
nFuse: Discovery of complex genomic rearrangements in
cancer using high-throughput sequencing

Supplementary Text

Andrew McPherson1, Chunxiao Wu2, Alexander Wyatt2, Sohrab Shah3,
Colin Collins2 and S. Cenk Sahinalp1

1School of Computing Science, Simon Fraser University
2Vancouver Prostate Centre

3Department of Molecular Oncology, BC Cancer Research Centre

June 26, 2012

Supplemental

nFuse pipeline overview

The nFuse method builds upon Comrad (McPherson et al., 2011b), our previous work on
rearrangement detection in matched RNA-seq and WGSS. We begin this section by briefly
describing Comrad, then describe significant differences between Comrad and nFuse. An
overview of the nFuse pipeline is shown in Figure 1.

1

WGSS RNA-Seq

Alignment Alignment

Reference
Genome

Reference
Transcriptome

Clustering Clustering

Candidate
Breakpoints

Candidate
Transcripts

Cycle
Search

Breakpoint
Graph

Path
Search

CCBRs

Complex
Breakpoints

Annotation
&

Classification

Results

Maximum
Parsimony

Corroborating
Rearrangements

Breakpoint
prediction

Fusion
Transcript
Prediction

Complex
rearrangment
prediction

Multi-map
Resolution

Post-processing

Figure 1: Overview of the nFuse pipeline. Generally, the nFuse pipeline involves 5
major steps: breakpoint prediction, fusion transcript prediction, complex rearrangement
prediction, multi-map resolution, and post-processing. Shaded nodes represent data and
unshaded nodes represent analysis.

Comrad was developed to predict fusion transcripts and their associated rearrangements
from matched RNA-seq and WGSS tumour data. Comrad begins by aligning RNA-seq reads
to the reference transcriptome and WGSS reads to the reference genome. Paired end RNA-

2

seq reads for which both ends align to the same gene are classified as concordant, and all
other reads are classified as discordant. Discordant RNA-seq reads are clustered into sets of
reads that suggest the same candidate fusion transcripts. Paired end WGSS reads for which
both ends align in the expected direction within 2kb are classified as concordant, and all
other reads are classified as discordant. Discordant WGSS reads are clustered into sets of
reads that suggest the same candidate breakpoint.

The key contribution provided by Comrad was a method for resolving multiply mapped
RNA-seq and WGSS reads using a maximum parsimony based combinatorial formulation.
Real and biologically relevant gene fusions are known to exist where one of the fusion partners
shares significant sequence homology with other genes in the genome (Lee et al., 2012). These
fusions may produce RNA-seq reads with ambiguous genomic origin, suggesting multiple,
equally likely fusion transcripts. If a corroborating breakpoint can be predicted from WGSS
data, it may be possible to identify the actual fusion transcript. For example, if A-B and
A-B’ are two fusion transcripts suggested by the same set of multi-mapping RNA-seq reads,
an A-B’ breakpoint predicted from matched WGSS data would help to identify A-B’ as
more likely. The reverse is also true: unambiguous RNA-seq reads can assist in predicting
the correct breakpoint implied by multi-mapping WGSS reads. In fact, even for ambiguous
RNA-seq and WGSS reads, it should be possible to correctly associate the RNA-seq and
WGSS evidence even though the exact gene pair remains unknown. Unfortunately, naive
application of Comrad to the identification of CGRs will result in over-prediction of these
events.

The nFuse pipeline differs from Comrad in 4 major areas: WGSS alignment, discordant
read clustering, corroboration between fusion transcripts and breakpoints, and the maxi-
mum parsimony formulation. WGSS reads are aligned using a seed and extend strategy, and
the best partial discordant alignments of the WGSS reads are used to predict breakpoints.
Discordant reads are clustered using a mixture model and the EM algorithm. nFuse adds
detection of CGRs associated with fusion transcripts, replacing the Comrad method of cor-
roborating fusion transcripts and breakpoints. Finally, nFuse incorporates a new maximum
parsimony formulation for resolving multi-map reads that does not over-predict CGRs.

Partial alignments of WGSS reads

As sequencing technology improves and read lengths increase, a larger proportion of each
DNA fragment is sequenced, and a smaller proportion of the fragment remains unsequenced.
Thus it becomes increasingly likely that a breakpoint will fall within a sequenced region of a
DNA fragment rather than the unsequenced region in the middle of a fragment. As a result
we will be less likely to find a complete and contiguous alignment of both reads produced
by DNA fragment harbouring a breakpoint. For instance, in HCC1954, the DNA fragments
are approximately 193 bp in length, and many of the reads are 81 bp in length. If we expect
complete and contiguous alignments, we will only be able to identify discordant reads for
which the breakpoint is in the 193− 2× 81 = 31bp region in the middle of the read.

To mitigate the aforementioned problem, we search for partial alignments of discordant
paired end WGSS reads. Let r be the sequence of one end of a paired end read and define the
partial alignment of r as an alignment of the first ` nucleotides of r where 1 ≤ ` ≤ |r|. A read
with a breakpoint at position ` + 1 in the read should ideally produce a partial alignment

3

of length `. The score of a partial alignment is calculated using a fixed bonus for matches,
an affine gap penalty, and penalty for mismatches based on the quality of the read at the
mismatch. A partial alignment can be calculated using a trivial modification to the dynamic
programming algorithm for calculating alignments with affine gap penalties (Gotoh, 1982).

