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Supplemental Figure 1: Limitations of a sliding window approach

NM_ 001127211

- © —
[ea)

o

2

o

¢ o2

[

k- o
0 1000 2040 3000 4000

c; 2 1 1

S = I ]

=) o _|

g <] l :

£ 24 :l :

Si o : N II e | || !
| I 1 1 I
0 1000 2040 3000 4000

2 & 1 1

= . | 1

= o _| | 1

£ ] 1 1

2 o [ 1

= [ '

& = [ '

A . — T - T T
0 1000 2000 3000 4000

This example illustrates the unsuitability of a sliding window approach to monitor the transition of
the lowest proportion of RPFs from one sub-codon position to another. Depending on the window
size, two sub-codon positions may have no RPFs (large window) or sub-codon position 2 could
locally have the highest number of RPFs (small window) while overall having the lowest proportion
of RPFs. This non-uniformity of RPF distribution poses problems for detecting reading frame

transitions using a sliding window approach.
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Supplemental Figure 2: Investigation of a sliding window approach on OAZ1
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Sliding windows of different sizes (10 to 100nt) were applied to the RPFs in sub-codon position 2
for human ornithine decarboxylase antizyme 1 (OAZl). Antizyme 1 is known to utilise +1
programmed ribosomal frameshifting in its expression and its sub-codon profile shows that there is
an increase in RPFs aligning to sub-codon position 2 3’ of the frameshift site (see Fig. 1C in the
main text). However, the above illustrates that using a sliding window approach on sub-codon
position 2 to detect framing transitions is impractical as there are numerous local peaks in the region
of the frameshift site for the different window sizes. With small windows, there are several local
maximums corresponding to the second proportion. Also while the first transition (elevation of RPF
density in the 2" sub-codon position) corresponds to frameshifting, the second transition (decrease

of RPF density) cannot be clearly explained and is likely due to local stochastic fluctuations in the
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number of RPFs in the 3’ end of CDS, where the overall density of RPFs is low, see Figure 1C of
the main text.

Supplemental Figure 3: Interpolated 95" percentile CSCPD scores relative to CDS position

1.0

0.8

0.6

0.4
|

0.0
|

0.0 0.2 0.4 0.6 0.8 1.0

Interpolated 95™h percentile CSCPD scores (vertical axis) relative to CDS position (horizontal axis)
obtained from the analysis of the 1000 mRNA transcripts with the highest number of RPFs. For
uniformity, relative positions of CDS are used (with total length of CDS as 1.0) Blue, red and green

dotted lines correspond to sub-codon positions 1, 2 and 3, respectively.
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Supplemental Figure 4: PTS plot for human Antizyme 1 (04Z1) mRNA
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PTS plot for human Antizyme 1 (OAZ1) mRNA whose translation is known to involve programmed
ribosomal frameshifting. The frameshift site is indicated with a vertical interrupted line. Solid lines
show the CSCPD scores for each sub-codon position in OAZ1. The dotted lines show the 95"
percentiles (of the CSCPDs for the highest-coverage 1000 mRNAs) as in Supplemental Figure 3.
The CSCPD scores for sub-codon positions 2 and 3 greatly exceed their corresponding 95™ quantile
interval. The area where OAZ1 CSCPD scores exceed their 95™ quantile intervals constitute the PTS

Score.

Testing PTS on simulated dual coding sequences.

To test PTS performance we decided to perform a number of simulations of dual coding regions.
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We tested two types of dual coding, first those that occur due to frame transitions such as in the case
of programmed ribosomal frameshifting and second, those that occur due to the translation of the
same genomic region in two different reading frames (either from the same or from different

transcript isoforms).

(1) Simulations for frame transitions that occur such as in programmed ribosomal frameshifting
Artificial 3000nt long sequences representing RPF data were generated (Supplemental Fig. 5),
assuming the following:

1) The proportions of RPFs in the three sub-codon positions are a;=0.45, a,=0.1 and a;=0.45.
i1) RPFs at each position follow a Poisson distribution with a mean pa; (i=1,2,3), u=20.

A frameshift was created by eliminating coordinate 1001. The CSCPD scores at each sub-codon
position were computed for the sequences with and without a frameshift. It can be clearly seen that
with the exception of the 5* and 3’ ends of CDS, the CSCPD score is close to 0 for all original
sequences. For the sequences with a frameshift, the CSCPD score for position 3 is unchanged
(because its proportion remains 0.45 throughout even after deletion), but there is a large increase in
the CSCPD score for positions 1 and 2, whose proportions undergo a change downstream of the
frameshift. In addition, the CSCPD scores for positions 1 and 2 are at their maximum at the location

of the deletion.

To examine how the CSCPD score would behave in real mRNAs with and without simulated
reading frame transitions, we generated CSCPD plots for mRNAs with artificially introduced
frameshifts (either a deletion or an insertion of a nucleotide introduced in the middle of the
corresponding CDS). Examples of CSCPD plots with and without an artificial frameshift for
SMARCA1 mRNA (RefSeq ID NM 003069) are shown in Supplemental Figures 6 and 7,

respectively.
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In Supplemental Figures 6 and 7, the deletion causing the artificial frameshift was introduced in the
middle of the coding region of the real mRNA. To explore how the position of a frameshift affects
PTS, we introduced artificial frameshifts at different locations of the coding region of real mRNAs
(Fig 2D main text). As can be seen in Figure 2D, PTS performance correlates negatively with the

distance of the frameshift from the middle of the CDS.
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Supplemental Figure 5: CSCPD scores for artificial mMRNAs with and without a simulated

frameshift
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CSCPD scores for artificial 3000nt long mRNAs for each sub-codon position with and without a
deletion. It can be seen that except at the beginning and the end, the CSCPD scores were close to 0
for all the sequences without a deletion (broken black, red and green lines). For the sequences with
a deletion, the CSCPD score for position 3 is unchanged (solid green line), but there is a large
increase in the CSCPD score for positions 1 and 2 (solid black and red lines), and their maximum

