Code for GENOME /2011/134767

Please find the original R code included as an attachment to this document.

’

platform =
rfhome = "’
source(paste(rfhome, ’/rulefit.r’, sep=""))
library(akima, lib.loc=rfhome)

library(rms)

if (Yexists(’x_long’)) {

’

xpr_dir <-

x_long <- read.table(paste(xpr_dir, ’gencode_v7_hgl19_gn_with115_cshl_long_quantif_All.txt’, sep=""),
header = T, row.names=1)
x_long <- x_long[sort(names(x_long))]

xnames <- names(x_long)
names(xnames) <- names(x_long)
for (i in names(x_long)) {

num <- which(names(x_long) == i)

i <- strsplit(i, ’_’)LL1]]

j <= il3]

if (i[2] == 'LONGPOLYA’) j <- c(j, ’PolyA+’)

if (i[2] == ’LONGNONPOLYA’) j <- c(j, ’'PolyA-")

if (i[2] == ’TOTAL’) j <- c(j, ’Total’)

if (i[4] == "CELL’) j <- c(j, "Whole Cell™)

else j <- c(j, paste(toupper(substring(i[4], 1, 1)), tolower(substring(i[4]1, 2)),
sep="", collapse=" "))

if (as.integer(i[5]1) %% 2 !=0) j <= c(j, ’'Repl’)
else j <- c(j, ’Rep2’)
xnames[num] <- paste(j, collapse=’ ’)

3

gencode_long <- 1:dim(x_long)[1]
gencode_long[1:18063] <- 1
gencode_long[18064:1ength(gencode_long)] <- 0

y_long_gm12878 <- read.table(paste(xpr_dir,
’gencode_v7_hg19_gn_with115_cshl_long_quantif_All_prots_GM12878_third.txt’, sep=""),
header = F, row.names=1)

y_long_k562 <- read.table(paste(xpr_dir,
’gencode_v7_hg19_gn_with115_cshl_long_quantif_All_prots_K562_third.txt’, sep=""),
header = F, row.names=1)

y_long_gm12878_nuclear <- read.table(paste(xpr_dir,
’gencode_v7_hg19_gn_with115_cshl_long_quantif_All_prots_GM12878_nuclear.txt’, sep=’"),
header = F, row.names=1)

y_long_gm12878_membrane <- read.table(paste(xpr_dir,
"gencode_v7_hg19_gn_with115_cshl_long_quantif_All_prots_GM12878_membrane.txt’, sep="’),
header = F, row.names=1)

y_long_gm12878_mito <- read.table(paste(xpr_dir,
’gencode_v7_hg19_gn_with115_cshl_long_quantif_All_prots_GM12878_mito.txt’, sep=""),
header = F, row.names=1)

y_long_gm12878_cell <- read.table(paste(xpr_dir,
’gencode_v7_hg19_gn_with115_cshl_long_quantif_All_prots_GM12878_cell.txt’, sep=""),
header = F, row.names=1)

y_long_k562_nuclear <- read.table(paste(xpr_dir,
’gencode_v7_hg19_gn_with115_cshl_long_quantif_All_prots_K562_nuclear.txt’, sep=’’),
header = F, row.names=1)

y_long_k562_cytosol <- read.table(paste(xpr_dir,
’gencode_v7_hg19_gn_with115_cshl_long_quantif_All_prots_K562_cytosol.txt’, sep=""),
header = F, row.names=1)

y_long_k562_membrane <- read.table(paste(xpr_dir,
’gencode_v7_hg19_gn_with115_cshl_long_quantif_All_prots_K562_membrane.txt’, sep=’’),
header = F, row.names=1)

y_long_k562_mito <- read.table(paste(xpr_dir,
’gencode_v7_hg19_gn_with115_cshl_long_quantif_All_prots_K562_mito.txt’, sep="’),
header = F, row.names=1)

y_long_k562_cell <- read.table(paste(xpr_dir,
"gencode_v7_hg19_gn_with115_cshl_long_quantif_All_prots_K562_cell.txt’, sep=""),
header = F, row.names=1)

rnas = c(’long’)
cell_lines = c(’gm12878’, 'k5627)

compartments <- c(’cytosol’, ’'cell’, ’nucleoplasm’, ’chromatin’, ’nucleus’,

polya <- ’[“*non]polya’
nonpolya <- ’nonpolya’
repl <- ’_[13]’
rep2 <- ’_[24]’

gx <- function(..., dataset="long’){
pattern <- list(...)
xt <- get(paste(’'x’, dataset, sep="_"))
xfilt <- 1:length(xt)
for (p in pattern){
if (p=="all") {p< "}

if (p == ’polya’) { p <= "[*nonlpolya’ }

xfilt <- intersect(xfilt, grep(tolower(p), tolower(names(xt))))

3
if (length(xfilt)!=0)
return(xt[xfilt])
else
return(F)

make_sample <- function(y, sample_length=1, type=’remain’, k=10) {
yc_nz <- which(y>0)
yc_z <- which(y<=0)

smpl_len <- length(yc_nz)*sample_length/2
smpl_nz <- sample(yc_nz, smpl_len)
smpl_z <- sample(yc_z, smpl_len)

smpl_trn <- c(smpl_nz, smpl_z)
smpl_nontrn <- (1:length(y))[-smpl_trn]
if (type==’same’) smpl_test <- sample(smpl_nontrn, smpl_len)
else smpl_test <- smpl_nontrn
if (type=="all’) smpl_test <- 1:length(y)
if (type == "xv’) {
smpl_xv <- c()
smpl <- sample(1:1length(y))

"nucleol’)

len <- length(y)/k
for (i in 1:k) smpl_xv <- cbind(smpl_xv, list(smpl[seq((i-1)*len+1,i*len)]))
return(smpl_xv)
3
else return(list(train=smpl_trn, test=smpl_test))

}

model_fit <- function(x, y, model="rulefit’, signif=0, sample_length=1, test=’remain’, xv=NULL,

second.order=TRUE, maxit=1000,

sparse=1, tree.size=4, mod.sel=2, costs=c(1,1),
model.type="both",
)
{
yc <=y
ycly>signif] <- 1
if (model==’"rulefit’) {
ycly<=signif] <- -1
3
else {
ycly<=signif] <- 0
3
if (lis.null(xv)) {
if (test!="xv’) {
print(’Warning: test method other than \"xv\" provided, using \"xv\" instead’)
test <- "xv’
}
3
if (test=="xv’) {
if (is.null(xv)) print(’Error: no cross-validation sample (xv)’)
smpl_trn <- xv$train
smpl_test <- xv$test
3
else {
tmp <- make_sample(yc, type=test)
smpl_trn <- tmp$train
smpl_test <- tmp$test
}
if (is.data.frame(test)) {
if (lexists(test$x) | !exists(test$y)) print(’Error: wrong test set, use data.frame(y=...
Xt <- as.matrix(test$x)

yt <- test$y

3
else {
if (test != ’same’ & test != ’remain’ & test != ’all’ & test != "xv’) {
print(CError: test set is not a data.frame’)
3

xt <- as.matrix(x[smpl_test,])
yt <- yc[smpl_test]

