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SUPPLEMENTARY MATERIAL 

Please note that notation is carried over and equation numbering is referenced from the main text. 

 

Section 1. Statistical Test for Interaction 

Under the null assumption that distal SNPs segregate independently in the population (and are 

therefore in linkage equilibrium), the expected  ⃗ -frequency for a pair of distal variables in cases can be 

estimated by  [  ⃗   ⃗  ]       : where    and     are the empirical 1-frequencies of   and    

respectively. Positive LD in cases results in an increase in the frequency of  ⃗ -carriers    ⃗   , where LD is 

measured as a difference between the observed and expected frequency    ⃗ 
       ⃗         . If we 

denote    ⃗ 
        ⃗ 

     as the number of excess  ⃗ -carriers in cases, then we derive the statistic 
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eq. S1.1 

A similar analysis for controls gives us 
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eq. S1.2 

Consequently, the LD in cases and controls can be contrasted to derive an LD-contrast statistic 
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eq. S1.3 
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Under our null-hypothesis, we would expect to see no difference in LD between cases and controls, 

       ⃗ 
    

   

 

Significant variable-pairs    are those for which    ⃗ 
    

   , where the             represents 

the number of standard deviations of the standard normal distribution        required to achieve a 

significance level of  . In the interest of clarity, we use the Bonferroni significance level without loss of 

generality (any other multiple test correction approach can be plugged in as easily). For example, in a 

dataset of           SNPs, if we perform ((       
 

)   ) pairwise tests (4  models tested per SNP-

pair as per our binary encoding) genome-wide, giving us a significance threshold of            . 

The LD-contrast cutoff required to achieve this significance level is     . 
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Section 2. Stage-1 filtering step 

Consider a common disease with prevalence   in the population. The LD between any two variables 

          in the entire population can be considered a mixture of two distributions  

  ⃗ 
   

        ⃗ 
                 ⃗ 

        

eq. S2.1 

Assuming that physically unlinked alleles are in population-wide linkage equilibrium – i.e.   ⃗ 
   

   - we 

estimate that  [   ⃗ 
          ⃗ 

   
   ]  

  

     
 [   ⃗ 

       ⃗ 
   

   ]. If variable-pairs exceed a 

disequilibrium cutoff    ⃗ 
       

  in cases (i.e. if   ⃗ 
       

   ⃗ 
    ), then for the variables to remain in 

population-wide equilibrium, the expected reverse disequilibrium in control required to counter the 

imbalance created by these cases is   [   ⃗ 
            ⃗ 

   
      ⃗ 

       
   ⃗ 

    ]  
  

     
  

   ⃗ 
     . 

Substituting in eq.1 (main text), we get  
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eq.S2.2 

For significant pairs (   ⃗ 
    

   ), by assuming the marginal frequencies of both variables are 

approximately equal in cases and controls                        , we get  

  
          √

   

 
    

eq.S2.3 

This result expresses the disequilibrium cutoff   
  in cases as a function of the disequilibrium-contrast 

cutoff    in cases versus controls. To extend the example in Supplementary Section 1, if      is the 

LD-contrast Bonferroni cutoff for a common disease with population prevalence    in a dataset with an 

equal number of cases and controls, from eq.S2.3 we can estimate that in cases   
         .  
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We say a stage 1 case-only analysis is approximately complete under this prescription, because while we 

have determined the expected value of the statistic for significant pairs, we have not characterized the 

full distribution.  

This approximation depends on standard assumptions, particularly that most alleles have similar 

frequencies in cases and controls. For interactions between variables with large causal or protective 

marginal signals, we make the following observations: (i) For variables whose minor allele is enriched in 

cases (i.e. causal association) the approximation is actually violated in our favor:  it underestimates our 

power to find interactions. (ii) For the converse case, where the minor allele is depleted in cases (i.e. 

protective association), the approximation does indeed falter. However, using an ultra-conservative 

approach in which we lower the stage 1 cutoff for candidates to be the same as the stage 2 cutoff (i.e. 