We use bowtie2 in local alignment mode as an approximate but effective method for gener-
ating partial alignments of reads (Langmead and Salzberg, 2012). To generate the n top scor-
ing mapping locations for a read, we first use bowtie2 with parameters --very-sensitive-local
-k n + 1 to calculate n + 1 local alignments, and re-score these alignments if they include
soft-clipping at the beginning of the read. We use the default scoring method implemented
by bowtie2 for end-to-end alignments, re-described here. A gap of length N is given a penalty
calculated as,

GO +N ×GE.

We use the bowtie2 defaults, GO = 5 and GE = 3. Mismatches are given a penalty calculated
as,

MN + floor

(
MX−MN

1
40

min(Q, 40.0)

)
where Q is the Phred quality value. We use the bowtie2 defaults, MN = 2 and MX = 6.
Matches are given a bonus MA = 2, the default for bowtie2. Let S = {s1, s2, ..., sn, sn+1} be
the resulting set of scores and let T = {si : si = max(S)} be the set of scores that attain
the maximum value. If |T | = n+ 1 the read is filtered, otherwise the set of alignments T is
retained. By default nFuse uses n = 20.

Note that we are currently exploring the tradeoff between speed, accuracy and flexibility
of available aligners to allow optimal performance of the nFuse breakpoint prediction.

Discordant read clustering

Discordant reads are clustered into sets of reads that support the same fusion transcript/breakpoint
using Expectation Maximization applied to a mixture model. Given a breakpoint formed
by joining position s in chromosome X to position t in chromosome Y , we can write the
likelihood of alignment A given breakpoint B = (s, t) as:

P (A|B) ∝

{
N (s− x+ t− y|µ, σ) x ≤ s and y ≤ t

0 x > s or y > t

Normalization constant W can be calculated exactly by noting that the volume under
the surface defined by P (A|B) is equivalent to an extrusion of the normal distribution by
µ, thus W = µ. The assumption that P (A|B) = 0 for x > s or y > t implies that the
partial alignment process is perfect. We soften this assumption because a distribution with
support over the full 2d space of alignment positions will be more conducive to an EM type
algorithm. Thus define the soft boundary likelihood as follows:

4

P (A|B) ∝ N (s− x+ t− y|µ, σ2) · e−λR(x−s) · e−λR(y−t)

Where R(x) denotes the ramp function defined as follows:

R(x) =

{
x x ≥ 0

0 x < 0

As an approximation, we continue to use the normalization constant W = µ for the soft
boundary likelihood.

Suppose now that the N paired end alignments in A are produced by a mixture of K
breakpoints B. At this stage K is assumed given, below we describe how we determine
K. Let znk = 1 if and only if alignment An was generated by breakpoint Bk ∈ B, and let
πk = P (znk = 1). Write the log likelihood of A given B as follows:

log p(A|B) =
N∑
n=1

log
K∑
k=1

πkP (An, znk|Bk)

We use EM to infer the B, π, and Z that maximize log p(A|B). Finally we select K using
the Bayesian Information Criterion. We start by setting K = 1, running EM, and calculating
the BIC (Equation 1). Next we select the paired end alignment m with the minimum model
probability (Equation 2). We increment K and augment the previous set of responsibilities,
allowing the new cluster to take full responsibility for Am. We redo EM, starting with the M
Step, and calculate BIC for the result. The process continues until the new BIC is larger than
the previous, at which point we stop iteration and select the previous solution. Lastly, we
assign each paired end alignment n to the cluster k for which P (znk|An, π̂,B) is maximum.

BIC = −2 log p(A|B) + 2K logN (1)

m = argmin
n

p(A′|B) = argmin
n

K∑
k=1

πkp(An|Bk) (2)

Corroboration between fusion transcripts and breakpoints

Corroboration between fusion transcripts and breakpoints differs significantly between nFuse
and Comrad. For Comrad, fusion transcripts and rearrangements breakpoints are said to
corroborate given satisfaction of two conditions that loosely determined whether a fusion
transcript conceivable arose from a single breakpoint. Corroboration was determined by
comparing all fusion transcripts with all breakpoints, and assessing satisfaction of the two
conditions. By contrast, nFuse constructs a breakpoint graph from breakpoint predictions,

5

including those supported by ambiguous WGSS reads. nFuse then searches for the shortest
alternating path through the breakpoint graph that would corroborate each fusion transcript.
As stated above, we add vertices representing the predicted fusion boundaries, and search for
the shortest alternating path between those vertices. If a path exists below a given threshold
score, that path is said to corroborate the fusion transcript. nFuse also searches for evidence
of CCBRs associated with fusion transcripts. For each breakpoint in an alternating path
corroborating a fusion transcript, nFuse searches for a CCBR that includes that breakpoint.
As stated above, we first remove the breakpoint edge from the graph, then search for the
shortest alternating path between the two vertices of that breakpoint. We also identify
fusion transcripts with mapped genomic distance less than 200 kbp, and with an orientation
suggestive of a deletion, and label these as read-throughs.