CSCPD is at the location of the deletion.
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Supplemental Figure 6: CSCPD scores for SMARCAI mRNA with an artificial deletion in the

middle of its CDS
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CSCPD scores for SMARCAL mRNA (RefSeq ID NM 003069) with an artificial deletion in the
middle of its CDS. Solid lines show CSCPD scores, dotted lines show the 95™ percentiles (of the

CSCPDs for the highest-coverage 1000 mRNAs) as in Supplemental Figure 3.
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Supplemental Figure 7: CSCPD scores for SMARCAI mRNA with no artificial deletion

1.0

0.8

0.6

0.4

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Same as Supplemental Figure 6, but without an artificial frameshift.
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(2) Frame transitions that occur due to the translation of the same genomic region in two
different reading frames
We examined how PTS performs on simulated dual coding sequences with varying parameters
(Fig.2E-F of the main text and Supplemental Fig. 8). We generated 3000nt long artificial mRNA
sequences as described in the previous section using a Poisson distribution to mimic RPF data, with
a mean pa; (i=1,2,3), where are a;=0.45, a,=0.1 and a;=0.45. The simulations were carried out for
three different RPF densities with p=1, 10, 20 (corresponding to 0.3 RPFs/coordinate, 6
RPFs/coordinate. 9 RPFs/coordinate). To mimic dual coding, RPFs for a second (alternative) CDS
were generated and superimposed onto the original mRNA RPF profile to yield a partial overlap of
a length A. The second CDS was generated using a Poisson distribution with a mean {ua; (i=1,2,3).
We explored the effect of the overlap length A when {=1 (Fig. 2E). PTS reaches a maximum when
the length of the dual coding region is similar to the length of the single coding region. We also
explored the effect of an alternative CDS RPF density factor increase, ¢, on the PTS score (Fig. 2F).

It can be seen that PTS positively correlates with the level of translation of the alternative CDS.

Supplemental Figure 8: Scheme of simulated dual coding mRNAS.
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The main ORF (CDS) is shown as a blue box. The alternative frame is shown as a pink box. p

corresponds to the RPF density generated by ribosomes translating the main frame. {u is the RPF
density at the alternative frame. The RPF densities for individual coordinates corresponding to the

same sub-codon positions are shown at the same height for simplicity.
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Estimating p-values for PTS

To estimate the p-value for a PTS of 10 and higher, for each sub-codon profile we permuted the
RPF locations of the top 1000 RPF covered mRNA 1000 times generating 1,000,000 artificial
mRNA profiles for which we calculated the PTS scores. This gave a p-value of 0.057. We then
eliminated cases where the 1" and the 3™ sub-codon positions contributed to a high PTS but not the
2" position (see explanation in the “Further refinements of PTS” section in the main manuscript).
We then divided the remaining number of permuted transcripts that had a PTS of 10 and higher by
the remaining total number of artificial mRNA profiles. This resulted in a re-estimated p-value of

0.0084.
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Supplemental Data: summary of dual coding candidates.
108 candidates identified in our study are summarized in Supplemental Table 1 below and
classified into six categories indexed in column 3 and coloured as follows.
1 (yellow) — known instances of programmed ribosomal frameshifting
2 (red) — non-upstream overlapping or nested nORFs
3 (pink) — regulatory uORFs overlapping the main pORF
4 (green) — dual coding due to a frame transition caused by alternative splicing or alternative
transcription events
5 (gray) — instances where sub-codon profiles show dual coding behaviour but cannot be
explained either by the mRNA ORF organization or by differences among alternatively spliced
variants.
6 — (white) false positives where a high PTS was obtained for sub-codon profiles that do not

exhibit dual coding behaviour.
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Supplemental Table 1: 108 candidates with high PTS

RefSeq mRNA  Gene No. RPFs location Corrected
ID Name Index PTS 2 PTS

NM_004010 DMD 6 37.88 16 39.86
NM_004152 OAZ1 1 39.37 26 38.24

NM_001172437 PEG10 1 36.27 70 34.80

NM_001025248 DUT 6 24.83 18 25.67

NM_005001 NDUFA7 6 29.32 12 23.56

NM_001003408 ABLIM1

NM_001001330 REEPS3 6 16.25 14 16.23
NM_020548 DBI 6 14.98 23 16.04

NM_024066 ERI3 6 18.81 22 14.96

NM_053052 SNAP47 6 18.20 18 13.65

NM_198400 NEDD4 6 15.11 14 13.17
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NM_006808 SEC61B 6 16.63 22 11.79
NM_001031806 ALDH3A2 5 16.03 23 11.70
NM_012235 SCAP 6 22.11 15 11.68
NM_018983 GAR1 6 11.02 18 11.57
NM_031892 SH3KBP1 6 12.14 13 11.33

NM_015085 RAP1GAP2 5 32.25 12 10.57

NM_006936 SUMO3 6 10.72 15 9.96
NM_153273 IP6K1 5 12.93 14 9.90
NM_001163790 PTBP3 5 11.46 22 9.88

NM_001127211 KIAA1598 6 11.30 14 9.42
NM_018179 ATF7IP 6 11.74 13 9.39

NM_000285 PEPD 6 10.85 14 7.96

NM_006701 TXNL4A 6 10.82 15 7.79
NM_018268 WDR41 6 11.63 18 7.76
NM_007350 PHLDA1 6 11.64 35 7.71

NM_002599 PDE2A 6 10.23 90 7.38
NM_018361 AGPATS 6 10.10 14 7.35

NM_199229 RPE 6 15.17 15 6.98
NM_052848 CCDC97 6 12.35 13 6.74
NM_031299 CDCA3 6 11.03 13 6.30

NM_001098801 FAM210A 5 11.71 15 5.57
NM_172373 ELF1 6 10.50 17 5.45

NM_018489 ASHI1L 6 12.15 18 5.00
NM_004486 GOLGA2 6 12.52 25 4.77

NM_001145316 DSN1 5 16.22 18 3.72

NM_014903 NAV3 6 34.18 12 2.69
NM_022170 EIF4H 6 10.47 49 2.34
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NM_016640 MRPS30 6 10.31 28 1.19
NM_013354 CNOT7 6 17.13 14 1.03
NM_005953 MT2A 6 17.41 27 0.48

The RefSeq accession number, gene name, classification index, initial PTS, number of RPF
locations in sub-codon position 2 and the corrected PTS after removal of the highest RPF peak in

position 2 for 108 genes. The candidates are ranked according to the corrected PTS.
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Supplemental Figures 9-116: Individual sub-codon and mRNA-seq profiles
The following pages contain the sub-codon and mRNA-seq profiles and ORF organization of the
108 RefSeq candidates listed in Supplemental Table 1. The candidates are grouped according to the

index classification outlined in Supplemental Table 1.