  
    ), is observed to be sufficient to accommodate such violations in practice. In other words, we 

can largely capture interactions between SNPs whose frequency is greater in cases as well as greater in 

controls (SNPs with main effects). Lastly and importantly, these loci have typically already been 

identified by single-locus association and are therefore accessible to a candidate gene based analysis.  
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Section 3. The approximate nature of a stage-1 case-only analysis 

The area enclosed within the orange lines represents the region occupied by significant variable-pairs in 

linkage disequilibrium space (LD in cases on the X-axis, controls LD on the Y-axis). The three sides of the 

triangle are the maximum (i.e. positive) LD in cases, the minimum (i.e. negative) LD in controls and the 

LD-contrast threshold used to demarcate significant pairs. The dotted vertical line represents the stage 1 

cutoff used for shortlisting tuples through a case only analysis. The number of significant pairs in the 

area labeled “Missed” and “Captured” depends upon the density distribution of pairs in this space. We 

show that for common diseases almost all statistically significant pairs lie in the captured region (see 

section on Approximately Complete Search). 
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Section 4. Applying group sampling to a genome-wide scan. 

In the toy example described in the main text, we restricted our discussion to finding pairs of variables 

that occupy a narrow frequency window  . To generalize the approach to a genome-wide search for 

significant LD-contrasts, we first partition the entire spectrum of frequencies       into   windows    

            of ranges                respectively, where each                        

                . We then allocate each of the    variables genome-wide to their appropriate 

frequency windows (Supplementary Section 8). As before, the number of variables in a window    is 

denoted      , and every variable is assigned to exactly one window: ∑            . In practice, we 

find that using around 50 windows is adequate to cover the frequency spectrum even in large datasets 

of         SNPs. 

 

Consider any pair of windows        . There are ( 
 
)    such window pairs (including the possibility 

that A=B). For all            comprising of one variable          and the other          , the 

minimum and maximum expected  ⃗ -frequencies can be derived as per eq.5 (main text). If    
  holds for 

  , then    ⃗  
             

  . If    
 is rejected by    then    ⃗  

                , where      is 

derived as  

     √
                

 
    

eq.S4.1 

We are required to find the group-sampling parameter values             for this window pair, at 

which we can guarantee that all significant-pairs which reject    
 are observed in at least one group with 

probability greater than the user-specified threshold      . Furthermore, our solution             

has to be “optimal” in two ways : (i) the false positive rate should be low (which requires number of 

individuals per draw -      - to be large) because these candidates will have to be kept in memory, only 

to be screened out later by stage 2, and (ii) the solution should not consume too many compute cycles 

(large       requires a large number of random draws      to achieve the desired power, which in turn 

drives up the number of compute cycles). Details of the optimization procedure we employed to find the 

best      and      are provided below.  

To summarize, group-sampling lets us restrict our test to an exponentially (in     ) small fraction 

                    
      of the pairs of variables in             at minimum computational 
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"cost" (as discussed in the optimization section below), and simultaneously guarantees that all 

significant variable pairs will be captured in this fraction of the universe with power       . This 

makes stage 1 of our search experiment extremely rapid.  

Although the sheer size of the universe of combinations                 | can suggest a large 

number of false-positives      in stage 1 overall. We make three observations to alleviate this concern: 

(i) This constitutes an upper bound which (by definition) is rarely encountered in empirical data, (ii) 

Most false-positive pairs are observed in more than one sampled group. However, these are stored in 

memory using a hash-table the very first time they are encountered, and have to be tested only once by 

the stage 2 analysis. The upper bound appears large because it does not account for such “over 

counting”, and finally (iii) A poor stage 1 false-positive rate comes at a computational cost, but does not 

affect the accuracy of the algorithm. False-positive candidates like these are screened out in stage 2. 

 

 

Details of the optimization procedure: 

Translating eq.5 (main text) to our current setting, and expressing   as a function of   gives, 

        
        

 
 ⁄  

                
 

 eq.S4.2 

There are a total of (               
 

) potential variable-pairs between these windows. The number of 

pairs that emerge purely by chance over      random draws is estimated as 

              (
               

 
)          ⃗  

       

  

And since    ⃗  
                

   for these chance pairs, we get  

             (
               

 
)                 

      

eq.S4.3 

This gives us an upper bound on the number of pairs that turn up purely by chance. We confirmed this 

bound in practice: since most co-occurring variables are encountered in several random draws, they 

need not be investigated more than once if we record them in a hash-table in memory.  We can now 

find the optimal parameter values      and      that satisfy eq.S4.2 while minimizing the overall cost 

function, 
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eq.S4.4 

where   ,    and    are the cost of shortlisting and validating a chance pair, the cost of a random draw, 

and a Lagrange multiplier to avoid degenerate values of   respectively, while      is the indicator 

function. These costs depend on the particular software implementation and data-structures used.  
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Section 5: QQ plots for LD-contrast test (sub genome-wide) 