Maximum parsimony formulation for resolving multi-map reads

Let B be the set of all breakpoint predictions implied by WGSS reads G, and let F be the
set of all fusion transcript predictions implied by RNA-seq reads R. Let MG ⊆ G × B
be a one-to-many mapping from WGSS reads to breakpoints, and let MR ⊆ R × F be
a one-to-many mapping from RNA-seq reads to fusion transcripts, each produced by the
alignment and clustering process. We would like to identify UG ⊆ MG and UR ⊆ MR,
such that UG and UR are one-to-one (unique mappings), and such that UG and UR maximize
parsimony. Under the assumption that fusion transcripts and breakpoints are rare, we define
the UG and UR that maximizes parsimony as the UG and UR that minimizes the number of
fusion transcripts and breakpoints. However, we would also like to maximize the number of
CGRs we discover, without over-predicting CGRs. We do so by searching within the space
of maximum parsimony solutions for a solution that also maximizes the weighted sum of
discovered CGRs (herein referred to as the CGR corroboration score). Our formulation can
thus be seen as a type of multi-objective optimization, for which the minimization of fusion
transcripts and breakpoints is primary, and the maximization of the CGR corroboration
score is secondary.

We define the space of maximum parsimony solutions as follows. Let δf (UR) indicate that
UR maps at least one RNA-seq read to fusion transcript f . Similarly, Let δb(UG) indicate
that UG maps at least one WGSS read to breakpoint b. The space of maximum parsimony
solutions P is defined as given in Equation 3.

PR = argmin
UR

∑
f

δf (UR)

PG = argmin
UG

∑
b

δb(UG)

P = PR × PG (3)

Next we define the CGR corroboration score for paths as follows. Let Q be the set of
pairs of fusion transcripts and corroborating paths. Let δp(UG) indicate that δb(UG) = 1
for all breakpoints b in path p. Read-throughs are represented by empty paths and by
definition δp(UG) = 1 for read-throughs. The CGR corroboration score sp for paths is given
by Equation 4.

6

sp(UR,UG) =
∑

(f,p)∈Q

wp · δf (UR) · δp(UG)

=
∑
p

wp · δp(UG)
∑

(f,p)∈Q

δf (UR) (4)

We down-weight more complex paths by defining wp as given by Equation 5.

wp =
1

1 + |p|
(5)

Finally we define the CGR corroboration score for cycles as follows. Let c be a cycle and
let δc(U) indicate that δb(U) = 1 for all breakpoints b in cycle c. The CGR corroboration
score sc for cycles is given by Equation 6.

sc(UG) =
∑
c

wc δc(UG) (6)

Similar to paths, we down-weight more complex cycles by defining wc as given by Equa-
tion 7.

wc =
1

1 + |c|
(7)

Our final optimization problem is to identify a solution to Equation 8.

argmax
(UR,UG)∈P

[sp(UR,UG) + sc(UG)] (8)

A complete search of P would be prohibitively expensive for even small instances of the
problem. Thus, we identify an optimal (UR,UG) using a heuristic search algorithm. Our
heuristic is based on the greedy set cover algorithm, and as such guarantees a worst case ap-
proximation ratio of O(log n) for the problem of minimizing the number of fusion transcripts
and breakpoints. No guarantee is provided for maximizing the CGR corroboration score.

The algorithm we propose alternates between minimizing the number of fusion transcripts
and minimizing the number of breakpoints. The number of fusion transcripts is minimized,
and the CGR corroboration score maximized, given an estimate for the value of δp. Next
the number of breakpoints is minimized, and the CGR corroboration score maximized, given
an estimate for the value of κp =

∑
(f,p)∈Q δf . The value κp represents an estimate of the

number of fusion transcripts corroborated by path p. At each iteration we re-estimate values
for δp and κp.

For path p, let χp =
(
δp1, δp2, ..., δpi

)
be a sequence of δp values from previous solutions to

the problem of minimizing breakpoints. We initialize χp to a sequence of m successes, placing

7

a heavy prior on existence of each path in the form of m pseudo-counts. Furthermore, let
ψp =

(
κp1, κp2, ..., κpi

)
be a sequence of κp values from previous solutions to the problem of

minimizing fusion transcripts. We initialize ψp as follows. For each path p, identify ub(κp),
an upper bound on κp, by running Algorithm 3 (with null bonuses) for only the fusion
transcripts in the set {f : (f, p) ∈ Q}. Initialize ψp as a sequence of m values ub(κp), placing
a heavy prior on the existence of the fusion transcripts corroborating p.

The algorithm proceeds as follows. Let Z be the set of complex rearrangements (paths
and cycles).

1. Estimate κ̂p =
∑

i κpi
|ψp| . Let V be a set of bonuses for rearrangements, where vz is a

bonus given for the solution that selects rearrangement z. Set the bonus vc for cycle c
as wc and the bonus vp for path p as κ̂pwp. Use Algorithm 1 to select a minimal set of
breakpoints while attaining the maximum total in bonuses.
Let CG = MinimizeBreakpoints(G,B,Z, V, ε). Create UG from CG by assigning each
read g to the breakpoint in CG that covers g and contains the greatest number of reads,
breaking ties randomly.

