCNA MAE genes indicates that MAE may
be due to germline epigenetic events that become easier to detect as normal cell content increases in the
samples.
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Figure 14: Genome-wide gene frequency landscape of monoallelic expression (MAE) as a consequence
of loss of heterozygosity (LOH). MAE landscapes are categorized into the corresponding genomic events
of deletion LOH (DLOH), copy neutral LOH (NLOH), amplification LOH (ALOH), overall LOH (Total
LOH), balanced copy number amplification (BCNA), allele-specific copy number amplification (ASCNA),
and heterozygous or retention (HET).
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Figure 15: Transcriptome allelic ratio distribution and SNVMix parameters used for deter-
mining MAE. The distribution is for symmetric RNAseq allelic ratio, which is defined as
max(refCount, nonRefCount)/depth. Binomial parameters are fixed using APOLLOH-inferred nor-
mal proportion parameters s such that µaa = s ∗ 0.5 + (1 − s) ∗ 1.0, µbb = 1 − µaa, and µab =
s ∗ 0.5 + (1− s) ∗ 0.5. The dotted lines AA/AB and AB represent µaa/µbb and µab for each case given s.
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3 Supplemental Tables
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Variable Description Source
π Initial state distribution Estimated by EM in M-step
δπ Prior counts; parameter of Dirichlet for π User-defined
Gt Latent variable for genotype at position t Estimated by EM in E-step
at Symmetric reference count at position t Observed
Nt Total read depth at position t Observed
ct Copy number status at position t Observed
µN Normal reference allelic ratio genotype g User-defined
µg Tumour reference allelic ratio genotype g Estimated by EM in M-step
αµg Hyperparameter of Beta prior on µg User-defined
βµg Hyperparameter of Beta prior on µg User-defined
s Global stromal contamination proprotion parameter Estimated by EM in M-step
αs Hyperparameter of Beta prior on s User-defined
βs Hyperparameter of Beta prior on s User-defined
Ct 18×18 copy number transition matrix at t; determines

allowable transition based on ct
Fixed

Tt 18 × 18 genotype transition matrix at position t; ge-
nomic distance-dependant probabilities

Fixed

At 18 × 18 combined, copy-number restricted transition
matrix, Ct ×Tt at position t

Fixed

L Expected length of chromosomal regions altered in
breast tumours

User-defined

Table 1: Description of random variables and fixed quantities in the APOLLOH framework depicted in
Figure 1). a1:T , N1:T and c1:T are observed input quantities. All hyperparameters are user-defined and used
to help initialize model parameters. The position-specific HMM transition probabilities are fixed quantities.
π1:18 and µ1:18 are unknown variables estimated by expectation maximization (EM).

Table 2: Coverage statistics for 6 Illumina HiSeq and 17 Life/ABI SOLiD tumour-normal paired genomes.

Table 3: Normal contamination estimates predicted by APOLLOH and OncoSNP and transcriptome allelic
ratios for LOH predicted regions in 23 breast cancer samples. Quality measures of tumour cellularity or
content is given as moderate or high (see Methods for histopathological review). Median transcriptome
allelic ratios of positions overlapping all LOH regions, predicted by APOLLOH and OncoSNP, for 22 breast
samples with corresponding RNAseq data is shown. Wilcoxon one-tailed significance tests were performed
between APOLLOH and OncoSNP RNAseq distributions.
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Table 4: Performance evaluations for APOLLOH and model variants, using SNP6 data as ground truth. A)
Precision, recall and F-measure performance metrics for loss of heterozygosity (LOH) predictions made
by the APOLLOH model variants and the naive model (SNVMix) for each of the 23 breast cancer sam-
ples. OncoSNP (Yau et al., 2010) predictions made on Affymetrix SNP6 data was used as the benchmark
in the evaluation. B) Comparison of performance between APOLLOH model variants and the naive model
(SNVMix). Results are presented for all 23 triple negative breast cancer samples. Wilcoxon one-tailed sig-
nificance p-values and performance distributions for pairwise comparisons between the models are shown.
C) Precision, recall and F-measure performance metrics allele-specific copy number amplification (ASCNA)
predictions made by the APOLLOH model variants and the naive model (SNVMix) for each of the 23 breast
cancer samples. D) Performance for 5 cases was computed using Exon Capture (EXCAP) sequencing data,
published in (Shah et al., 2012), as ground truth data. Calculations were performed as described in Methods,
similar to evaluation using SNP6 data as truth.

Table 5: Inferred normal proportion and F-Measure performance for the 30× and 60× tumour-normal
mixture experiment. Mixture proportions are based on the sampling proportions extracted from the tu-
mour and normal BAM files. The adjusted theoretical proportions, which factors 15% normal cell con-
tent (85% cellularity), is the best approximation to the true tumour-normal mixture. This is computed as
adjusted Normal Proportion = 1− (tumour mixture∗0.85). A comparison of the F-measure between
the APOLLOH-noS model (not accounting for normal contamination) and the full APOLLOH model is
provided.

Table 6: Summary statistics for each of 23 breast cancer samples analyzed with APOLLOH. A) Number
APOLLOH segments categorized by zygosity and copy number informed status. B) Proportion of genome
altered by segments classified under each APOLLOH state. C) Number of LOH genes predicted per case. D)
Proportion of amplified LOH (ALOH), balanced copy number amplification (BCNA), and ASCNA within
amplified regions. E) Number and proportion of genes exhibiting monoallelic expression within LOH,
ASCNA and HET predicted genomic regions.