3
if (model == ’rulefit’) {
fit <- rulefit(x=as.matrix(x[smpl_trn,]1), y=yc[smpl_trn], rfmode=’class’, quiet=T, ...)

fitted <- rfpred(xt)

fitted[fitted==-1] <- 0

ytlyt==-1] <- 0

vimp_tmp <- varimp(plot=F)

vimp <- data.frame(varimp=vimp_tmp$imp, row.names=names(x)[vimp_tmp$ord])

gof <- NULL
3
if (model == "1rm’) {
if (second.order) formula <-y ~ .72

else formula <- y ~ .
fit <- 1rm(formula, data=data.frame(y=yc,x), subset=smpl_trn,
x=TRUE, y=TRUE, se.fit=TRUE, maxit=maxit)
fitted <- predict.lrm(fit, newdata=xt)
vimp_tmp <- fastbw(fit, rule=’aic’, aics=10000)
vimp <- data.frame(varimp=vimp_tmp$result[,3]*100, row.names=names(vimp_tmp$resultl[,31))
gof <- residuals.lrm(fit, type=’gof’)
3

return(list(X = X,
Xt = xt,
y = data.frame(fitted = fitted, true = yt),
smpl_trn = smpl_trn,
smpl_test = smpl_test,
model = fit,
gof = gof,
vimp = vimp

))

calc_metrics <- function(dataframe, cutoff=0.5) {

Y <- dataframe$true

yhat <- dataframe$fitted

tp <- sum(Y == 1 & yhat >= cutoff)

tn <- sum(Y != 1 & yhat < cutoff)

fp <= sum(Y != 1 & yhat >= cutoff)

fn <- sum(Y == 1 & yhat < cutoff)

prec <- tp/(tp+fp)

recall <- tp/(tp+fn)

return(list(len=length(Y),
tp=tp,
tn=tn,
fp=fp,
fn=fn,
fpr=fp/tp,
fnr=fn/tn,
accuracy=(tpt+tn)/length(Y),
prec=prec,
recall=recall,
F1=2%prec*recall/(prectrecall),
FO5=(1+0.5*2)*prec*recall/(0.5"2*prec+trecall),
F2=(1+2*2)*prec*recall/(2*2*prec+recall)))

calc_cutoff <- function(range, dataframe, metric = ’F1’, quiet=T) {
r=cQ)
for (i in range) {
r <- c(r, calc_metrics(dataframe, i)[metric][[1]1])
3
if (!quiet) print(calc_metrics(dataframe, rangel[which.max(r)1))
return(range[which.max(r)])

}

normalize <- function(dataframe, cutoff=0.5) {
fitted_norm <- dataframe$fitted
fitted_norm[fitted_norm >= cutoff] = 1
fitted_norm[fitted_norm < cutoff] = 0
return(data.frame(fitted=fitted_norm, true=dataframe$true))

b

xval <- function(x, y, k=10, cutoff=0, metric=NULL, ...) {
smpl <- make_sample(y=y, type=’xv’, k=k)
r <-cQ)
vimp <- 7’

parameters <- list(...)

if (length(parameters)==0) parameters <- list(NULL=NULL)

longnames <- TRUE

if (exists(’model’, parameters)) if (parameters$model=="1rm’) longnames <- FALSE

for (i in 1:k) {

smpl_i <- data.frame(train=unlist(smpl[,-i]), test=unlist(smpl[,il))

fitted <- model_fit(x, y, test="xv’, xv=smpl_i, ...)

if (!'is.null(metric)) {

co <- calc_cutoff(seq(-5,5,0.1), fitted$y, metric = metric)
ms <- calc_metrics(fitted$y, cutoff=co)
3

else ms <- calc_metrics(fitted$y, cutoff=cutoff)

r <- rbind(r, matrix(c(ms$accuracy, ms$prec, ms$recall, ms$F1, ms$F05, ms$F2),
nrow=1, ncol=6,
dimnames=1ist(i,c(’accuracy’,’precision’,’recall’,’F1’,’F(0.5)","F(2)"))
)

)
if (longnames) vimp <- paste(vimp, i, paste(’\t’, xnames[row.names(fitted$vimp)[1:5]1],
'\t’, fitted$vimp[1:5,], collapse=’\n’),
"\n’, sep="")
else vimp <- paste(vimp, i, paste(’\t’, row.names(fitted$vimp)[1:5],
"\t’, fitted$vimp[1:5,], collapse="\n’),
"\n’, sep="")
3
return(list(measures=r, vimp=vimp))

b

expect <- function(y) {
mrna <- 100xsum(1/(1+exp(-y$fitted[gencode_long==1])))/sum(gencode_long==1)
Incrna <- 100*sum(1/(1+exp(-y$fitted[gencode_long==0])))/sum(gencode_long==0)
print(paste(’mRNA’ ,mrna))
print(paste(’1ncRNA’,1lncrna))
return(list(mrna=mrna, lncrna=lncrna))

b

viplot <- function(vimp, num=FALSE) {
if ('num) num <- dim(vimp)[1]
par(mar=c(20,4,4,2))
barplot(as.matrix(vimp)[1:num], beside=T, space=0.3, names.arg=row.names(vimp)[1:num],
ylim=c(0,100), las=2)

pairplots <- function() {
rf <- model_fit(gx(’gm12878’, repl), y_long_gm12878)
pdf (' gm12878-pairplots.pdf’)
1 <- dim(rf$x)[2]
for (i in 1:(1-1)) {
for (3 in (i+1):1) {
pairplot(i,j)
3