2. For each path p, calculate δp based on UG from step 1, and append it to χp.

3. Estimate δ̂p =
∑

i δpi
|χp| . Let Y be a set of bonuses for fusion transcripts, where yf is

a bonus for a solution that selects fusion transcript f . Set the bonus yf for fusion

transcript f corroborated by path p as δ̂pwp. If f is a read-through then yf = 1 since
δp = 1 and wp = 1 by definition for read-throughs. If f is neither a read-through or
corroborated by a path, yf = 0. Use Algorithm 3 to select a minimal set of fusion
transcripts while attaining the maximum total in bonuses.
Let CR = MinimizeFusions(R,F, Y, ε). Create UR from CR by assigning each read r to
the fusion transcript in CR that covers r and contains the greatest number of reads,
breaking ties randomly.

4. For each path p, calculate κp based on UR from step 3, and append it to ψp.

5. Repeat n times and return UG and UR from the most recent iteration.

For the purposes of this study, we have used m = 10 and n = 10.
Algorithm 1 takes as input B, Z and V . Each element of B is a labelled set of reads

representing a breakpoint. Each element of Z is a set of labels representing a set of break-
points putatively forming a CGR. Y contains a bonus for each CGR in Z. Initially, each
breakpoint is given a weight 1. The bonus vz for CGR z is distributed evenly between each
breakpoint b ∈ z by subtracting a small bonus, ε vz|z| from the weight of each b. At each

iteration the algorithm selects the most cost efficient breakpoint b′ and adds it to the set of
chosen breakpoints C. All breakpoints not in C but completely covered by

⋃
C are consid-

ered invalid. All CGRs containing invalid breakpoints are invalid. The bonuses of invalid
CGRs are removed from the CGR’s remaining valid breakpoints. Finally, for each CGR z
containing b′, the bonus from z is redistributed to the remaining breakpoints in z that are
not in C. The algorithm terminates when C covers all reads. Calculation of weights is given
by Algorithm 2.

8

Algorithm 1 MinimizeBreakpoints(G,B,Z,V ,ε)

INPUT: WGSS reads G
INPUT: Breakpoints B as labelled sets of reads
INPUT: CGRs Z as sets of breakpoints
INPUT: CGRs bonus V
INPUT: Small constant ε
OUTPUT: Breakpoints C ⊆ B

C ← ∅
for all b ∈ B do
wb ← CalculateBreakpointWeight(b,B,Z,V ,C,ε)

end for
while

⋃
C 6= G do

select b 6∈ B that minimizes wb

|b\
⋃
C|

C ← C ∪ {b}
for all b′ ∈ B : b′ 6= b, b′ ⊆

⋃
C do

for all z ∈ Z : b′ ∈ z do
Z ← Z \ {z}
for all b′′ ∈ z do
wb′′ ← CalculateBreakpointWeight(b′′,B,Z,V ,C,ε)

end for
end for
B ← B \ {b′}

end for
for all z ∈ Z : b ∈ z do
for all b′ ∈ z do
wb′ ← CalculateBreakpointWeight(b′,B,Z,V ,C,ε)

end for
end for

end while
return C

9

Algorithm 2 CalculateBreakpointWeight(b,B,Z,V ,C,ε)

INPUT: Breakpoint b
INPUT: Valid breakpoints B as labelled sets of reads
INPUT: Valid CGRs Z as sets of breakpoints
INPUT: CGR bonuses V
INPUT: Chosen breakpoints C
INPUT: Small constant ε
OUTPUT: weight w

w ← 1
for all z ∈ Z do
if z ⊆ B then
for all b ∈ z do
u = b \ C
w = w − ε · vb

|u|
end for

end if
end for
return w

Algorithm 3 takes as input F and Y . Each element of F is a labelled set of reads
representing a fusion transcript. Y contains a bonus for each fusion transcript in F . Each
fusion transcript f is given a weight 1−ε·yf . At each iteration the algorithm selects the most
cost efficient breakpoint f ′ and adds it to the set of chosen breakpoints C. The algorithm
terminates when C covers all reads.

Algorithm 3 MinimizeFusions(R,F ,Y ,ε)

INPUT: RNA-seq reads R
INPUT: Fusion transcripts F as labelled sets of reads
INPUT: Fusion transcripts bonuses Y
INPUT: Small constant ε
OUTPUT: Fusion transcripts C ⊆ F

C ← ∅
for all f ∈ F do
wf ← 1− ε · yf

end for
while

⋃
C 6= R do

select f 6∈ F that minimizes
wf

|f\
⋃
C|

C ← C ∪ {f}
end while
return C

10

Post-processing

The result of the mult-map resolution stage of Comrad will be a set of fusion transcripts and
corroborating breakpoints. Assembled sequences for breakpoint predictions are re-aligned to
the reference genome using blat. Breakpoint sequences that align with 90% identity within
2kb sized genomic region are filtered, as are the associated CGRs. The fusion transcripts
are further processed as for deFuse (McPherson et al., 2011a). In brief, targeted dynamic
programming is used to identify split reads and assemble nucleotide level fusion transcripts.
A probability is calculated for each assembled fusion transcript using a classifier trained on
known positive and negative fusion transcript predictions.