1. Known cases of programmed ribosomal frameshifting.

Supplemental Figure 9: Sub-codon profile, MRNA-Seq and ORF organization for
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Supplemental Figure 10: Sub-codon profile, mMRNA-Seq and ORF organization for
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2. Non-upstream ORFs (nORFs).
Supplemental Figure 11: Sub-codon profile, MRNA-Seq and ORF organization for
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Supplemental Figure 12: Sub-codon profile, mMRNA-Seq and ORF organization for
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Supplemental Figure 13: Sub-codon profile, mMRNA-Seq and ORF organization for

MM_DD1065 TNFRSFTA
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Supplemental Figure 14: Sub-codon profile, mMRNA-Seq and ORF organization for
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Supplemental Figure 15: Sub-codon profile, mMRNA-Seq and ORF organization for

NM_D02518 MPAS2
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Supplemental Figure 16: Sub-codon profile, mMRNA-Seq and ORF organization for
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Supplemental Figure 17: Sub-codon profile, mMRNA-Seq and ORF organization for
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Supplemental Figure 18: Sub-codon profile, mMRNA-Seq and ORF organization for
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Supplemental Figure 21: Sub-codon profile, mMRNA-Seq and ORF organization for

NM_014180 MRPL22
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Supplemental Figure 22: Sub-codon profile, mMRNA-Seq and ORF organization for
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Supplemental Figure 23: Sub-codon profile, mMRNA-Seq and ORF organization for

NM_01BB3E NDUFAT2
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Supplemental Figure 24: Sub-codon profile, mMRNA-Seq and ORF organization for
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Supplemental Figure 25: Sub-codon profile, mMRNA-Seq and ORF organization for

MM _032375 AKT1ST
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3. Upstream ORFs overlapping main protein coding ORFs (UORFs)
Supplemental Figure 26: Sub-codon profile, mMRNA-Seq and ORF organization for

NM_DD10DE1DD C3orf37
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Supplemental Figure 27: Sub-codon profile, mMRNA-Seq and ORF organization for

MNM_001012507 CENFW
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Supplemental Figure 28: Sub-codon profile, mMRNA-Seq and ORF organization for

NM_001033112 PalP2
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Supplemental Figure 29: Sub-codon profile, mMRNA-Seq and ORF organization for

MM_001042510 ZNFTOE
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Supplemental Figure 30: Sub-codon profile, mMRNA-Seq and ORF organization for
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Supplemental Figure 31: Sub-codon profile, mMRNA-Seq and ORF organization for
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Supplemental Figure 32: Sub-codon profile, mMRNA-Seq and ORF organization for

NK_00E250 KCNNS

# APFs Pasifon 1
0 20 30

. l.ll TR I|,||I

[=]

I 1 T 1
a 530 1000 2000

e |

| e |

i o2 I: |l :

'8 - 1 1

= 1y , . . |,

* 0 T T ' T
a 530 1000 1500 2000

o2 T T

B 1 i 1

g A : :

Wl bt

LA 1 | | I..|. 4 I| |
a 530 1000 1500 2000

#FmAMNA-zoq
0 20 30
L1y

a

a 500 1000 1500 2000
1 I 11 | 1 | 11 Jii 11 I 1 ||
2 1. [T+ T 1 [ [T T 110 [
I — I I 1 S PRI
0 500 1000 1500 2000
mRANA coordinate

Supplemental Figure 33: Sub-codon profile, mMRNA-Seq and ORF organization for

NM_002346 LYEE
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Supplemental Figure 34:

Sub-codon profile, MRNA-Seq and ORF organization for

NM_0D266E PLP2
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Supplemental Figure 35:

Sub-codon profile, MRNA-Seq and ORF organization for

N _O03BED BANFT
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Supplemental Figure 36: Sub-codon profile, mMRNA-Seq and ORF organization for

MM_DD4ERS MAPKARKS
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Supplemental Figure 37: Sub-codon profile, mMRNA-Seq and ORF organization for

MNM_005004 SLC27A4
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Supplemental Figure 38: Sub-codon profile, mMRNA-Seq and ORF organization for

MNM_DD5E08 SCAMPS
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Supplemental Figure 39: Sub-codon profile, mMRNA-Seq and ORF organization for

NM_D0SEIT POPF
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Supplemental Figure 40: Sub-codon profile, mMRNA-Seq and ORF organization for
Supplemental Figure 41: Sub-codon profile, mMRNA-Seq and ORF organization for



Supplemental Figure 42: Sub-codon profile, mMRNA-Seq and ORF organization for

MNM_014153 ZC3H7A
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Supplemental Figure 43: Sub-codon profile, mMRNA-Seq and ORF organization for

N _015057 ARIP
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Supplemental Figure 44: Sub-codon profile, mMRNA-Seq and ORF organization for

NK_01E468 COXTE
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Supplemental Figure 45: Sub-codon profile, mMRNA-Seq and ORF organization for

NM_016556 PSUMCIIP
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Supplemental Figure 46: Sub-codon profile, mMRNA-Seq and ORF organization for

NM_016B2E OGGT
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Supplemental Figure 47: Sub-codon profile, mMRNA-Seq and ORF organization for

NK_019026 TMCOT
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Supplemental Figure 48: Sub-codon profile, mMRNA-Seq and ORF organization for

MNM_020182 PAMERAT
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Supplemental Figure 49: Sub-codon profile, mMRNA-Seq and ORF organization for