3
dev.off()

rf <- model_fit(gx(’k562’, repl), y_long_k562)
pdf (’k562-pairplots.pdf’)
1 <= dim(rf$x)[2]
for (i in 1:(1-1)) {
for (j in (i+1):1) {
pairplot(i,j)
}
3
dev.off()
}

if (lexists(’minx’)) minx <- min(logl10(unlist(x_long))[log10(unlist(x_long))!=-Inf])
if (lexists(’maxx’)) maxx <- max(logl0(unlist(x_long))[logl0(unlist(x_long))!=-Inf])

scatterplots <- function() {
labels <- c(’Whole Cell’, ’Cytosol’, ’Nucleus’, ’PolyA+’, ’PolyA-’)

names(labels) <- c(’cell’, ’cytosol’, ’'nucleus’, ’polya’, ’nonpolya’)
pdf (’scatterplots.pdf”’)
for (compartment in c(’cell’, ’cytosol’, ’nucleus’)) {

for (pa in c(’polya’, ’'nonpolya’)) {

X = rowMeans(gx(’gm12878’, compartment, pa, dataset=’"long’))

y = y_long_gm12878[[1]]

fm = Im(log10(y)~logl10(x), subset=(y!=0&x!=0))

rsq = summary(fm)["r.squared”]

corr = cor.test(x, y, method="spearman’, exact=FALSE)

smoothScatter(

x=log10(rowMeans(gx(’gm12878’, compartment, pa, dataset="long’)))[gencode_long==1],

y=log10(y_long_gm12878[[1]])[gencode_long==11],
xlab=expression(paste(log[10], RPKM)),
ylab=expression(paste(log[10], sum(E-scores))),

main="",

nrpoints=0, xlim=c(minx,maxx), ylim=c(2,5.5), xaxs=’1i’, yaxs=’1i’

)
title(main = paste(’GM12878’, labels[compartment], labels[pal))
mtext(substitute(paste(r*2 == a, ’, Spearman ’, rho == b), list(a=format(rsq, digits=4),

b=format(corr$estimate, digits=4))), line=0.35, cex=0.85)

points(x=logl0(rowMeans(gx(’gm12878’, compartment, pa, dataset="long’)))[gencode_long!=1],
y=log10(y_long_gm12878[[1]])[gencode_long!=1],
pch=16, cex=1, col="#FF9000C0", xlim=c(minx,maxx), ylim=c(2,5.5), xaxs=’i’, yaxs="i

)

’

3
for (compartment in c(’cell’, ’cytosol’, ’nucleus’)) {
for (pa in c(’polya’, ’'nonpolya’)) {
X = rowMeans(gx(’k562’, compartment, pa, dataset=’long’))
y = y_long_k562[[11]

fm = Im(log10(y)~logl10(x), subset=(y!=0&x!=0))

rsq = summary(fm)["r.squared"”]

corr = cor.test(x, y, method="spearman’, exact=FALSE)

smoothScatter(x=logl0(rowMeans(gx(’k562’, compartment, pa, dataset=’long’)))[gencode_long==1],
y=log10(y_long_k562[[1]1])[gencode_long==1],
xlab=expression(paste(log[10],RPKM)),
ylab=expression(paste(log[10], sum(E-scores))),
main="",
nrpoints=0, xlim=c(minx,maxx), ylim=c(2,5.5), xaxs=’1i’, yaxs=’1i’

)
title(main = paste(’K562’, labels[compartment], labels[pal))
mtext(substitute(paste(r*2 == a, ’, Spearman ’, rho == b), list(a=format(rsq, digits=4),

b=format(corr$estimate, digits=4))), line=0.35, cex=0.85)

points(x=logl0(rowMeans(gx(’k562’, compartment, pa, dataset=’long’)))[gencode_long!=1],
y=log10(y_long_k562[[1]1])[gencode_long!=1],
pch=16, cex=1, col="#FF9000C0",
xlim=c(minx,maxx), ylim=c(2,5.5), xaxs="1i’, yaxs='1i’)

3
dev.off ()

3

twovarints <- function() {
print(’GM12878:)
pdf (’ twovarint-gm12878-rep1-1_vs_all.pdf’)
rf <- model_fit(gx(’gm12878’, repl), y_long_gm12878)
null.mods <- intnull(minimized=T)
par(mar=c(18.1, 6.1, 4.1, 2.1))
for (i in 1:length(names(rf$x))) { twovarint(names(rf$x)[i], names(rf$x)[-i], null.mods) }
dev.off ()

print(’K562: 7)

pdf (’ twovarint-k562-rep1-1_vs_all.pdf’)

rf <- model_fit(gx(’k562", repl), y_long_k562)

null.mods <- intnull(minimized=T)

par(mar=c(18.1, 6.1, 4.1, 2.1))

for (i in 1:length(names(rf$x))) { twovarint(names(rf$x)[i], names(rf$x)[-i], null.mods) }
dev.off()

}

singleplots <- function() {
pdf (’singleplots-gm12878.pdf’)
rf <- model_fit(gx(’gm12878’, repl), y_long_gm12878)
for (i in 1:length(names(rf$x))) { singleplot(names(rf$x)[i]) }
dev.off()

pdf (’singleplots-k562.pdf’)
rf <- model_fit(gx(’k562’, repl), y_long_k562)

for (i in 1:length(names(rf$x))) { singleplot(names(rf$x)[il) }

dev.off()
}
m_gm <- matrix(c(

c(0, 0, 0, 0, 0, 0,
c(0, 0, 0, 1, 1, 0),
c(0, 0, 0, 1, 0, 0),
c(o, 0, 0, 0, 0, 0),
c(0, 0, 0, 0, 0, D,
c(0, 0, 0, 0, 0, 0)

m_k

), nrow = 6, ncol=6, byrow=T)

<- matrix(c(

c(0, 1, 0, 1, 0, 0, 0, 0, 0),
c(o, 0, 0, 1, 1, 1, 1, 0, 0),
c(0, o, 0, 0, 0, 0, 0, 0, 0),
c(o, o, 0, 0, 0, 0, 1, 0, 0),
c(0, o, 0, 0, 0, 0, 1, 0, 0),
c(o, o, 0, 0, 0, 0, 0, 0, 0),
c(0, 0, 0, 0, 0, 0, 0, 1, 0),
c(o, o, 0, 0, 0, 0, 0, 0, 0),
c(o, o, 0, 0, 0, 0, 0, 0, 0)

), nrow = 9, ncol=9, byrow=T)

pairplots2 <- function() {

result <- model_fit(gx(’gm12878’, repl), y_long_gm12878)
pdf (’ 3D-pairplots-gm12878.pdf’)
1 <- dim(result$x)[2]
for (i in 1:(1-1)) {
for (3 in (i+1):1) {
if (m_gm[i,j1!=0) pairplot(i,j, type=’persp’, theta=-40, phi=30)
3

3
dev.off()
result <- model_fit(gx(’k562’, repl), y_long_k562)
pdf (’3D-pairplots-k562.pdf’)
1 <- dim(result$x)[2]
for (i in 1:(1-1)) {
for (3 in (i+1):1) {
if (m_k[i,j1!=0) pairplot(i,j, type=’persp’, theta=-40, phi=30)
3
3
dev.off()

}

varimps <- function() {

model_fit(gx('gm12878’, repl), y_long_gm12878)
pdf (’varimp-gm12878-repl.pdf’)
par(mar=c(20.1, 6.1, 4.1, 2.1))