Calculating breakpoint probability

We predict breakpoints from discordant paired end alignments. Our approach aims for high
sensitivity by including reads with multiple genomic mappings, and reads that map only
partially to the genome. To ensure adequate specificity, we calculate a probability for each
breakpoint based on the alignment evidence and use that probability in downstream analysis
including CGR discovery.

Let R be the set of paired end WGSS reads. We generate a set of mapping locations M
for R using the following well established strategy (Tuzun et al., 2005; Volik et al., 2003).
For each paired end read (r1j , r

2
j) ∈ R:

1. identify a single concordant mapping location if it exists.
2. if no concordant mapping location exists:

(a) identify the n top scoring mapping locations for r1j
(b) identify the n top scoring mapping locations for r2j

We identify the n top scoring mapping locations for r1j (and r2j) as follows. Let sj be the
maximum alignment score attained by partial alignment of read j to the genome. Let k be
the number of mappings of read j that attain sj. If k > n assume the read is unmappable
and filter it, otherwise retain the k mapping locations.

Let mj ∈ M be the mapping locations identified for read (r1j , r
2
j) ∈ R. Define the

following indicator variables:

cj ≡ read j is concordant
dj ≡ the true alignment was discovered and is in the set mj

We make the assumption that reads mapped concordantly by the aligner are in fact
concordant (with probability 1). We filter the concordantly mapped reads to create the set
of discordant reads Rd and set of discordant mappings Md. As a result, P (cj = 1, dj = 1) = 0
for the set of filtered reads. We estimate probabilities for the remaining two possibilities for
the true alignment of each read:

P (cj = 1|·) ≡ concordant but missed by the aligner
P (dj = 1|cj = 0, ·) ≡ discordant but missed by the aligner

11

We estimate P (cj = 1|·) using the maximum concordant alignment score csj. To calculate
csj, we align both ends of read j to all mapping locations in the set mj, and set csj to the
maximum alignment score identified by this process. We then calculate P (cj = 1|csj), and
use it to approximate P (cj = 1|·). We approximate P (dj = 1|cj = 0, ·) as P (dj = 1|cj =
0, asj) where asj is the alignment score for read j.

Next, we cluster the discordant alignments Md based on the likelihood that a set of
alignments were generated by the same breakpoint. Let the resulting clusters of alignments
represent putative breakpoints. Let gij indicate that putative breakpoint i generated read
j. Assume gij = 0 if read j is not in the cluster that supports breakpoint i. We estimate
P (gij = 1|·) as P (gij = 1|nmj, dj = 1), where nmj is the number of alternate mapping
locations of read j. Under the assumption that all mapping locations discovered by the
aligner are equally likely, we calculate P (gij = 1|nmj, dj = 1) = 1

nmj
.

Finally, let bi indicate that breakpoint i is true, let Gi be the set of all gij for breakpoint
i, and let ni be the number of reads that were generated by breakpoint i, that is ni =∑

gij∈Gi
gij. We estimate P (bi|ni) and use it to estimate P (bi|·) as given by equation 9.

P (bi|·) =
∑
Gi

P (bi|ni)
∏
j

P (gij = 1|nmj, dj = 1)

×P (dj = 1|asj, cj = 0)

×P (cj = 0|csj) (9)

We first describe methods for estimating the above probability distributions, then de-
scribe an algorithm for calculating P (bi|·) from these distributions.

Calculating P (cj = 0|csj)

Alignment scores are calculated using dynamic programming with affine gap penalties (Go-
toh, 1982). We use the scoring function implemented for bowtie2 (Langmead and Salzberg,
2012), redescribed here. A gap of length N is given a penalty calculated as,

GO +N ×GE.

We use the bowtie2 defaults, GO = 5 and GE = 3. Mismatches are given a penalty calculated
as,

MN + floor

(
MX−MN

1
40

min(Q, 40.0)

)
where Q is the Phred quality value. We use the bowtie2 defaults, MN = 2 and MX = 6.
Matches are not given a bonus.

We calculate the maximum concordant alignment score csj for discordant read j as
follows. Let r1j and r2j be end 1 and 2 of read j, and let m1

j and m2
j be the discordant

mappings of each end. Mappings m1
j and m2

j were generated by a partial alignment of r1j
and r2j . First truncate r1j and r2j to the maximum aligned lengths in m1

j and m2
j respectively,

to form tr1j and tr2j respectively. For each mapping m1
jk ∈m1

j align tr2j to the 1000nt region
adjacent to m1

jk in the genome (downstream if the strand of m1
jk is ”+”, upstream if the

12

strand of m1
jk is ”-”). Repeat for m2

jk ∈ m2
j and tr1j . Calculate csj as the maximum of all

scores identified using the above procedure.
Letting P (cj = 0) = πc, we can calculate P (cj = 0|csj) using bayes rule.