NM_024047 PHCE
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Supplemental Figure 50: Sub-codon profile, mMRNA-Seq and ORF organization for

# APFs Pasifon 3 # APFs Pasifion 2 # APFs Pasifon 1
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Supplemental Figure 51: Sub-codon profile, mMRNA-Seq and ORF organization for

# APFs Pasifon 3 # APFs Pasifon 2 # APFs Pasifan 1
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Supplemental Figure 52: Sub-codon profile, mMRNA-Seq and ORF organization for

NM_152653 UBE2ER
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Supplemental Figure 53: Sub-codon profile, mMRNA-Seq and ORF organization for

MNM_153713 LIXTL
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Supplemental Figure 54: Sub-codon profile, mMRNA-Seq and ORF organization for

NM_203413 CT17orf81
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4. Alternative transcription initiation/alternative splicing cases.
Supplemental Figure 55: Sub-codon profile, mMRNA-Seq and ORF organization for
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Supplemental Figure 56: Sub-codon profile, mMRNA-Seq and ORF organization for

#APFs PosiSon 3 # APFs PasiSon 2 #APFs PosiSon 1
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Supplemental Figure 57: Sub-codon profile, mMRNA-Seq and ORF organization for

MNM_001002244 ANAPCTT
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Supplemental Figure 58: Sub-codon profile, mMRNA-Seq and ORF organization for

NM_0D101 1667 CHCHDT
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Supplemental Figure 59: Sub-codon profile, mMRNA-Seq and ORF organization for

MNM_001114752 CD55
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Supplemental Figure 60: Sub-codon profile, mMRNA-Seq and ORF organization for

MNM_0D1135861 PHPTT
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Supplemental Figure 61:

# APFs Pasifon 3 # APFs Pasifion 2 # APFs Pasifon 1

#FmAMNA-zoq
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Supplemental Figure 62: Sub-codon profile, mMRNA-Seq and ORF organization for

# APFs Pasifon 3 # APFs Pasifon 2 # APFs Pasifan 1
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Supplemental Figure 63: Sub-codon profile, mMRNA-Seq and ORF organization for

NM_D14761 ISTT
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Supplemental Figure 64: Sub-codon profile, mMRNA-Seq and ORF organization for

NM_016558 SCANDT
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Supplemental Figure 65: Sub-codon profile, mMRNA-Seq and ORF organization for

MNM_0220dd SDF2ALT
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Supplemental Figure 66: Sub-codon profile, mMRNA-Seq and ORF organization for

MNM_022455 NSDT
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Supplemental Figure 67: Sub-codon profile, mMRNA-Seq and ORF organization for

MNM_024000 ST Torfds
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Supplemental Figure 68: Sub-codon profile, mMRNA-Seq and ORF organization for

NM_024348 DCTNG
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Supplemental Figure 69: Sub-codon profile, mMRNA-Seq and ORF organization for

NM_13B558 PPPTIRE
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Supplemental Figure 70: Sub-codon profile, mMRNA-Seq and ORF organization for

MM_181353 /DT
- 8_ T
B 1 i
PR !
g2 i
o - 1
[ [
» 2 T T T T
] &0 1000 1200
L T
- :
[ :
g2 i
o - 1
[+ ! |
» 2 T T T T
] &0 1000 1200
o2 T
- :
PR :
EE | :
o - 1 l
[ 1 3
0= T T T 1
a 200 430 530 am 1000 1200
2 -
E
z b ) 1
E 24 [ I
E 7 ] 1
=
o A
a 200 430 530 am 1000 1200
1 | ! | 1 | | |
2 [ 1 I T 1 1] | I T
3 I | [ L [T
T T T T 1 T
L1} 200 400 &00 BDD 1000 1200
mRANA coordinate



5. Unexplained cases.
Supplemental Figure 71: Sub-codon profile, mMRNA-Seq and ORF organization for

NM_DD1021806 ALDHIAZ
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Supplemental Figure 72: Sub-codon profile, mMRNA-Seq and ORF organization for

N _001032280 TFAP24
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Supplemental Figure 73: Sub-codon profile, mMRNA-Seq and ORF organization for

MM_00103ETS0 SCMLT
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Supplemental Figure 74: Sub-codon profile, mMRNA-Seq and ORF organization for
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Supplemental Figure 75: Sub-codon profile, mMRNA-Seq and ORF organization for

NM_001145316 DSNT
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Supplemental Figure 76: Sub-codon profile, mMRNA-Seq and ORF organization for

MNM_001 145678 KIAADS2F
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Supplemental Figure 77: Sub-codon profile, mMRNA-Seq and ORF organization for

NM_0D1163790 PTERT
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Supplemental Figure 78: Sub-codon profile, mMRNA-Seq and ORF organization for

NM_0D3T21 RFXANK
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Supplemental Figure 79: Sub-codon profile, mMRNA-Seq and ORF organization for

MNM_O0B4D ATGE
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Supplemental Figure 80: Sub-codon profile, mMRNA-Seq and ORF organization for

NM_007145 ZNFT4E
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Supplemental Figure 81: Sub-codon profile, mMRNA-Seq and ORF organization for

MM_0150B5 RAPTGARS
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Supplemental Figure 82: Sub-codon profile, mMRNA-Seq and ORF organization for

MNM_03223T SGHTOE
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Supplemental Figure 83: Sub-codon profile, mMRNA-Seq and ORF organization for

NM_153273 IPEKT
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6. False positives.
Supplemental Figure 84: Sub-codon profile, mMRNA-Seq and ORF organization for

NM_DDD2ES PEFD
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Supplemental Figure 85: Sub-codon profile, mMRNA-Seq and ORF organization for

NM_0D1001330 REERT
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Supplemental Figure 86: Sub-codon profile, mMRNA-Seq and ORF organization for

MM _D01003408 ABLINMT
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Supplemental Figure 87: Sub-codon profile, mMRNA-Seq and ORF organization for

NM_0D1025248 DUT
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Supplemental Figure 88: Sub-codon profile, mMRNA-Seq and ORF organization for