10

varimp()

dev.off()

model_fit(gx(’'gm12878’, rep2), y_long_gm12878)
pdf (’varimp-gm12878-rep2.pdf’)

par(mar=c(20.1, 6.1, 4.1, 2.1))

varimp()

dev.off()

model_fit(gx('k562’, repl), y_long_k562)

pdf (’varimp-k562-repl-all.pdf’)
par(mar=c(20.1, 6.1, 4.1, 2.1))

varimp()

dev.off()

model_fit(gx('k562’, rep2), y_long_k562)

pdf (’varimp-k562-rep2-all.pdf’)
par(mar=c(20.1, 6.1, 4.1, 2.1))

varimp()

dev.off ()

model_fit(gx('k562’, ’nucleus|cytosol|cell’, repl), y_long_k562)
pdf (’varimp-k562-repl-overlap.pdf’)
par(mar=c(20.1, 6.1, 4.1, 2.1))

varimp()

dev.off()

model_fit(gx('k562’, ’nucleus|cytosol|cell’, rep2), y_long_k562)
pdf (’varimp-k562-rep2-overlap.pdf’)
par(mar=c(20.1, 6.1, 4.1, 2.1))

varimp()

dev.off()

}

correlation <- function(method=’spearman’) {
r <-cQ)
for (column in names(gx(’gm12878’))) {
ct <- cor.test(x_long[column][[11], y_long_gm12878[[2]1],
method=method, exact=FALSE)
r <- rbind(r, matrix(c(ct$estimate, ct$p.value),
nrow=1, ncol=2, dimnames=list(xnames[column],c(’estimate’,’p_value’))))
3
for (column in names(gx(’k5627))) {
ct <- cor.test(x_long[column][[1]], y_long_k562[[2]],
method=method, exact=FALSE)
r <- rbind(r, matrix(c(ct$estimate, ct$p.value),
nrow=1, ncol=2, dimnames=list(xnames[column],c(’estimate’,’p_value’))))
3
return(r)

b

boxplots <- function() {
p:y_long_gm1 2878[[2]]

11

ply_long_gm12878[[2]1]==11=1
pLy_long_gm12878[[2]]1>=28&y_long_gm12878[[2]]<=5]=2
ply_long_gm12878[[2]1]1>=6&y_long_gm12878[[2]11<=10]1=3
ply_long_gm12878[[2]1]1>=118&y_long_gm12878[[2]]<=20]=4
ply_long_gm12878[[2]11>=218&y_long_gm12878[[2]1<=50]=5
ply_long_gm12878[[2]1>=51&y_long_gm12878[[2]]1<=100]=6
ply_long_gm12878[[2]11>=101&y_long_gm12878[[2]]1<=200]=7
ply_long_gm12878[[2]]>=2018&y_long_gm12878[[2]]1<=300]=8
pLy_long_gm12878[[2]]>=301]=9

pg=factor(p)

p=y_long_k562[[2]]

ply_long_k562[[2]]==1]=1
pLy_long_k562[[2]1]1>=2&y_long_k562[[2]]<=5]=2
pLy_long_k562[[2]11>=6&y_long_k562[[2]]<=10]=3
pLy_long_k562[[2]1>=11&y_long_k562[[2]]1<=20]=4
ply_long_k562[[2]1>=218&y_long_k562[[2]1]1<=50]=5
pLy_long_k562[[2]1]1>=518y_long_k562[[2]]1<=100]=6
ply_long_k562[[2]1]>=1018&y_long_k562[[2]]<=200]=7
ply_long_k562[[2]11>=2018&y_long_k562[[2]11<=300]=8
pLy_long_k562[[2]]1>=301]=9

pk=factor(p)

pdf (’boxplots.pdf’)
for (i in names(gx(’gm12878’))) {
boxplot(x~grp, data=data.frame(x=1log10(gx(’gm12878’))[,i], grp=pg),
notch=F,
names=c(’0’, ’1’, ’[2, 51’, ’'[6, 10]’, '[11, 20]’, ’[21, 5017,
’[51, 1001’7, ’[101, 2001’, ’[201, 300]’,
expression(paste(’[301, ’,infinity,’1%))),
ylim=c(-4,4),
las=2,
ylab=expression(paste(log[10],RPKM)),
main=paste(c(’Peptide hits for ’,xnames[i]),sep=’’,collapse=""))
3
for (i in names(gx('k5627))) {
boxplot(x~grp, data=data.frame(x=1log10(gx(’k562’))[,1]1, grp=pk),
notch=F,
names=c(’0’, ’1’, ’[2, 51’, ’'[6, 10]’, '[11, 20]’, ’[21, 5017,
’[51, 1001’7, ’[101, 200]’, ’[201, 300]’,
expression(paste(’[301, ’,infinity,’1%))),

ylim=c(-4,4),
las=2,
ylab=expression(paste(log[10],RPKM)),
main=paste(c(’Peptide hits for ’,xnames[i]),sep=’’,collapse=""))
3
dev.off()

12

########## Initialization for RuleFit, see http://www-stat.stanford.edu/~jhf/R-RuleFit.html for instructions
platform = '' # 'linux' or 'windows'
rfhome = '' # directory with the RuleFit files
source(paste(rfhome, '/rulefit.r', sep='')) # initialize RuleFit
library(akima, lib.loc=rfhome)
########## Other packages
library(rms)