P (cj = 0|csj) =
P (csj|cj = 0)πc

P (csj|cj = 0)πc + P (csj|cj = 1)(1− πc)

We estimate P (csj|cj = 0) from alignments of reads to random locations in the genome.
We first uniformly sample 1/1000 reads from the WGSS data. For each sampled read, we
produce copies of the read truncated to lengths ranging from 20nt to the length of the read.
We then align the truncated reads to genomic locations selected uniformly and at random.
For each truncation length, we use the samples to calculate a density using gaussian kernel
density estimation with bandwidth 1. Let f ` be the resulting density for truncation length `.
Since csj is the result of multiple trials, we cannot naively use f ` to calculate P (csj|cj = 0).
We instead calculate extreme value distributions based on f `, and use these to calculate
P (csj|cj = 0). Let t be the number of trials used to calculate maximum concordant alignment
score x, and let f `t (x) represent to probability of attaining maximum concordant alignment
score csj after t trials. f `t (csj) can be calculated from f `1 = f `, and the cumulative density
F `
1 using the following recursion.

f `t = f `t−1 · F `
1 + F `

t−1 · f `1 − f `t−1 · f `1
We then estimate P (csj|cj = 0) = f `t (csj).

We estimate P (csj|cj = 1) from concordant alignments. We first uniformly sample 1/1000
reads from the WGSS data. For each sampled read, we produce copies of the read truncated
to lengths ranging from 20nt to the length of the read. We then align the truncated reads to
genomic locations given by the concordant alignments of the original non-truncated reads.
Given that read j is concordant, the alignment score csj represents the score produced by
aligning read j to its single location of origin. Thus for P (csj|cj = 1) we do not use an
extreme value distribution. Instead, for each truncation length we fit a negative binomial
distribution to the samples and use that to estimate P (csj|cj = 1).

Finally, we estimate πc using the EM algorithm. Let J be the number of potentially
discordant reads. The expected value of the log likelihood function with respect to the
conditional distribution of all cj ∈ C given π

(t)
c and csj ∈ S is as follows.

E
C|S,π(t)

c
[logL(πc|C,S)] =

∑
j

(1− P (cj = 0|csj, π(t)
c)) · log [(1− πc) · P (csj|cj = 1)]

+P (cj = 0|csj, π(t)
c) · log [πc · P (csj|cj = 0)]

The maximum likelihood estimates of πc yield the following update equation.

π(t+1)
c =

∑
k P (cj = 0|csj, π(t)

c)

J

Thus we calculate P (cj = 0|csj) and πc by iteratively calculating P (cj = 0|csj, π(t)
c) for all j

(Expectation step) and using those values to calculate π
(t+1)
c (Maximization step) repeating

until convergence.

13

Calculating P (dj = 1|asj, cj = 0)

Alignment scores asj are calculated using dynamic programming with affine gap penalties as
described in the previous section. A discordant read may have a marginal alignment score
for the following reasons:

i the read is poor quality
ii the region has polymorphisms compared to the reference genome
iii the read is non-genomic
iv the read is mapped to the wrong location

We would like to distinguish the first two possibilities from the last two possibilities. We do
so by calculating P (dj = 1|asj, cj = 0), the probability that discordant read j has a valid
discordant mapping given its alignment score (referred to herein as simply P (dj = 1|asj).
We can estimate P (asj|dj = 1) from concordant alignments similar to how we estimated
P (csj|cj = 1) in the previous section. Unfortunately it is difficult to estimate P (asj|dj = 0).
Thus we formulate the problem of calculating P (dj = 1|asj) as a learning problem with
positive and unlabelled data and use a modified version of a previously described method
(Elkan and Noto, 2008). Let indicator sj represent whether read j has been sampled. Then
we can write,

P (dj = 1|asj) =
P (sj = 1|asj)

P (sj = 1|dj = 1)

We first sample m scores from the concordant alignments (see previous section), where
m is the number of discordant alignments. We then build a k-nearest-neighbour classifier
(k = 0.05m) from the unlabelled scores U from the discordant alignments, and the labelled
positive scores L from the concordant alignments. The KNN classifier will yield a function
g(asj) = P (sj = 1|asj). We then estimate c = P (sj = 1|dj = 1) from the labelled positive
scores as described previously (estimator 1 from Elkan and Noto (2008)).

ĉ =
1

|L|
∑
as∈L

g(as)

Calculating P (gij = 1|nmj, dj = 1)

We assume all discordant alignment mapping locations are equally likely. Thus,

P (gij = 1|nmj, dj = 1) =
1

nmj

.

Calculating P (bi|ni)

Calculation of P (bi|ni) is formulated as a positive unlabelled learning problem and uses
a similar technique as described for calculating P (dj = 1|asj, cj = 0). We build a set
of labelled positives as follows. Select 100,000 genomic positions uniformly at random, and
identify the number of reads that span (spanning read count) those positions from concordant
alignments. Remove positions not covered by any reads and re-sample to produce a set of

14

m spanning read counts, where m is the number of breakpoint predictions. Build a k-
nearest neighbour classifier (k = 0.05m) from the labelled positive spanning read counts
from concordant alignments and the unlabelled spanning read counts from the breakpoint
predictions. Estimate P (bi|ni) as described above for P (dj = 1|asj, cj = 0).

Calculating P (bi|·)

Finally, we require an efficient way of calculating a sum over all possible settings of the values
of Gi, and we do this using dynamic programming similar to previously described methods
(Hormozdiari et al., 2009). Rearranging the expression for P (bi|·) we obtain the following.

