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1 Supplementary Figures S1
(4tU labeling does not affect normal cell physiology and rate estima-
tion)

In order to check that 4tU labeling does not perturb the gene expression pattern of Sc cells, we compared RNA
intensities of wild type cells against the total RNA intensities of cells after 3, 6 and 12 min of 4tU labeling (all cells
were grown in YPD media). Almost no significant folds above a factor of 2 (below a factor of 0.5) were detected,
and the distributions were almost identical to that of replicate wild type measurements (Figure 1, Table 1).

Figure 1: Pairwise scatterplots of log-intensities. The lower panel shows the respective Spearman correlations. The
diagonal gives the length of the labeling period in minutes. Compared fractions are obtained by taking the gene-wise
median over all intensities of replicate measurements.

repressed \ induced 0 3 6 12
0 - 8 11 21
3 1 - 0 7
6 0 0 - 4
12 0 7 0 -

Table 1: Counts of induced/repressed genes (upper triangle/lower triangle). Selection criteria were a multiple
testing corrected significance level (local false discovery rate) of 0.05 and an expression fold of at least 2 between
groups (length of the labeling period).
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Note that differences in labeling efficiency plab do not affect decay and synthesis rate measures, as these efficiency
biases only occur for transcripts with less than 500 uridine residues. Though these transcripts make up two thirds
of all mRNAs, biases can be accurately removed. Therefore, different labeling biases estimated as in [8] can only
adopt different curvatures, whereas altered synthesis and decay rates can only lead to shifted asymptotes of the
respective curves:

Figure 2: The number of uridines is plotted versus the log-ratio of L and T. The black line shows that the labeling
bias curve estimated as in [8]. Left: labeling bias plot for the slow Pol II mutant. plab = 0.0064 means that
approximately every 156th uridine residue is replaced by 4tU and afterwards attached to a biotin molecule. Right:
labeling bias plot for the wild-type. plab = 0.011 means that approximately every 90th uridine residue is replaced
by 4tU and afterwards attached to a biotin molecule. The shifted asymptotes indicate the observed fold of the
decay rate comparing these two conditions (main text).

The calculated labeling efficiencies can vary across different conditions in Sc cells, whereas that of Sp cells should
not, since they are not perturbed. Exactly that can be observed:

labeling bias plab wild-type (rep.1) wild-type (rep.2) slow Pol II (rep.1) slow Pol II (rep.2)
Sc 0.012 0.010 0.0064 0.006
Sp 0.0030 0.0029 0.0030 0.0028

Table 2: Estimated labeling biases plab for 2 replicate measurements of the wild-type and the slow Pol II mutant for
Sc and Sp. Note the excellent agreement of the labeling efficiencies of the Sp aliquots (which should be identical,
since they are taken from the same labeling experiment).
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2 Supplementary Figures S2
(Comparison of cDTA measurements of RNA synthesis and decay
with previous measurements)

In two Sc wild type samples, we measured the fraction of unlabeled mRNA in addition to the labeled and the total
mRNA fraction. This made it possible to obtain an independent, second estimate of synthesis and decay rates.
Note that the absolute half-life and synthesis rate levels show a remarkable agreement, despite the differences in
cell cycle length and media. Both estimates were obtained using a new estimate of 60,000 transcripts per yeast cell
[14], instead of the previously used old, four-fold lower estimate of 15000 [5], which was used in [8]:

(a) (b)

Figure 3: The scatterplots compare the Sc synthesis (a) and half-lives (b) as obtained by cDTA (y-axis) and those
obtained from our data using the method from [8]. Spearman correlations are 0.8 and 0.76 respectively.