########## Load input files
if (!exists('x_long')) {
 xpr_dir <- '' # expression and peptide hit data directory
 # read expression data (x)
 # header: names of experiments,
 # format: "RNASEQ_LongOrShortAndPolyaOrNonpolya_CellLine_Compartment_Replicate"
 # columns: experiments
 # rows: genes
 # cells: RPKM
 # sorted by GENCODE genes (1-18063: coding, 18064-27340: noncoding)
 x_long <- read.table(paste(xpr_dir, 'gencode_v7_hg19_gn_with115_cshl_long_quantif_All.txt', sep=''),
 header = T, row.names=1)
 x_long <- x_long[sort(names(x_long))]
 # XXX remark: currently only the long RNAs are used
 # store the legible names in 'xnames'
 xnames <- names(x_long)
 names(xnames) <- names(x_long)
 for (i in names(x_long)) {
 num <- which(names(x_long) == i)
 i <- strsplit(i, '_')[[1]]
 j <- i[3] # cell line
 if (i[2] == 'LONGPOLYA') j <- c(j, 'PolyA+')
 #if (i[2] == 'LONGNONPOLYA') j <- c(j, 'PolyA−')
 if (i[2] == 'LONGNONPOLYA') j <- c(j, 'PolyA-')
 if (i[2] == 'TOTAL') j <- c(j, 'Total')
 if (i[4] == 'CELL') j <- c(j, "Whole Cell")
 else j <- c(j, paste(toupper(substring(i[4], 1, 1)), tolower(substring(i[4], 2)),
 sep="", collapse=" "))
 if (as.integer(i[5]) %% 2 != 0) j <- c(j, 'Rep1')
 else j <- c(j, 'Rep2')
 xnames[num] <- paste(j, collapse=' ')
 }
 # GENCODE labels (1 if coding, 0 is non-coding)
 gencode_long <- 1:dim(x_long)[1]
 gencode_long[1:18063] <- 1 # GENCODE coding genes
 gencode_long[18064:length(gencode_long)] <- 0 # GENCODE non-coding genes
 # header: sum(E_score) and num_prots
 # columns: E-score and number of peptides
 # rows: genes
 # pooled peptides
 # GM12878
 y_long_gm12878 <- read.table(paste(xpr_dir,
 'gencode_v7_hg19_gn_with115_cshl_long_quantif_All_prots_GM12878_third.txt', sep=''),
 header = F, row.names=1)
 # K562
 y_long_k562 <- read.table(paste(xpr_dir,
 'gencode_v7_hg19_gn_with115_cshl_long_quantif_All_prots_K562_third.txt', sep=''),
 header = F, row.names=1)
 # peptides by compartment
 # GM12878
 y_long_gm12878_nuclear <- read.table(paste(xpr_dir,
 'gencode_v7_hg19_gn_with115_cshl_long_quantif_All_prots_GM12878_nuclear.txt', sep=''),
 header = F, row.names=1)
 y_long_gm12878_membrane <- read.table(paste(xpr_dir,
 'gencode_v7_hg19_gn_with115_cshl_long_quantif_All_prots_GM12878_membrane.txt', sep=''),
 header = F, row.names=1)
 y_long_gm12878_mito <- read.table(paste(xpr_dir,
 'gencode_v7_hg19_gn_with115_cshl_long_quantif_All_prots_GM12878_mito.txt', sep=''),
 header = F, row.names=1)
 y_long_gm12878_cell <- read.table(paste(xpr_dir,
 'gencode_v7_hg19_gn_with115_cshl_long_quantif_All_prots_GM12878_cell.txt', sep=''),
 header = F, row.names=1)
 # K562
 y_long_k562_nuclear <- read.table(paste(xpr_dir,
 'gencode_v7_hg19_gn_with115_cshl_long_quantif_All_prots_K562_nuclear.txt', sep=''),
 header = F, row.names=1)
 y_long_k562_cytosol <- read.table(paste(xpr_dir,
 'gencode_v7_hg19_gn_with115_cshl_long_quantif_All_prots_K562_cytosol.txt', sep=''),
 header = F, row.names=1)
 y_long_k562_membrane <- read.table(paste(xpr_dir,
 'gencode_v7_hg19_gn_with115_cshl_long_quantif_All_prots_K562_membrane.txt', sep=''),
 header = F, row.names=1)
 y_long_k562_mito <- read.table(paste(xpr_dir,
 'gencode_v7_hg19_gn_with115_cshl_long_quantif_All_prots_K562_mito.txt', sep=''),
 header = F, row.names=1)
 y_long_k562_cell <- read.table(paste(xpr_dir,
 'gencode_v7_hg19_gn_with115_cshl_long_quantif_All_prots_K562_cell.txt', sep=''),
 header = F, row.names=1)
 }

########## Variables for experiment selection:
#rnas = c('long', 'short') # short is currently not used
rnas = c('long')
cell_lines = c('gm12878', 'k562')
compartments <- c('cytosol', 'cell', 'nucleoplasm', 'chromatin', 'nucleus', 'nucleol')
polya <- '[^non]polya'
nonpolya <- 'nonpolya'
rep1 <- '_[13]' # replicate 1 or 3
rep2 <- '_[24]' # replicate 2 or 4

########## Functions
Experiment selection # Remark: ability to treat short RNA data is included
gx <- function(..., dataset='long'){ # ...: list of properties, dataset: "long" or "short"
 pattern <- list(...)
 xt <- get(paste('x', dataset, sep='_')) # x_long or x_short
 xfilt <- 1:length(xt)
 for (p in pattern){
 if (p == 'all') { p <- '' }
if ((dataset=='short') & (p=='polya')) { p <- '' } # not used
 if (p == 'polya') { p <- '[^non]polya' } # fallback if "polya" variable is not used
 xfilt <- intersect(xfilt, grep(tolower(p), tolower(names(xt))))
 }
 if (length(xfilt)!=0)
 return(xt[xfilt])
 else
 return(F)
 }

Make sample
'all', 'same', 'remain': 50-50% peptide-no_peptide sample
'xv': sample for cross-validation (partition to k parts)
make_sample <- function(y, sample_length=1, type='remain', k=10) {
 yc_nz <- which(y>0) # indices of nonzero peptide
 yc_z <- which(y<=0) # indices of zero peptide
 # make a training set with 50% zero and nonzero peptide hits
 smpl_len <- length(yc_nz)*sample_length/2
 smpl_nz <- sample(yc_nz, smpl_len)
 smpl_z <- sample(yc_z, smpl_len)
 # combine training set
 smpl_trn <- c(smpl_nz, smpl_z)
 smpl_nontrn <- (1:length(y))[-smpl_trn]
 if (type=='same') smpl_test <- sample(smpl_nontrn, smpl_len) # test on same length
 else smpl_test <- smpl_nontrn # test on remaining data
 if (type=='all') smpl_test <- 1:length(y) # test on all
 if (type == 'xv') {
 smpl_xv <- c()
 smpl <- sample(1:length(y))
 len <- length(y)/k
 for (i in 1:k) smpl_xv <- cbind(smpl_xv, list(smpl[seq((i-1)*len+1,i*len)]))
 return(smpl_xv)
 }
 else return(list(train=smpl_trn, test=smpl_test))
 }