P (bi|·) =

|Gi|∑
ni=0

P (bi|ni)
∑

Gi:
∑

j gij=ni

∏
j

P (gij = 1|nmj, asj, csj)

Let f(p, q) be defined as follows.

f(p, q) =
∑

Gi:
∑

j gij=p

q∏
j=1

P (gij|nmj, asj, csj)

Then we can calculate f({0, 1, ..., |Gi|}, |Gi|) inO(n2) time using the following recurrence.

f(0, 0) = 1

f(−1, q) = 0

f(q + 1, q) = 0

f(p, q) = f(p− 1, q − 1) · P (gij = 1|nmj, asj, csj) +

f(p, q − 1) · P (gij = 0|nmj, asj, csj)

Given f({0, 1, ..., |Gi|}, |Gi|), we can calculate P (bi|·) as follows.

P (bi|·) =

|Gi|∑
ni=0

P (bi|ni) · f(ni, |Gi|)

Shortest alternating path algorithm

The algorithm we propose for finding the shortest alternating path follows the algorithm
proposed by Brown (1974). We first create a new directed graph H from the undirected
breakpoint graph G as follows. For each vertex v in the G, add two vertices, vin and vout in
H. If (v1, v2) is a breakpoint edge in the G, add the edge (v1in, v2out) to H. If (v1, v2) is an
adjacency edge in the G, add the edge (v1out, v2in) to H. We then find a shortest alternating
path in G by finding a shortest path in H.

15

Finding the shortest path in H is a non-trivial problem. Adjacency edges connect vertex
v in G to vertices that are: a) on the same chromosome as v, and b) and have opposite
direction to v. Thus G and also H can be considered dense. The algorithm we propose is
similar to dijkstras algorithm, however it has the benefit of being faster than dijkstras for
a constrained search in a dense graph. We constrain our shortest path search in 2 ways.
First, we search for paths with length less than a maximum allowable distance. Second, we
place a limit on the number of vertices relaxed by the algorithm. Like dijkstras we maintain
a set of vertices S for which we know the shortest path from the starting vertex s to any
vertex in S. Also like dijkstras, we maintain a priority queue of the neighbours of S that are
closest to vertices in S. However, we refrain from maintaining a priority queue containing
all vertices adjacent to S. Instead, we maintain a priority queue such that for each vertex v
in the priority queue, v is the vertex in S̄ that is the closest neighbor in S̄ of some vertex in
S. We also maintain, for each vertex v in the priority queue, a set, p(v) of the vertices in S
for which v is the closest neighbor in S̄.

Clearly, the vertex vnext at the top of the priority queue will be the same for our algorithm
as for dijkstras. We relax vnext by adding it to S and recording the shortest path to vnext.
We then maintain the priority queue by doing the following. For each vertex u in the set
{vnext} ∪ p(vnext), find the vertex v in S̄ that is closest to u, and add v to the priority queue
if it exists. For this task we require a list of the neighbours of u sorted by their distance
from u. If the outgoing edges from u in H are breakpoint edges in G this is trivial, since
there is only one outgoing edge. If the outgoing edges from u in H are adjacency edges in
G, then we can simply use a sorted list of breakpoint positions, where the same sorted list
need not be duplicated multiple times for different vertices.

Suppose that we wish to constrain our search to a maximum of k relaxation steps. At
each relaxation step we select the next closest vertex, vnext, an O(log k) operation that will
be repeated k times. Next we iterate through the set p(vnext), finding the next closest
vertices. In the worst case, at the kth step, all k − 1 vertices in S will be in the set p(vnext).
Furthermore, for each of these k − 1 vertices the next closest k − 2 vertices will be in S.
Thus for each of the k − 1 vertices in S, the algorithm will iterate over the the other k − 2
vertices before getting to the vertex in S̄ that is closest. The complexity of the algorithm is
dominated by this step and is worst case k2. Thus the algorithm will be beneficial if k � n,
where n is the number of vertices, since dijkstras would use best case O(kn) operations.

Path search parameter βp

The parameter βp can be seen as a mixing parameter for the two types of edges in the shortest
alternating path optimization problem. Lower values of lambda will place more importance
on the genomic distances between breakpoints in a path (adjacency edges), whereas higher
values will place more importance on breakpoint probabilities.

We sought to estimate the effect of βp on path searches using the HCC1954 data. A range
of βp values was selected, and the shortest alternating path algorithm was used to predict
paths for each value of βp. We made the strong assumption that paths were valid if they
were composed entirely of breakpoints validated in 3 previous studies (Bignell et al., 2007;
Stephens et al., 2009; Galante et al., 2011).