We drew 15 million random pairs of binary variables           from the cleaned WTCCC dataset, and 

contrasted their LD between bipolar cases and joint controls. We consider this a representative sample 

of the full space of 400 billion pairs which is computationally difficult to test. We observed over-

dispersion that suggested a deviation from the null-hypothesis. We filtered out pairs with an extremely 

low expected number of minor allele co-carriers (i.e. remove pairs with                      in 

cases or controls respectively) because these might inflate the statistic due to unstable variance 

estimates (denominators in equations. S1.1, S1.2 and S1.3). Further, we filtered out pairs comprising of 

SNPs in genetic linkage (<5cM apart) which cannot be treated as independent random variables when 

calculating co-carrier expectations of the 2×2 table : we observed an over-dispersion of LD-contrast p-

values on random pairs of such physically linked SNPs. However, since interactions between nearby 

markers (e.g. neighboring genes or markers within a gene) quite possibly comprise a significant portion 

of the interaction space, modifications to the test that can adjust for this variance inflation due to multi-

collinearity are the subject of future work. Lastly, in addition to WTCCC prescription, we removed SNPs 

whose CHIAMO genotype-calling confidence was <95% in >1% of the individuals of the dataset. 

Conservative filters help us avoid false positives when we report pairs in the genome-wide significance 

range                . The resulting QQ plots show that for pairs that pass our filters, the LD-contrast 

test operates on a  robust null-hypothesis and does not suffer from any residual over dispersion in BD 

data          .  

We note here that each QQ plot only presents a subset of randomly chosen variable-pairs out of the 

potential           pairs that exist genome-wide in this dataset. It is computationally prohibitive to 

test (on the order of) a trillion pairs of variables, sort their p-values and plot as many points without 

specialized software and computational infrastructure (indeed, avoiding this is the primary motivation of 

our work) but genomic over-dispersion (inflation of the median value) can be estimated robustly with a 

representative sample of the universe of pairs. Additionally, for SNP-pairs that do pass the Bonferroni 

cut-off genome-wide, we also perform a permutation analysis to verify their significance. 
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Section 6: Synthetic dataset construction 

We tested the accuracy of the randomization algorithm under various simulated scenarios. In particular, 

we were interested  in whether SIXPAC always finds SNP-pairs with a significant LD-contrast level at (or 

above) the computational power requested by user. 

Using the original WTCCC BD case-control cohort, we simulated 3 datasets to contain SNP-pairs with 

significant LD-contrast. These datasets capture a range of different scenarios concerning disease 

prevalence levels in the population (1% to 25%), minor allele frequencies of interacting SNPs (5% to 

40%), as well as mode of interaction (recessiveness and dominance). The datasets were synthesized 

through a technique called chromosomal shuffling, as follows: 

i. First choose one SNP on each chromosome (All MAF 40% for dataset 1, MAF 30% and MAF 10% on 

alternate chromosomes for dataset2, and all MAF 5% for dataset3).  

 

ii. Ascertain that these SNPs presented no discernible marginal significance (p >0.1) according to five 

standard single-locus association tests (allelic, genotypic, trend, dominance and recessive) offered 

by Plink (Purcell et al. 2007).  

 

iii. Next, we introduce LD-contrasts into the dataset without changing the marginal frequencies of the 

SNPs either in cases on controls. To do this, we swap entire chromosomes among cases (controls) so 

as to increase (decrease) the number of co-carriers of minor alleles in these cohorts. The ratio of 

cases/controls to shuffle during each iteration is determined by the prevalence estimate. 

For example, we create one additional recessive-recessive co-carrier in the case dataset (without 

affecting the marginal signal) we follow these steps.  

Let  case 2 be recessive at SNP A (chr21) and case 3 be recessive at SNP B (chr22), then: 

(i) swap chromosome 21 of case 1 and case 2  

(ii) swap chromosome 22  of case 1 and case 3.  

Case 1 is now a carrier of the recessive-recessive pair at SNPs A and B. The controls can have the 

number of co-carriers depleted by analogous shuffling.  

 

iv. By shuffling case and control chromosomes in this manner, we simulated 11 interactions (between 

SNPs  on 22 autosomes) in each of the 3 datasets – each interaction at different levels of LD-contrast 

significance from                     (decrements of       . Note that because of the 
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discrete nature of the shuffle, it is not always possible to achieve accurate LD-contrast p-values in 

the synthetic data (e.g.                                 . Instead, after each swap we 

perform an LD-contrast test between this SNP-pair to check if the co-carrier imbalance introduced 

between cases and controls is sufficient to provide the required level of significance. We stop when 

we cross this level. 