Fit the model
valid models: 'rulefit', 'lrm' (logit from 'rms' package), 'glm' (logit) [not implemented]
y: peptide hits (positive integer); signif: significant peptide hit is larger than this
test: 'remain' -- test on remaining;
'same' -- test on same size sample;
'all' -- use all data;
data.frame(x,y) -- test on it;
'xv' cross validation
model_fit <- function(x, y, model='rulefit', signif=0, sample_length=1, test='remain', xv=NULL,
 # parameters for logistic regression
 second.order=TRUE, maxit=1000,
 # parameters for rulefit
 sparse=1, tree.size=4, mod.sel=2, costs=c(1,1),
 model.type="both",
 ...)
 {
 yc <- y # classification
 yc[y>signif] <- 1 # 1 if 1 or more peptides found
 if (model=='rulefit') {
 yc[y<=signif] <- -1 # -1 if zero peptide found (rulefit)
 }
 else {
 yc[y<=signif] <- 0 # 0 if zero peptide found (others)
 }
 if (!is.null(xv)) {
 if (test!='xv') {
 print('Warning: test method other than \"xv\" provided, using \"xv\" instead')
 test <- 'xv'
 }
 }
 if (test=='xv') {
 if (is.null(xv)) print('Error: no cross-validation sample (xv)')
 smpl_trn <- xv$train
 smpl_test <- xv$test
 }
 else {
 tmp <- make_sample(yc, type=test)
 smpl_trn <- tmp$train
 smpl_test <- tmp$test
 }
 if (is.data.frame(test)) {
 if (!exists(test$x) | !exists(test$y)) print('Error: wrong test set, use data.frame(y=..., x=...)')
 xt <- as.matrix(test$x)
 yt <- test$y
 }
 else {
 if (test != 'same' & test != 'remain' & test != 'all' & test != 'xv') {
 print('Error: test set is not a data.frame')
 }
 xt <- as.matrix(x[smpl_test,])
 yt <- yc[smpl_test]
 }
 # fit the model
 if (model == 'rulefit') {
 fit <- rulefit(x=as.matrix(x[smpl_trn,]), y=yc[smpl_trn], rfmode='class', quiet=T, ...)
 fitted <- rfpred(xt)
 fitted[fitted==-1] <- 0 # synchronize with logit
 yt[yt==-1] <- 0 # -''-
 vimp_tmp <- varimp(plot=F)
 vimp <- data.frame(varimp=vimp_tmp$imp, row.names=names(x)[vimp_tmp$ord])
 gof <- NULL
 }
 if (model == 'lrm') {
 if (second.order) formula <- y ~ .^2
 else formula <- y ~ .
 fit <- lrm(formula, data=data.frame(y=yc,x), subset=smpl_trn,
 x=TRUE, y=TRUE, se.fit=TRUE, maxit=maxit)
 fitted <- predict.lrm(fit, newdata=xt) #?
 vimp_tmp <- fastbw(fit, rule='aic', aics=10000)
 vimp <- data.frame(varimp=vimp_tmp$result[,3]*100, row.names=names(vimp_tmp$result[,3]))
 gof <- residuals.lrm(fit, type='gof')
 }
TODO glm() fitting is not implemented
if (model == 'glm') {
fit <- glm(y~.^2, data=data.frame(y=yc,x), family=binomial(link='logit'),
subset=smpl_trn, x=TRUE, y=TRUE, maxit=maxit)
fitted <- predict(fit, newdata=as.data.frame(xt))
vimp <- NULL
gof <- NULL
}
 return(list(x = x,
 xt = xt,
 y = data.frame(fitted = fitted, true = yt),
 smpl_trn = smpl_trn,
 smpl_test = smpl_test,
 model = fit,
 gof = gof,
 vimp = vimp
))
 }

calculate metrics of fit
calc_metrics <- function(dataframe, cutoff=0.5) {
 Y <- dataframe$true # true peptide hits
 yhat <- dataframe$fitted # fitted peptide hits
 tp <- sum(Y == 1 & yhat >= cutoff)
 tn <- sum(Y != 1 & yhat < cutoff)
 fp <- sum(Y != 1 & yhat >= cutoff)
 fn <- sum(Y == 1 & yhat < cutoff)
 prec <- tp/(tp+fp)
 recall <- tp/(tp+fn)
 return(list(len=length(Y),
 tp=tp,
 tn=tn,
 fp=fp,
 fn=fn,
 fpr=fp/tp,
 fnr=fn/tn,
 accuracy=(tp+tn)/length(Y),
 prec=prec,
 recall=recall,
 F1=2*prec*recall/(prec+recall),
 F05=(1+0.5^2)*prec*recall/(0.5^2*prec+recall), # more weight on recall
 F2=(1+2^2)*prec*recall/(2^2*prec+recall))) # -"- on precision
 }

calculate the binary cutoff
calc_cutoff <- function(range, dataframe, metric = 'F1', quiet=T) { # any metric from calc_metric
 r=c()
 for (i in range) {
 r <- c(r, calc_metrics(dataframe, i)[metric][[1]])
 }
 if (!quiet) print(calc_metrics(dataframe, range[which.max(r)]))
 return(range[which.max(r)])
 }

make [0,1] output from the fitted values, based on a cutoff
normalize <- function(dataframe, cutoff=0.5) {
 fitted_norm <- dataframe$fitted
 fitted_norm[fitted_norm >= cutoff] = 1
 fitted_norm[fitted_norm < cutoff] = 0
 return(data.frame(fitted=fitted_norm, true=dataframe$true))
 }

cross-validation
xval <- function(x, y, k=10, cutoff=0, metric=NULL, ...) {
 smpl <- make_sample(y=y, type='xv', k=k)
 r <- c()
 vimp <- ''
 parameters <- list(...)
 if (length(parameters)==0) parameters <- list(NULL=NULL)
 longnames <- TRUE
 if (exists('model', parameters)) if (parameters$model=='lrm') longnames <- FALSE
 for (i in 1:k) {
 smpl_i <- data.frame(train=unlist(smpl[,-i]), test=unlist(smpl[,i]))
 fitted <- model_fit(x, y, test='xv', xv=smpl_i, ...)
 if (!is.null(metric)) {
 co <- calc_cutoff(seq(-5,5,0.1), fitted$y, metric = metric)
 ms <- calc_metrics(fitted$y, cutoff=co)
 }
 else ms <- calc_metrics(fitted$y, cutoff=cutoff)
 r <- rbind(r, matrix(c(ms$accuracy, ms$prec, ms$recall, ms$F1, ms$F05, ms$F2),
 nrow=1, ncol=6,
 dimnames=list(i,c('accuracy','precision','recall','F1','F(0.5)','F(2)'))
)
)
 if (longnames) vimp <- paste(vimp, i, paste('\t', xnames[row.names(fitted$vimp)[1:5]],
 '\t', fitted$vimp[1:5,], collapse='\n'),
 '\n', sep='')
 else vimp <- paste(vimp, i, paste('\t', row.names(fitted$vimp)[1:5],
 '\t', fitted$vimp[1:5,], collapse='\n'),
 '\n', sep='')
 }
 return(list(measures=r, vimp=vimp))
 }

expectations
expect <- function(y) { # y = normalize(model_fit(..., test='all')$y)
 mrna <- 100*sum(1/(1+exp(-y$fitted[gencode_long==1])))/sum(gencode_long==1)
 lncrna <- 100*sum(1/(1+exp(-y$fitted[gencode_long==0])))/sum(gencode_long==0)
 print(paste('mRNA',mrna))
 print(paste('lncRNA',lncrna))
 return(list(mrna=mrna, lncrna=lncrna))
 }