MNM_001127211 KIAATSSE
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Supplemental Figure 89: Sub-codon profile, mMRNA-Seq and ORF organization for

N _002500 PDE24
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Supplemental Figure 90: Sub-codon profile, mMRNA-Seq and ORF organization for
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Supplemental Figure 91: Sub-codon profile, mMRNA-Seq and ORF organization for

#APFs PosiSon 3 # APFs PasiSon 2 #APFs PosiSon 1
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Supplemental Figure 92: Sub-codon profile, mMRNA-Seq and ORF organization for

MM _005001 MDLUFAFT

e :
5 s
g2 i
T ] |k L
& = |“ T T T
200 300 400 f )
NOF o
B 4
PR
EE : :
o] Ly |
e = T T T T
4] 100 200 300 400 f )
o0oR o T T
[ _ i |
E 7 4 1 i
g o2 ] ‘ | '
'8 - . 1
= i L.l | L1 -
e =T T I |I T T
4] 100 200 300 400 f )
8_
EE
= - 1 1
E 24 ] i
E T i .
£ ] i
S [ SRS PP VT P WU PRV U AVEPT I P PV
4] 100 200 300 400 =l S0
1 |I I 1 ||| | m | |
2 |
3 ] I Ll [T
T T T T T
L1} 100 200 300 400 500
mRAMNA coordinate

Supplemental Figure 93: Sub-codon profile, mMRNA-Seq and ORF organization for

MNM_D05053 MT24
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Supplemental Figure 94: Sub-codon profile, mMRNA-Seq and ORF organization for

MNM_ODETDT TXNMLAA
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Supplemental Figure 95: Sub-codon profile, mMRNA-Seq and ORF organization for

NM_ODEBDE SECETE
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Supplemental Figure 96: Sub-codon profile, mMRNA-Seq and ORF organization for

N _0DEQEE SUNMOF
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Supplemental Figure 97: Sub-codon profile, mMRNA-Seq and ORF organization for

MM _00T350 PHLDAT
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Supplemental Figure 98: Sub-codon profile, mMRNA-Seq and ORF organization for
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Supplemental Figure 99: Sub-codon profile, mMRNA-Seq and ORF organization for

# APFs Pasifon 3 # APFs Pasifon 2 # APFs Pasifan 1
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Supplemental Figure 100: Sub-codon profile, MRNA-Seq and ORF organization for

NM_014003 MAVE
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Supplemental Figure 101: Sub-codon profile, MRNA-Seq and ORF organization for

NM_016640 MAPS3D
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Supplemental Figure 102: Sub-codon profile, MRNA-Seq and ORF organization for

NM_D1B179 ATFFIP
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Supplemental Figure 103: Sub-codon profile, MRNA-Seq and ORF organization for

NM_018268 WDRJT
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Supplemental Figure 104: Sub-codon profile, MRNA-Seq and ORF organization for

MNM_01E361 AGPATS
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Supplemental Figure 105: Sub-codon profile, MRNA-Seq and ORF organization for

MNM_018480 ASHTL
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Supplemental Figure 106: Sub-codon profile, MRNA-Seq and ORF organization for

NM_01B0ET GART

: E ! i

= I' N& J.h |

g 24 l i

o - ]

: o ] l | A - § " IJ . |I g | |
a 200 400 500 00 1030 1200

I :

} ] |

g2 | \ 1 H

'8 - 1 1

L ; 1 ‘u' || ; I.| | h— |
a 200 400 500 00 1030 1200

m - T

g "] :

8 7 ! '

- 1 ‘ \ H

e ] R P | YT 1P ||l| |

= T T T T T T T
a 200 400 500 00 1030 1200

2]

Ia

E .

E

£

[=]

1 | I I A
2 | | L | [T 11
5 _IILT S Y T | T I
L1} 200 400 L] EDD 1000 1200
mRAMNA coordinate

Supplemental Figure 107: Sub-codon profile, MRNA-Seq and ORF organization for

MM _020548 DBY
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Supplemental Figure 108: Sub-codon profile, MRNA-Seq and ORF organization for

MNM_022170 ElF4H
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Supplemental Figure 109: Sub-codon profile, MRNA-Seq and ORF organization for

NM_024066 ERILT
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Supplemental Figure 110: Sub-codon profile, mMRNA-Seq and ORF organization for

NM_031200 CDCAT
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Supplemental Figure 111: Sub-codon profile, MRNA-Seq and ORF organization for

NM_031802 SHIKEFT

S
f
2

a

# APFs Pasifan 1

a

# APFs Pasifon 2
0 20 30

# APFs Pasifon 3
0 20 30

1
E——

a

#FmAMNA-zoq
0 20 30

a




Supplemental Figure 112: Sub-codon profile, mMRNA-Seq and ORF organization for

MNM_052B48 CODCET
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Supplemental Figure 113: Sub-codon profile, mMRNA-Seq and ORF organization for

MNM_053052 SNAPIT
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Supplemental Figure 114: Sub-codon profile, mMRNA-Seq and ORF organization for

#APFs PosiSon 3 #APFs Pasion 2 #APFs PosiSon 1
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Supplemental Figure 115: Sub-codon profile, mMRNA-Seq and ORF organization for
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Supplemental Figure 116: Sub-codon profile, nRNA-Seq and ORF organization for

MK _190220 RPE
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Comparative sequence analysis