 

Chromosomal shuffling allows us to effectively manipulate LD between SNPs in cases (and controls) 

without changing the marginal association signal at all. This can be verified by checking that the 

Manhattan plot (single-locus, allelic model) before chromosomal shuffling in cases

 

And the corresponding Manhattan plot after simulating recessive-recessive co-carriers in the cases are 

exactly identical.

 

 

Although differentiating LD in the case and control datasets is not intended to directly confer statistical 

epistasis, we can also analyze these simulated SNP-pairs using the traditional model for interaction in a 

case-control study. This involves applying logistic regression, which tests whether the two loci - when 

considered in conjunction - result in a deviation from multiplicative odds. 

First we test whether the SNPs in the synthetic datasets have any main effects  – by testing the term    

or    term in a logistic regression     
 

   
            , where   and    are binary predictor 

variables that encode : 

i. recessive carrier status for interacting SNPs in dataset1 

i. recessive and dominant carrier status respectively for interacting SNPs in dataset2, or  

ii. dominance carrier status for interacting SNPs in dataset3.   
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As the tables below confirm, in all 3 scenarios, LD-contrast does not inflate main-effect estimates.  Next 

we test for the multiplicative interaction effects  – by testing for significance of the     term in a logistic 

regression using the full model:    (
 

   
)                    . We note that increasing LD-

contrast is strongly indicative of increasing statistical epistasis on this scale (see 3 dataset tables below), 

although the correlation between the 2 tests is not perfect (see discussion elsewhere (Purcell; Kam-

Thong et al. 2010)). Fully elucidating the wide range of models and alternate parameterizations that may 

be visible through such LD-contrasts is the subject of future work. 

 

 

 

Dataset 1. Common × Common Interaction  

LD-contrast simulated between a 40% MAF SNP (in recessive mode) with a 40% MAF SNP (in recessive 

mode), disease prevalence 25%. 

Simulated interactions  
(approximate 
significance) 

Main effects models 
 

Full model 
 

Empirical significance 
(p-value) 

odds ratio 

      

odds ratio 

      

odds ratio 

       

    term 
(epistasis) 

LD-contrast  

chr 1 – chr 2        1.0 1.01 1.6 0.01 8.2E-03 

chr 3 – chr 4        0.99 1.0 2.0 2.0E-04 6.8E-05 

chr 5 – chr 6        1.0 1.0 2.6 3.7E-06 6.0E-07 

chr 7 – chr 8        1.0 1.0 2.9 1.5E-07 8.2E-09 

chr 9 – chr 10         1.0 1.0 3.5 1.7E-09 4.2E-11 

chr 11 – chr 12         1.0 0.99 4.0 1.2E-11 8.9E-13 

chr 13 – chr 14         1.0 0.99 4.2 2.6E-12 7.2E-15 

chr 15 – chr 16         0.99 1.0 4.5 3.6E-14 5.5E-17 

chr 17 – chr 18         1.0 1.0 5.3 3.2E-16 8.2E-19 

chr 19 – chr 20         1.0 0.99 6.3 <2E-16 5.7E-21 

chr 21 – chr 22         1.0 1.0 6.5 <2E-16 3.3E-23 
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Dataset 2: Rare × Common Interaction. 

 LD-contrast simulated between a 10% MAF SNP (in dominant mode) with a 30% MAF SNP (in recessive 

mode), disease prevalence 10%. 

 

 

Dataset 3: Rare × Rare Interaction. 

LD-contrast simulated between a 5% MAF SNP (in dominant mode) with a  5% MAF SNP (in dominant 

mode), disease prevalence 1%. 

  

Simulated interactions 
(approximate 
significance) 

Main effects models 
 

Full model 
 

Interaction significance 
(p-value) 

odds ratio 

      

odds ratio 

      

odds ratio   

       

    term 
(epistasis) 