Plots
variable importance plots
viplot <- function(vimp, num=FALSE) {
 if (!num) num <- dim(vimp)[1]
 par(mar=c(20,4,4,2))
 barplot(as.matrix(vimp)[1:num], beside=T, space=0.3, names.arg=row.names(vimp)[1:num],
 ylim=c(0,100), las=2)
 }

bivariate importance plots
pairplots <- function() {
 rf <- model_fit(gx('gm12878', rep1), y_long_gm12878)
 pdf('gm12878-pairplots.pdf')
 l <- dim(rf$x)[2]
 for (i in 1:(l-1)) {
 for (j in (i+1):l) {
 pairplot(i,j)
 }
 }
 dev.off()

 rf <- model_fit(gx('k562', rep1), y_long_k562)
 pdf('k562-pairplots.pdf')
 l <- dim(rf$x)[2]
 for (i in 1:(l-1)) {
 for (j in (i+1):l) {
 pairplot(i,j)
 }
 }
 dev.off()
 }

if (!exists('minx')) minx <- min(log10(unlist(x_long))[log10(unlist(x_long))!=-Inf])
if (!exists('maxx')) maxx <- max(log10(unlist(x_long))[log10(unlist(x_long))!=-Inf])

scatterplots
scatterplots <- function() {
 labels <- c('Whole Cell', 'Cytosol', 'Nucleus', 'PolyA+', 'PolyA-')
 names(labels) <- c('cell', 'cytosol', 'nucleus', 'polya', 'nonpolya')
 pdf('scatterplots.pdf')
 for (compartment in c('cell', 'cytosol', 'nucleus')) {
 for (pa in c('polya', 'nonpolya')) {
 x = rowMeans(gx('gm12878', compartment, pa, dataset='long'))
 y = y_long_gm12878[[1]]
 fm = lm(log10(y)~log10(x), subset=(y!=0&x!=0))
 rsq = summary(fm)["r.squared"]
 corr = cor.test(x, y, method='spearman', exact=FALSE)
 smoothScatter(
 x=log10(rowMeans(gx('gm12878', compartment, pa, dataset='long')))[gencode_long==1],
 y=log10(y_long_gm12878[[1]])[gencode_long==1],
 xlab=expression(paste(log[10], RPKM)),
 ylab=expression(paste(log[10], sum(E-scores))),
 main='',
 nrpoints=0, xlim=c(minx,maxx), ylim=c(2,5.5), xaxs='i', yaxs='i'
)
 title(main = paste('GM12878', labels[compartment], labels[pa]))
 mtext(substitute(paste(r^2 == a, ', Spearman ', rho == b), list(a=format(rsq, digits=4),
 b=format(corr$estimate, digits=4))), line=0.35, cex=0.85)
 points(x=log10(rowMeans(gx('gm12878', compartment, pa, dataset='long')))[gencode_long!=1],
 y=log10(y_long_gm12878[[1]])[gencode_long!=1],
 pch=16, cex=1, col="#FF9000C0", xlim=c(minx,maxx), ylim=c(2,5.5), xaxs='i', yaxs='i'
)
 }
 }
 for (compartment in c('cell', 'cytosol', 'nucleus')) {
 for (pa in c('polya', 'nonpolya')) {
 x = rowMeans(gx('k562', compartment, pa, dataset='long'))
 y = y_long_k562[[1]]
 fm = lm(log10(y)~log10(x), subset=(y!=0&x!=0))
 rsq = summary(fm)["r.squared"]
 corr = cor.test(x, y, method='spearman', exact=FALSE)
 smoothScatter(x=log10(rowMeans(gx('k562', compartment, pa, dataset='long')))[gencode_long==1],
 y=log10(y_long_k562[[1]])[gencode_long==1],
 xlab=expression(paste(log[10],RPKM)),
 ylab=expression(paste(log[10],sum(E-scores))),
 main='',
 nrpoints=0, xlim=c(minx,maxx), ylim=c(2,5.5), xaxs='i', yaxs='i'
)
 title(main = paste('K562', labels[compartment], labels[pa]))
 mtext(substitute(paste(r^2 == a, ', Spearman ', rho == b), list(a=format(rsq, digits=4),
 b=format(corr$estimate, digits=4))), line=0.35, cex=0.85)

 points(x=log10(rowMeans(gx('k562', compartment, pa, dataset='long')))[gencode_long!=1],
 y=log10(y_long_k562[[1]])[gencode_long!=1],
 pch=16, cex=1, col="#FF9000C0",
 xlim=c(minx,maxx), ylim=c(2,5.5), xaxs='i', yaxs='i')
 }
 }
 dev.off()
 }

Plots for the RuleFit3 model
twovarints <- function() {
 print('GM12878: ')
 pdf('twovarint-gm12878-rep1-1_vs_all.pdf')
 rf <- model_fit(gx('gm12878', rep1), y_long_gm12878)
 null.mods <- intnull(minimized=T)
 par(mar=c(18.1, 6.1, 4.1, 2.1))
 for (i in 1:length(names(rf$x))) { twovarint(names(rf$x)[i], names(rf$x)[-i], null.mods) }
 dev.off()

 print('K562: ')
 pdf('twovarint-k562-rep1-1_vs_all.pdf')
 rf <- model_fit(gx('k562', rep1), y_long_k562)
 null.mods <- intnull(minimized=T)
 par(mar=c(18.1, 6.1, 4.1, 2.1))
 for (i in 1:length(names(rf$x))) { twovarint(names(rf$x)[i], names(rf$x)[-i], null.mods) }
 dev.off()
 }

singleplots <- function() {
 pdf('singleplots-gm12878.pdf')
 rf <- model_fit(gx('gm12878', rep1), y_long_gm12878)
 for (i in 1:length(names(rf$x))) { singleplot(names(rf$x)[i]) }
 dev.off()

 pdf('singleplots-k562.pdf')
 rf <- model_fit(gx('k562', rep1), y_long_k562)
 for (i in 1:length(names(rf$x))) { singleplot(names(rf$x)[i]) }
 dev.off()
 }

m_gm <- matrix(c(
 c(0, 0, 0, 0, 0, 0),
 c(0, 0, 0, 1, 1, 0),
 c(0, 0, 0, 1, 0, 0),
 c(0, 0, 0, 0, 0, 0),
 c(0, 0, 0, 0, 0, 1),
 c(0, 0, 0, 0, 0, 0)
), nrow = 6, ncol=6, byrow=T)