Supplemental Figure 117: Coding likelihood (calculated by MLOGD) and synonymous site

conservation for NPAS2 (NM_002518).
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While the MLOGD analysis and synonymous site conservation do not indicate any purifying
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selection acting on the region where the RPFs occur in the +1 frame, there are no in-frame stop

codons within the same region.
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Supplemental Figure 118: Coding likelihood (calculated by MLOGD) and synonymous site
conservation for THAP7 (NM_001008695)
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MLOGD analysis indicates that purifying selection operates mainly in the zero frame (CDS
frame). However there are no in-frame stop codons within the human uORF region in any of the

other orthologous genomic sequences. This indicates that while the protein sequence encoded
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by the uORF is not highly conserved, and may have no functional role as a peptide product, the
existence of the uORF is evolutionarily preserved and therefore its translation likely plays an
important functional role. However, significant conservation of synonymous positions in the
pOREF indicates that the uORF constrains the evolution of the corresponding sequence more

than what would be expected just by the avoidance of stop codons in the alternative frame.
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Supplemental Figure 119: Coding likelihood (calculated by MLOGD) and synonymous site
conservation for C11orf48 (NM_024099)
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The +1 frame has a positive coding potential in the area of dual decoding. Also there is enhanced
synonymous site conservation in this region of the pORF. This is consistent with the existence of an
additional evolutionarily conserved feature (viz. protein coding in the alternative frame) in this

region.
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Supplemental Figure 120: Coding likelihood (calculated by MLOGD) for PHPTI

(NM_001135861)

NM_001135861

IIm Nl | . n | IIRE BN | | Tenree
o
s § |[AmImm - n ] I | 1 |l |Rockhyrax
w 2 meen il IR Ry ul 1 | | I Dog
Ss | 1] I | ml | I 11Tl 1| Cow
EE-, m emir N | nl | I 1nml Dalphin
= 11 Tl | I | [ N | || | NN | Guinea pig
Human
%g_g I I I | I Frame = +0
E'g'-g I I I I | Frame = +1
= 8 I I I I I Frame = +2

- +30

-0  Frame = +0

-0 Frame = +1

MLOGD coding potential score

summed = 1.5 mean number of
divargence of 1.0

B nmﬂﬂiﬁﬂﬂm‘wwrﬂ“ lm |'|r'"” |.'n'iﬁ'|r"r"-rr[h"!r—r: 0.5 3:21::::1::
T T T T T T

SEQUANCE palrs 0.0

200 400 00 800 1000 1200
alignment coordinate (nt)

The coding likelihood statistics are consistent with dual decoding of the 5’-end of the fourth

€xon.

Page 80



Supplemental Figure 121

Genomic multiple codon alignments for NPAS2 (NM_002518) from 23 vertebrate species.
Synonymous codon substitutions shows as bright green, positive (in BLOSUM62 matrix) non-synonymous codon substitutions are shown in dark green,

other non-synonymous codon substitutions are shown in red, gaps in yellow and stop codons are in black.

Supplemental Figure 122

Genomic multiple codon alignments for THAP7 (NM_001008695) from 19 vertebrate species.
Synonymous codon substitutions shows as bright green, positive (in BLOSUM62 matrix) non-synonymous codon substitutions are shown in dark green,

other non-synonymous codon substitutions are shown in red, gaps in yellow and stop codons are in black.



Supplemental Figure 123

Genomic multiple codon alignments for C170rf48 (NM_024099) from 15 vertebrate species.
Synonymous codon substitutions shows as bright green, positive (in BLOSUM62 matrix) non-synonymous codon substitutions are shown in dark green,
other non-synonymous codon substitutions are shown in red, gaps in yellow and stop codons are in black.

Supplemental Figure 124

Genomic multiple codon alignments for PHPT1 (NM_001135861) from 7 vertebrate species.
Synonymous codon substitutions shows as bright green, positive (in BLOSUM62 matrix) non-synonymous codon substitutions are shown in dark green,
other non-synonymous codon substitutions are shown in red, gaps in yellow and stop codons are in black.



Supplemental Discussion

False positives, unexplained profiles, staccato reads and potential ambiguity in the functional

classification of dually coded genes.

Although we were able to identify many dually decoded regions, a number of mRNAs with a high
PTS are false positives. Sub-codon profiles of about a third of all candidates have a high PTS for
reasons other than dual translation. The most prominent example (4™ in Supplemental Table 1) is a
profile for dystrophin DMD mRNA (RefSeq NM_004010). As mentioned earlier the longest
transcript isoforms were used for the generation of sub-codon profiles in our study. However,
examination of the sub-codon profile and mRNA-seq (see Supplemental Fig. 90) reveals that RPFs
and mRNA-seq fragments cover only a small part of the DMD pORF variant and therefore are most
likely produced by a short mRNA variant. However, since the CSCPD value depends on both the
relative number of RPFs in a particular CDS region and its length, a slight deviation from the
expected RPF sub-codon distribution is amplified into a strong PTS signal by a prolonged CDS
region lacking RPFs. This example demonstrates the drawbacks of our current approach - as it

requires manual verification of the predicted candidates.

In addition to the 33 false positive candidates whose sub-codon profiles are inconsistent with dual
coding, we found 13 instances where the profiles conform to the expected distribution for dual
coding regions, but dual coding is inconsistent with the ORF organization of the available transcript
variants. The highest scoring candidate in the ‘unexplained’ category (9™ in Supplemental Table 1)
is the mRNA for protein kinase-like protein SGK196 (RefSeq NM_032237). Examination of the
corresponding profile (see Supplemental Fig. 82) shows a relatively large area of the mRNA (from

its 5’-end to about one third of CDS) where the profile is consistent with translation in the +1 frame
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relative to the CDS. However, the corresponding region of mRNA is interrupted by multiple stop

codons.

Such inexplicable profiles could be artifacts of the ribosome profiling method. Profiles with RPF
sub-codon distributions that are inconsistent with the normal reading frame are likely to arise for
statistical reasons in such a high-throughput study. Theoretically possible sequence or site-
dependency of RPF length variability may also lead to incorrect frame detection. An additional
source of errors could be ambiguous alignments, where the origin of RPFs is different from the
mRNA for which the profiles are constructed. RPFs with the same sequence could originate from
different translated mRNAs if they share significant sequence similarity. When a particular
sequence occurs in several translated mRNAs, such RPFs are aggregated and result in an enhanced
signal even in those locations of mRNAs that are not translated. We termed instances of such high
peaks staccato reads. For example, staccato reads can be seen in the profile for NM_ 001145678
mRNA (see Supplemental Fig. 76) where high density peaks occur for a couple of 3’UTR locations

in all sub-codon positions.