LD-contrast  

chr 1 – chr 2        1.01 0.99 1.7 0.01 8.8E-03 

chr 3 – chr 4        1.01 1.0 2.3 4.0E-04 7.9E-05 

chr 5 – chr 6        0.99 0.99 2.8 4.7E-06 5.9E-07 

chr 7 – chr 8        1.01 1.0 3.4 2.4E-07 6.9E-09 

chr 9 – chr 10         1.0 0.99 3.8 2.7E-09 3.5E-11 

chr 11 – chr 12         1.0 1.0 4.2 2.6E-10 6.9E-13 

chr 13 – chr 14         1.01 0.99 5.4 1.6E-12 6.7E-15 

chr 15 – chr 16         0.99 0.99 5.7 5.7E-14 5.8E-17 

chr 17 – chr 18         1.0 1.0 5.6 1.3E-14 5.3E-19 

chr 19 – chr 20         1.0 1.0 6.0 7.6E-16 9.9E-21 

chr 21 – chr 22         0.99 1.0 7.1 <2E-16 3.0E-23 

Simulated interactions 
(approximate 
significance) 

Main effects models 
 

Full model 
 

Interaction significance 
(p-value) 

odds ratio 

      

odds ratio 

      

odds ratio   

       

    term 
(epistasis) 

LD-contrast  

chr 1 – chr 2        1.0 1.0 1.9 0.017 9.4E-03 

chr 3 – chr 4        1.01 1.04 2.8 4.4E-04 5.2E-05 

chr 5 – chr 6        1.0 0.99 3.1 1.8E-05 6.4E-07 

chr 7 – chr 8        1.0 1.0 3.7 7.9E-07 4.2E-09 

chr 9 – chr 10         0.99 0.99 4.0 9.7E-08 8.5E-11 

chr 11 – chr 12         1.0 1.01 5.3 4.6E-10 2.9E-13 

chr 13 – chr 14         0.99 1.01 5.1 8.2E-11 7.5E-15 

chr 15 – chr 16         1.0 1.0 6.2 3.0E-12 8.1E-17 

chr 17 – chr 18         1.0 1.0 6.3 1.7E-13 1.9E-19 

chr 19 – chr 20         1.0 1.0 6.5 7.9E-14 3.4E-21 

chr 21 – chr 22         1.0 0.99 7.9 5.1E-16 4.0E-23 
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Section 7: Power of Algorithm  

To confirm that theoretical estimates of algorithm power were matched or exceeded by our 

implementation, we tested SIXPAC on the three simulated datasets, each containing 11 pairwise SNP-

SNP interactions (LD-contrast) at different levels of significance as described in Supplementary Section 3.  

SIXPAC accepts two critical inputs from the user, based on which it calculates search parameters  

1. Significance cutoff as a p-value – all LD-contrasts above this cutoff must be reported. 

2. Power (probability) to find these significant pairs, demanded by the user.  

For the purposes of this simulation experiment, we arbitrarily defined the LD-contrast significance cutoff 

at 3 different realistic values of                                          for datasets 1, 2 and 3 

respectively. We note that any arbitrary cutoff value, lower or higher than these values, can be provided 

by the user.  For the computational power parameter, we measured results over 5 different realistic 

values – 45%, 70%, 83%, 91% and 95% probability respectively. Here, power of the algorithm is defined 

as the probability of finding all SNP-pairs in the dataset with a significant LD-contrast. As we discussed in 

the main text, this is different from statistical power.  

Each panel in the figure below represents the result of a SIXPAC run with a particular combination of 

power and significance cut-off. The shaded rectangle in each panel represents the significance cut-off : 

interactions below this threshold are not reported.  The solid line represents the theoretical power 

required by the user – and guaranteed as per theoretical estimates. We wish to determine whether the 

interactions to the right of the shaded area are above the cutoff threshold line, as promised. 

In the panels below, each interaction is represented by a green dot: the X-axis co-ordinate gives the –

log(p) value of its LD-contrast, while its Y-axis co-ordinate gives the average observed probability of 

spotting the interaction by SIXPAC (100 runs) - under each particular power, cut-off setting. We can see 

that as per guarantees, pairs with an LD-contrast above the significant cut-off are always reported with 

probability greater than the user-prescribed baseline.  

For each dataset, SIXPAC scanned approximately 400 billion pairwise tests (4 tests per SNP-pair). We 

report the times taken by each SIXPAC run on a Single Intel i7 processor (quad-core) with 8GB RAM 

alongside. We note that like any randomization algorithm, SIXPAC will require an infinite amount of 

compute time to reach 100% certainty of finding everything in a dataset, but can approach close to 

100% with large compute savings.
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Section 8. Frequency Binning  

For each SNP, we consider the empirical frequency of the 2 encoded binary variables in cases (recessive 

and dominance carrier status). Each variable is then assigned to a narrow frequency bin, as shown. Our 

algorithm operates by considering pairs of windows: since LD is a function of the frequency of two 

variables, we can conversely estimate how frequent a combination would need to be in order for the LD 

to be statistically significant. Group sampling exploits this difference in frequency between pairs with 

significant LD and  pairs in equilibrium to rapidly shortlist interaction candidates.  