m_k <- matrix(c(
 c(0, 1, 0, 1, 0, 0, 0, 0, 0),
 c(0, 0, 0, 1, 1, 1, 1, 0, 0),
 c(0, 0, 0, 0, 0, 0, 0, 0, 0),
 c(0, 0, 0, 0, 0, 0, 1, 0, 0),
 c(0, 0, 0, 0, 0, 0, 1, 0, 0),
 c(0, 0, 0, 0, 0, 0, 0, 0, 0),
 c(0, 0, 0, 0, 0, 0, 0, 1, 0),
 c(0, 0, 0, 0, 0, 0, 0, 0, 0),
 c(0, 0, 0, 0, 0, 0, 0, 0, 0)
), nrow = 9, ncol=9, byrow=T)

pairplots2 <- function() {
 result <- model_fit(gx('gm12878', rep1), y_long_gm12878)
 pdf('3D-pairplots-gm12878.pdf')
 l <- dim(result$x)[2]
 for (i in 1:(l-1)) {
 for (j in (i+1):l) {
 if (m_gm[i,j]!=0) pairplot(i,j, type='persp', theta=-40, phi=30)
 }
 }
 dev.off()
 result <- model_fit(gx('k562', rep1), y_long_k562)
 pdf('3D-pairplots-k562.pdf')
 l <- dim(result$x)[2]
 for (i in 1:(l-1)) {
 for (j in (i+1):l) {
 if (m_k[i,j]!=0) pairplot(i,j, type='persp', theta=-40, phi=30)
 }
 }
 dev.off()
 }

varimps <- function() {
 model_fit(gx('gm12878', rep1), y_long_gm12878)
 pdf('varimp-gm12878-rep1.pdf')
 par(mar=c(20.1, 6.1, 4.1, 2.1))
 varimp()
 dev.off()
 model_fit(gx('gm12878', rep2), y_long_gm12878)
 pdf('varimp-gm12878-rep2.pdf')
 par(mar=c(20.1, 6.1, 4.1, 2.1))
 varimp()
 dev.off()
 model_fit(gx('k562', rep1), y_long_k562)
 pdf('varimp-k562-rep1-all.pdf')
 par(mar=c(20.1, 6.1, 4.1, 2.1))
 varimp()
 dev.off()
 model_fit(gx('k562', rep2), y_long_k562)
 pdf('varimp-k562-rep2-all.pdf')
 par(mar=c(20.1, 6.1, 4.1, 2.1))
 varimp()
 dev.off()
 model_fit(gx('k562', 'nucleus|cytosol|cell', rep1), y_long_k562)
 pdf('varimp-k562-rep1-overlap.pdf')
 par(mar=c(20.1, 6.1, 4.1, 2.1))
 varimp()
 dev.off()
 model_fit(gx('k562', 'nucleus|cytosol|cell', rep2), y_long_k562)
 pdf('varimp-k562-rep2-overlap.pdf')
 par(mar=c(20.1, 6.1, 4.1, 2.1))
 varimp()
 dev.off()
 }

correlations
correlation <- function(method='spearman') { # 'pearson', 'spearman', or 'kendall'
 r <- c()
 for (column in names(gx('gm12878'))) {
 ct <- cor.test(x_long[column][[1]], y_long_gm12878[[2]],
 method=method, exact=FALSE)
 r <- rbind(r, matrix(c(ct$estimate, ct$p.value),
 nrow=1, ncol=2, dimnames=list(xnames[column],c('estimate','p_value'))))
 }
 for (column in names(gx('k562'))) {
 ct <- cor.test(x_long[column][[1]], y_long_k562[[2]],
 method=method, exact=FALSE)
 r <- rbind(r, matrix(c(ct$estimate, ct$p.value),
 nrow=1, ncol=2, dimnames=list(xnames[column],c('estimate','p_value'))))
 }
 return(r)
 }

boxplots
boxplots <- function() {
 p=y_long_gm12878[[2]]
 p[y_long_gm12878[[2]]==1]=1
 p[y_long_gm12878[[2]]>=2&y_long_gm12878[[2]]<=5]=2
 p[y_long_gm12878[[2]]>=6&y_long_gm12878[[2]]<=10]=3
 p[y_long_gm12878[[2]]>=11&y_long_gm12878[[2]]<=20]=4
 p[y_long_gm12878[[2]]>=21&y_long_gm12878[[2]]<=50]=5
 p[y_long_gm12878[[2]]>=51&y_long_gm12878[[2]]<=100]=6
 p[y_long_gm12878[[2]]>=101&y_long_gm12878[[2]]<=200]=7
 p[y_long_gm12878[[2]]>=201&y_long_gm12878[[2]]<=300]=8
 p[y_long_gm12878[[2]]>=301]=9
 pg=factor(p)
 p=y_long_k562[[2]]
 p[y_long_k562[[2]]==1]=1
 p[y_long_k562[[2]]>=2&y_long_k562[[2]]<=5]=2
 p[y_long_k562[[2]]>=6&y_long_k562[[2]]<=10]=3
 p[y_long_k562[[2]]>=11&y_long_k562[[2]]<=20]=4
 p[y_long_k562[[2]]>=21&y_long_k562[[2]]<=50]=5
 p[y_long_k562[[2]]>=51&y_long_k562[[2]]<=100]=6
 p[y_long_k562[[2]]>=101&y_long_k562[[2]]<=200]=7
 p[y_long_k562[[2]]>=201&y_long_k562[[2]]<=300]=8
 p[y_long_k562[[2]]>=301]=9
 pk=factor(p)

 pdf('boxplots.pdf')
 for (i in names(gx('gm12878'))) {
 boxplot(x~grp, data=data.frame(x=log10(gx('gm12878'))[,i], grp=pg),
 notch=F,
 names=c('0', '1', '[2, 5]', '[6, 10]', '[11, 20]', '[21, 50]',
 '[51, 100]', '[101, 200]', '[201, 300]',
 expression(paste('[301, ',infinity,']'))),
 ylim=c(-4,4),
 las=2,
 ylab=expression(paste(log[10],RPKM)),
 main=paste(c('Peptide hits for ',xnames[i]),sep='',collapse=''))
 }
 for (i in names(gx('k562'))) {
 boxplot(x~grp, data=data.frame(x=log10(gx('k562'))[,1], grp=pk),
 notch=F,
 names=c('0', '1', '[2, 5]', '[6, 10]', '[11, 20]', '[21, 50]',
 '[51, 100]', '[101, 200]', '[201, 300]',
 expression(paste('[301, ',infinity,']'))),
 ylim=c(-4,4),
 las=2,
 ylab=expression(paste(log[10],RPKM)),
 main=paste(c('Peptide hits for ',xnames[i]),sep='',collapse=''))
 }
 dev.off()
}