During our manual evaluation of sub-codon profiles, we examined whether particular high RPFs
could originate from the translation of different mRNAs. However, we cannot exclude the
possibility that particular RPFs may originate from splice junctions of mRNA variants that are not

known in the RefSeq database.

In addition, it needs to be pointed that some candidates could be classified in more than one
category. An example is NM 016556 (see Supplemental Fig. 45). The start codon of the
alternatively translated frame is located downstream of the previously predicted pORF start.

However, the observed CDS start site (second) is located downstream of the alternative start codon.

Page 84



Thus we classified this case as an overlapping uORF rather than a non-upstream protein coding

nORF.

Our classification is largely based on available data on RNA transcripts. Identification of an
alternatively decoded ORF in a particular mRNA does not necessarily mean that this ORF is
translated in the mRNA for which the sub-codon profile was built. For example, it is possible that
the region corresponding to the high density of RPFs is part of an exonic region of two mRNAs,

one of which has not been identified and therefore cannot be found in the available databases.
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R scripts for calculating PTS

#For the top 1000 expressed genes, get the 95 percentiles for the 3 sub-codon positions and write
results to csv file

gene_counter = 1

interpolation_matl = matrix(NA, nrow = 1000, ncol=100)
interpolation_mat2 = matrix(NA, nrow = 1000, ncol=100)
interpolation_mat3 = matrix(NA, nrow = 1000, ncol=100)

#Set the working directory to the folder containing the ribosome profiles of top 1000 expressed
genes
setwd("/home/1000_Genes")

top_genes <-list.files()
for (gene in top_genes) {
reads = read.table(gene, header=T, sep="")
attach(reads)

read _mat = matrix(NA, nrow = 1, ncol = length(Coordinate))

for (j in 1:length(Coordinate)){
read_mat[,j] = Count[j]}

upprop = matrix(NA,nrow = 1,ncol = length(Coordinate))
downprop = matrix(NA,nrow = 1,ncol = length(Coordinate))
seq_lengthl = (Iength(Coordinate)/3)-1

seq length2 =seq lengthl -1

#calculate the cumulative upstream proportions

denom = cumsum(read _mat[1,])

upprop[1,(1+3*(0:seq_lengthl))] = cumsum(read mat[1,(1+3*(0:seq_lengthl))])/
denom([(3+3*(0:seq_lengthl))]

upprop[1,(2+3*(0:seq_length1))] = cumsum(read mat[1,(2+3*(0:seq_length1))])/
denom([(3+3*(0:seq_lengthl))]

upprop[1,(3+3*(0:seq_lengthl))] = cumsum(read mat[1,(3+3*(0:seq_lengthl))])/
denom([(3+3*(0:seq_lengthl))]

#calculate the cumulative downstream proportions
totalsDown = rep(NA, seq_lengthl)
for (1 in 1:seq lengthl){

totalsDown[i] = sum(read mat[1+3*(i:seq_lengthl)]+ read mat[2+3*(i:seq_lengthl)]+
read mat[3+3*(i:seq_lengthl)])}
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downprop[1,(1+3*(0:seq_length2))] = rev(cumsum(rev(read mat[1,(1+3*(1:seq_lengthl))])))/
totalsDown[0:seq_lengthl]
downprop[1,(2+3*(0:seq_length2))] = rev(cumsum(rev(read mat[1,(2+3*(1:seq_lengthl))])))/
totalsDown[0:seq_lengthl]
downprop[1,(3+3*(0:seq_length2))] = rev(cumsum(rev(read mat[1,(3+3*(1:seq_lengthl))])))/
totalsDown[0:seq_lengthl]

#Calculate the CSCPD (absolute difference between cumulative upstream and downstream
proportions for sub-codon positions 1,2,3)

third full seq minusl = (length(Coordinate)/3)-1

y1 = abs(upprop-downprop)[1+3*(0:third_full seq minus1)]

yl withoutNA = y1[which(yl !="NA")] #omitting the last entries with possible NaN entries due to
division by zero and also Na's

y1 withoutNaN =yl withoutNA[which(yl withoutNA !="NaN")]

length third seq withoutNaN = length(yl withoutNaN)

length_third seq withoutNaN_ minusl= length(y1l withoutNaN)-1

y2 = abs(upprop-downprop)[2+3*(0:third_full seq minus1)]
y2_ withoutNA = y2[which(y2 !="NA")]
y2 withoutNaN = y2 withoutNA[which(y2 withoutNA !="NaN")]

y3 = abs(upprop-downprop)[3+3*(0:third_full seq minus1)]
y3 withoutNA = y3[which(y3 != "NA")]
y3 withoutNaN = y3 withoutNA[which(y3 withoutNA !="NaN")]

x1 = 1+3*(0:length_third seq withoutNaN minusl)
x2 = 2+3*(0:length_third seq withoutNaN minusl)
x3 =3+3*(0:length_third seq withoutNaN minusl)

#Converting all coordinates in coding region to relative values between 0 and 1 and using a
smoothing function

ys1 = smooth.spline(x1/(length_third seq withoutNaN*3),yl withoutNaN)

ys2 = smooth.spline(x2/(length_third seq withoutNaN*3),y2 withoutNaN)

ys3 = smooth.spline(x3/(length_third seq withoutNaN*3),y3 withoutNaN)

#Sampling 100 equidistant CSCPD values between 0 and 1
xout = 0.01*(1:100)

youtl = predict(ys1,xout)$y

yout2 = predict(ys2,xout)$y

yout3 = predict(ys3,xout)$y

interpolation_matl[gene counter,] = youtl
interpolation _mat2[gene counter,] = yout2

interpolation_mat3[gene counter,] = yout3

gene_counter = gene _counter+1
detach(reads)
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#to get the 95th quantiles

cnames = c("Percentile P1", "Percentile P2", "Percentile P3")

rnames = rep("",100)

quantiles 95 = matrix(0, nrow = 100, ncol=3,dimnames=list(rnames,cnames))

for(j in 1:100){
quantiles 95[j,1] = quantile(interpolation_mat1[,j],0.95,na.rm =T)
quantiles 95[j,2] = quantile(interpolation_mat2[,j],0.95,na.rm = T)
quantiles_95[j,3] = quantile(interpolation_mat3[,j],0.95,na.rm = T)}

write.csv(quantiles 95, file = "/home/quantiles 95.csv",col.names = TRUE, row.names = FALSE)