The optimal width of a frequency window is difficult to characterize analytically : it depends on the 

significance cut-off, statistical test being implemented, number of SNPs typed in the dataset as well as 

the number of samples.  

A. On the one hand, having many windows with a narrow frequency range makes it easy to distinguish 

between statistically significant LD - ( ̃       ) - and a SNP-pair that is at the upper end of the 

frequency spectrum - ( ̃   )
 

. On the positive side, this reduces the number of shortlisted 

candidates per window-pair. However, many narrow windows means a quadratic increase in the 

number of window-pairs that have to be considered – and each pair must go through millions of 

group-sampling iterations, which can be computationally expensive. 

B. On the other hand, having fewer but wider frequency windows does not allow group sampling to 

distinguish between a pair with a statistically significant increase in frequency, and a pair that is at 

the upper end of the permitted frequency spectrum - ( ̃       ) and ( ̃   )
 

 respectively, from 

the main text. This can result in a large false positive rate at the stage 1 shortlisting step.  

For WTCCC size case-control datasets, using the LD-contrast test, at a significance level of        ,  

we found that using 50 to 60 windows provided the best performance. 
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Section 9. Numerical Example: Detecting a strong joint effect between rare alleles in a large dataset 

We describe a particular example of a joint-effect we pursue, in order to provide sense of the actual 

numbers involved. Consider a realistic GWAS dataset of 10,000 case and 40,000 control samples from a 

population. If the disease prevalence in this population is 4%, then cases are oversampled 5-fold by the 

ascertainment of this study.  

Consider two unlinked SNPs of 5% MAF each (in HWE, same MAF in both cases and controls and thus no 

marginal signal at either). The dominant-variable of each SNP (which encodes whether an individual 

carries    minor alleles at the SNP) has a frequency of 9.75% in both datasets, and hence under the 

null hypothesis we expect 975 and 3,900 dominant carriers among the cases and controls respectively. 

Consequently, around ~95 cases and ~380 controls are expected to be “co-carriers” of these alleles 

when they are in perfect linkage equilibrium in both datasets     ⃗ 
            ⃗ 

        .  

Now let us assume the specific alternative hypothesis under a certain interaction model (note: this may 

not be the only interaction that an LD-contrast captures, but is used here simply for illustrative 

purposes). Suppose that the disease penetrance for individuals carrying 1 or more minor alleles at both 

SNPs is 5%. If so, we expect to observe just  ~19 fewer controls as co-carriers, leaving ~361 control co-

carriers     ⃗ 
               . However, this small deflation in control co-carriers will be 

counterbalanced by an overabundance of ~95 co-carriers among cases due to the ascertainment bias (5-

fold oversampling of cases), resulting in ~190 observed case co-carriers. This addition of 95 carriers to 

the background marginal count of 975 dominant carriers for each SNP, results in an observed marginal 

frequency of 10.7% in cases (up from 9.75%). Given these marginal frequencies, we would expect ~114.5 

dominant co-carriers, which our observations exceed by ~75.5     ⃗ 
                      .  

Note that a signal of -19 (out of 40,000) vs. +75.5 (out of 10,000) co-carriers is highly significant 

   ⃗ 
                      ⃗ 

                 ⃗ 
    

                  , and will pass the 

multiple testing burden of all pairs of variables in most experiments. In particular, we note here that the 

LD-case statistic was even more extreme and indicative of a significant LD-contrast, just as we had 

concluded in the section 6B on Approximately Complete Search. 

Group sampling utilizes this difference in co-carrier frequencies as follows. If the dominant × dominant 

allelic combination was in perfect linkage equilibrium in both datasets, then by randomly sampling 

      cases, the probability of all 4 cases being co-carriers by chance is                 . In the 
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alternative situation when there is penetrance of co-carriers, this probability is                 . If 

we draw     such groups of cases at random, then the probability that we will sample all co-carriers at 

least once is >12% if they are synergistic, while it is <0.7% if they are not. In this manner, group sampling 

makes it highly plausible that the joint-effects pair of variants will be observed under the alternative, not 

so under the null. Because group sampling utilizes Binary computer operations, even a million random 

draws can be accomplished in relatively insignificant amount of  time. 
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