Table 7: Full list of APOLLOH predicted segments and overlapping genes (in non-heterozygous segments)
across the 23 breast cancer samples. ’Symmetric allelic ratio’ column was computed as the median symmet-
ric allelic ratio [max(refCount, nonRefCount)/depth] across the positions in the segment. APOLLOH
calls are defined as deletion LOH (DLOH), copy neutral LOH (NLOH), amplified LOH (ALOH), heterozy-
gous or retention (HET), balanced amplification (BCNA), allele-specific amplification (ASCNA).

Table 8: Full list of Ensembl 54 genes with LOH and monoallelic expression (MAE) gene frequencies
across the 23 breast cancer samples analyzed using APOLLOH. MAE events are categorized by APOLLOH
predictions on the 22 genomes (with available RNAseq data): deletion LOH (DLOH), copy neutral LOH
(NLOH), amplified LOH (ALOH), allele-specific copy number amplification (ASCNA), and heterozygous
or retention (HET).
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Table 9: (A) Germline truncating (stop codon) variant analysis summary. Analysis of codon effect annota-
tions were performed using snpEff (Cingolani, 2012). Column definitions: “Stop HET”, number of codons
for which both alleles coding for stop codon and amino acid were observed in the tumour; “Stop-LOH-WT”,
number of variants homozygous for the stop codon, coded on the reference allele, after LOH; “Stop-LOH-
MUT”, number of variants homozygous for the stop codon, coded on the non-reference allele, after LOH;
“AA-LOH-MUT”, number of variants homozygous for an amino acid, coded on the reference allele, af-
ter LOH; “AA-LOH-WT”, number of variants homozygous for an amino acid, coded on the non-reference
allele, after LOH; “Synon HET”, number of synonymous variants for which both alleles are present in tu-
mour; “Synon LOH-WT”, number of synonymous variants that was homozygous for the reference allele af-
ter LOH; “Synon LOH-MUT”, number of synonymous variant that was homozygous for the non-reference
allele after LOH. χ2 tests were performed for codon counts from “Stop LOH-WT + Stop LOH-MUT”,
“AA LOH-WT + AA LOH-MUT”, “Synon LOH-WT”, “Synon LOH-MUT”. Multiple test correction was
applied using Benjamini and Hochberg.
(B) List of truncated genes as a result of somatic mutation. Read counts for reference and variant allele
were obtained from WGSS or ultra-deep amplicon sequencing data (Shah et al., 2012). Genes that have
APOLLOH call ∈ {DLOH,NLOH,ALOH} are candidates for complete inactivation. snpEff (Cin-
golani, 2012) was used to annotate codon effects in the “Effect” column. “Remaining allele” contains one
of {Mutation, Stop Codon, Complex}. “Mutation” denotes that the position is homozygous for the
missense mutation found on the non-reference (variant) allele. “Stop Codon” denotes that the position is
homozygous for the stop codon mutation found on the non-reference allele. “Complex” denotes that the
allelic ratio is skewed towards the reference; this observation may be due to more intricate events such as
sub-clonality and/or more complex ordering of mutation and LOH events.
(C) Somatic truncating mutations summary. Column definitions are the same as in (A).

Table 10: Number of germline heterozygous positions predicted in the normal genome using GATK Uni-
fiedGenotyper (McKenna et al., 2010). Positions used for analysis in APOLLOH were pre-processed to
exclude loci with depth < 10 and > 200 reads. The number of heterozygous positions and SNP6 probes
with RNAseq coverage is presented (also see Figure S12).

Table 11: Number of focal segments across 23 breast cancers. “overallStats” represents statistics for all
APOLLOH-predicted LOH segments (with length ¿ 1bp). “exclusiveStats” represents statistics for all
APOLLOH-predicted LOH segments that did not overlap any OncoSNP-predicted LOH segments. “bet-
ProbeStats” represents statistics for all APOLLOH-predicted segments that were found between or outside
of Affymetrix SNP6 probe scaffold. “exclusiveBetProbeStats” represents statistics for APOLLOH-predicted
segments that did not overlap OncoSNP-predicted LOH segments and were found between/outside of SNP6
probes.

Table 12: Full gene by patient matrix for monoallelic expression (MAE) within LOH, ASCNA, BCNA, and
HET regions. Genes that have all overlapping positions predicted as MAE in RNAseq and APOLLOH calls
of DLOH, NLOH, ALOH, HET, BCNA or ASCNA are represented by 1, 2, 3, 4, 5 and 6, respectively. A
zero represents a gene that contains at least 1 position that is HET or balanced allelic expression (BAE). NA
is given to a gene that has no overlapping positions in RNAseq data or the APOLLOH analysis.
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Table 13: Enriched pathways within modules determined using Reactome Functional Interaction software
(Wu et al., 2010). This table was exported directly from the Reactome plugin in Cytoscape (Smoot et al.,
2011). Six modules contain enriched pathways at false discovery rate (FDR) of 0.05. The ‘GeneSet’ column
lists the pathways; ‘Nodes’ in this analysis are the genes that belong to a specific module and found within
the pathways.
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