We then used the resulting valid paths to estimate an optimal value of βp, and measure

16

the effect of βp on the shortest path algorithm. The number of valid paths ranged from 11
to 14 across the range of βp values (Figure 2a), with the greatest number predicted between
1427 and 4074. As expected, scores for the valid breakpoints decreased almost monotonically
with βp (Figure 2b). We also analyzed the number of vertices visited by the algorithm (visit
count) for each valid path, as a proxy for the time spent on the search. Interestingly, the
distribution of visit counts for valid paths was bimodel for lower values of βp, indicating
that some proportion of the paths would take significantly longer to be identified at these
βp values. At a value of βp = 5296, the distribution of visit counts becomes unimodel, and is
at a local minima. We selected βp = 6884, maximum visit count of 300,000, and maximum
score of 30 based, as an adequate balance of sensitivity and balancing sensitivity and running
time. Interestingly, the value we selected for βp is close to the estimate of 6082 gained by
fitting the distribution of intron lengths to an exponential distribution.

17

500 650 845 1098 1427 1855 2411 3134 4074 5296 6884 8949 11633 15122 19658 25555 33221 43187

lambda

nu
m

be
r

of
 p

at
hs

 p
re

di
ct

ed

0
2

4
6

8
10

12
14

(a)

0
20

40
60

500 650 845 1098 1427 1855 2411 3134 4074 5296 6884 8949 11633 15122 19658 25555 33221 43187

lambda

S
co

re
 o

f f
ou

nd
 p

at
hs

(b)

1e
+

00
1e

+
02

1e
+

04
1e

+
06

500 650 845 1098 1427 1855 2411 3134 4074 5296 6884 8949 11633 15122 19658 25555 33221 43187

lambda

N
um

be
r

of
 v

is
ite

d
ve

rt
ic

es

(c)

Figure 2: Statistics for paths composed of previously validated breakpoints (valid paths),
as identified using a range of values for lambda. (a) Number of valid paths identified. (b)
Distribution of scores for valid paths. (c) Distribution of the number of vertices visited by
the algorithm for valid paths.

18

References

Bignell, G. R., Santarius, T., Pole, J. C., Butler, A. P., Perry, J., Pleasance, E., Greenman, C., Menzies, A., Taylor, S., Edkins, S.,

et al., 2007. Architectures of somatic genomic rearrangement in human cancer amplicons at sequence-level resolution. Genome Res,

17(9):1296–1303.

Brown, J. R., 1974. Shortest alternating path algorithms. Networks, 4:311–334.

Elkan, C. and Noto, K., 2008. Learning classifiers from only positive and unlabeled data. In Proceedings of the 14th ACM SIGKDD

international conference on Knowledge discovery and data mining, KDD ’08, pages 213–220, New York, NY, USA. ACM.

Galante, P., Parmigiani, R., Zhao, Q., Caballero, O., de Souza, J., Navarro, F., Gerber, A., Nicolás, M., Salim, A., Silva, A., et al.,

2011. Distinct patterns of somatic alterations in a lymphoblastoid and a tumor genome derived from the same individual. Nucleic

Acids Research, 39(14):6056–6068.

Gotoh, O., 1982. An improved algorithm for matching biological sequences. Journal of molecular biology, 162(3):705–708.

Hormozdiari, F., Alkan, C., Eichler, E. E., and Sahinalp, S. C., 2009. Combinatorial algorithms for structural variation detection in

high-throughput sequenced genomes. Genome Res, 19(7):1270–1278.

Langmead, B. and Salzberg, S., 2012. Fast gapped-read alignment with bowtie 2. Nat Meth, 9(4):357–359.

Lee, C.-H., Ou, W.-B., Mariño-Enriquez, A., Zhu, M., Mayeda, M., Wang, Y., Guo, X., Brunner, A., Amant, F., French, C., et al.,

2012. 14-3-3 fusion oncogenes in high-grade endometrial stromal sarcoma. Proceedings of the National Academy of Sciences of the

United States of America, 109(3):929–934.

McPherson, A., Hormozdiari, F., Zayed, A., Giuliany, R., Ha, G., Sun, M., Griffith, M., Heravi Moussavi, A., Senz, J., Melnyk, N.,

et al., 2011a. defuse: An algorithm for gene fusion discovery in tumor rna-seq data. PLoS Comput Biol, 7(5):e1001138.

McPherson, A., Wu, C., Hajirasouliha, I., Hormozdiari, F., Hach, F., Lapuk, A., Volik, S., Shah, S., Collins, C., and Sahinalp, C.,

et al., 2011b. Comrad: detection of expressed rearrangements by integrated analysis of rna-seq and low coverage genome sequence

data. Bioinformatics, 27(11):1481–1488.

Stephens, P. J., McBride, D. J., Lin, M. L., Varela, I., Pleasance, E. D., Simpson, J. T., Stebbings, L. A., Leroy, C., Edkins, S., Mudie,

L. J., et al., 2009. Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature, 462(7276):1005–1010.

Tuzun, E., Sharp, A. J., Bailey, J. A., Kaul, R., Morrison, V. A., Pertz, L. M., Haugen, E., Hayden, H., Albertson, D., Pinkel, D.,

et al., 2005. Fine-scale structural variation of the human genome. Nat Genet, 37(7):727–732.

Volik, S., Zhao, S., Chin, K., Brebner, J. H., Herndon, D. R., Tao, Q., Kowbel, D., Huang, G., Lapuk, A., Kuo, W. L., et al., 2003.

End-sequence profiling: sequence-based analysis of aberrant genomes. Proc Natl Acad Sci U S A, 100(13):7696–7701.

19