HH B
#To determine the PTS for batches of 1000 genes

#Read in the 100 95th quantile values obtained previously
percentiles=read.csv("/home/quantiles 95.csv", header=T)
attach(percentiles)

xout = 0.01*(1:100)

#Calculate the difference between the gene's CSCPDs and the 95th quantiles and cumulate to get
the PTS for each sub-codon position and total PTS

gene counter = 1

#Getting the PTS for a group of 1000 genes
difference_matl = matrix(NA, nrow = 1000, ncol=100)
difference mat2 = matrix(NA, nrow = 1000, ncol=100)
difference_mat3 = matrix(NA, nrow = 1000, ncol=100)

#to get a vector first of all the gene names in the folder which can then be fed into the PTS matrix as
row names

rnames = rep("",1000)

cnames = c¢("PTS1", "PTS2", "PTS3", "PTS")

PTS = matrix(0, nrow = 1000, ncol=4, dimnames=list(rnames,cnames))

setwd("/home/Genes/")
high genes <-list.files()
for (gene in high genes) {
print (gene_counter)
rnames[gene counter| = gene
reads = read.table(gene, header=T, sep=",")
attach(reads)

read mat = matrix(NA, nrow = 1, ncol = length(Coordinate))
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for (j in 1:length(Coordinate)){
read_mat[,j] = Count[j]}

upprop = matrix(NA,nrow = 1,ncol = length(Coordinate))
downprop = matrix(NA,nrow = 1,ncol = length(Coordinate))
seq_lengthl = (length(Coordinate)/3)-1

seq_length2 = seq lengthl - 1

#calculate the cumulative upstream proportions

denom = cumsum(read_mat[1,])

upprop[1,(1+3*(0:seq_length1))] = cumsum(read mat[1,(1+3*(0:seq_length1))])/
denom[(3+3*(0:seq_lengthl))]

upprop[1,(2+3*(0:seq_length1))] = cumsum(read mat[1,(2+3*(0:seq_length1))])/
denom[(3+3*(0:seq_lengthl))]

upprop[1,(3+3*(0:seq_length1))] = cumsum(read mat[1,(3+3*(0:seq_length1))])/
denom[(3+3*(0:seq_lengthl))]

#calculate the cumulative downstream proportions

totalsDown = rep(NA, seq_lengthl)

for (iin 1:seq lengthl){

totalsDown[i] = sum(read mat[1+3*(i:seq_lengthl)]+ read mat[2+3*(i:seq_lengthl)]+
read mat[3+3*(i:seq_lengthl)])}

downprop[1,(1+3*(0:seq_length2))] = rev(cumsum(rev(read mat[1,(1+3*(1:seq_lengthl))])))/
totalsDown[0:seq_lengthl]
downprop[1,(2+3*(0:seq_length2))] = rev(cumsum(rev(read mat[1,(2+3*(1:seq_lengthl))])))/
totalsDown[0:seq lengthl]
downprop[1,(3+3*(0:seq_length2))] = rev(cumsum(rev(read mat[1,(3+3*(1:seq lengthl))])))/
totalsDown[0:seq_lengthl]

#Calculate the CSCPD (absolute difference between cumulative upstream and downstream
proportions for sub-codon positions 1,2,3)
third full seq minusl = (length(Coordinate)/3)-1

y1 = abs(upprop-downprop)[1+3*(0:third full seq minusl)]

yl withoutNA = y1[which(yl !="NA")]

y1 withoutNaN =yl withoutNA[which(yl withoutNA !="NaN")]
length third seq withoutNaN = length(y1 withoutNaN)
length_third seq withoutNaN minus1= length(yl withoutNaN)-1

y2 = abs(upprop-downprop)[2+3*(0:third_full seq minusl)]
y2_ withoutNA = y2[which(y2 !="NA")]
y2 withoutNaN = y2 withoutNA[which(y2 withoutNA !="NaN")]

y3 = abs(upprop-downprop)[3+3*(0:third full seq minusl)]

y3_ withoutNA = y3[which(y3 !="NA")]
y3 withoutNaN = y3 withoutNA[which(y3 withoutNA !="NaN")]
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x1 = 1+3*(0:length_third seq withoutNaN minusl)
x2 = 2+3*(0:length_third seq withoutNaN_ minusl)
x3 = 3+3*(0:length_third seq withoutNaN minusl)

ysl = smooth.spline(x1/(length_third seq withoutNaN*3),yl withoutNaN)
ys2 = smooth.spline(x2/(length _third seq withoutNaN*3),y2 withoutNaN)
ys3 = smooth.spline(x3/(length _third seq withoutNaN*3),y3 withoutNaN)

xout = 0.01*(1:100)

youtl = predict(ys1,xout)$y
yout2 = predict(ys2,xout)$y
yout3 = predict(ys3,xout)$y

difference_matl[gene counter,] = youtl - Percentile P1
difference_mat2[gene counter,] = yout2 - Percentile P2
difference_mat3[gene counter,] = yout3 - Percentile P3

for (j in 1:100)

{
if (as.numeric(difference matl[gene counter,j]) >= 0){
PTS[gene counter,1] =PTS[gene counter,1] + difference matl[gene counter,j]
}
if (difference mat2[gene counter,j] >= 0){
PTS[gene counter,2] = PTS[gene counter,2] + difference_mat2[gene counter,j]
}
if (difference mat3[gene counter,j] >= 0){
PTS[gene counter,3] = PTS[gene counter,3] + difference mat3[gene counter,j]
}
}

PTS[gene counter,4] = PTS[gene counter,1]+ PTS[gene counter,2] + PTS[gene counter,3]
gene_counter = gene_counter+1

detach(reads)

}

write.csv(PTS, file = "/home/PTS.csv",col.names = TRUE, row.names = rnames)
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