We also compared our Sp half-lives to that obtained in [1]. We were able to reproduce the half live estimates of
this paper reasonably well, (correlation 0.95, linear fit: 2, R2value: 0.94 ). The small discrepancy between the
published half lives and our recalculated ones can be explained by the fact that we used only one replicate from
the dye swap experiment. Moreover, since we are using open source software in the R developer environment
instead of the commercial software Genepix, we did not apply Genepix-specific preprocessing steps to the raw
data. When comparing the half lives from [1] to our cDTA estimates, they correlate moderately well (Spearman
corelation 0.4 resp. 0.35 for the original resp. the recomputed half lives). This correlation increases to 0.58, if the
labeling bias correction that has been applied to our measurements is also applied to the data of [1]. The pearson
correlation coefficient raises to even from 0.33 to 0.48 if we further apply the the correction for exponential growth
(α = log(2)/116 min, corresponding to a median Sp half live of 59 min, see Equation 75).
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Figure 4: Comparison of the Sp transcript half-lives as obtained by us (y-axis; median half-life 59 min) and by [1]
(x-axis). Spearman and pearson correlation coefficients are given in the legends. From left to right: comparison of
our data to original estimiates [1], to recomputed estimates, to recomputed estimates with labeling bias correction
and to recomputed estimates with labeling bias and growth rate correction.

While the half live estimates agree well up to a linear factor, they hugely disagree with respect to their absolute
level (i.e., their median), by a factor of 2 (Figure 2). This is probably due to instabilities in the normalization
procedure, which calibrates the contributions of the labeled, unlabeled, and total mRNA fractions. So far, three
methods have been proposed: Linear regression (9.5.3), total least squares regression (9.5.3), bias-based regression
(9.5.2). To illustrate this, we applied all three methods to the 9 wild type DTA samples in the [8] data. In theory,
all 9 median half life estimates should be identical. As can be seen from (Figure 5) though, they vary strongly, in a
range from ~5min to 105min, and no single method can be considered stable. This finding demonstrates the urgent
need for an external normalization like proposed in the cDTA protocol.

Figure 5: Median half-lives resulting from three different normalization methods (Linear regression (9.5.3), total
least squares regression (9.5.3), bias-based regression (9.5.2)) of several wild-type replicate measurements of the
labeled, unlabeled, and total mRNA fractions after labeling durations of 3, 6, 12 and 24 minutes.

We further compared our cDTA half-life estimates with Sc literature results (see Figure 7). The half-life estimates
except for [9] were obtained by experiments using transcriptional arrest. The estimates of [6, 13, 4, 12] were
obtained using a Yeast strain containing the RNA polymerase II temperature sensitive mutant rpb1-1. [3] uses
the transcription inhibitor 1,10-phenanthroline. Decay rates can be measured after blocking transcription, but this
requires a perturbing heat shock (cells have to be shifted to the nonpermissive temperature of 37°C), or is inherently
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cell invasive (inhibitors). We suspect that this harsh treatment involves strong secondary effects that overlay the
degradation process (e.g., the degradation enzymes themselves might alter their activity). The intensity of each
mRNA species relative to that observed in a wild type cell gives their measure for mRNA decay, applying the
usual first-order exponential decay model. All these data sets are compared to our estimates (’cDTA (this study)’)
which shows almost no correlation to any of the other data sets. We reproduced the experiments of [6, 13, 4, 12]
using two different Yeast strains (two biological replicates each) also carrying the RNA polymerase II temperature
sensitive mutant rpb1-1 (’rpb1-1 (this study)’), and wild-type cells exposed to heatschock (’heat shock (this study)’),
measured 24 and 66 minutes after the temerature shift (Figure 6). These measurements are in good agreement
to the data set obtained by [6, 13, 4, 12, 3]. This strongly indicates that the so obtained half-life estimates are
heavily biased by the applied heatshock. To further investigate this, we also apply this method to the salt stress
data [8] (’salt stress (Miller et. al. 2011)’) which is also in a very good agreement with the estimates obtained by
[6, 13, 4, 12, 3], indicating that the measured decay profiles strongly underlie a general stress response profile of
S.cerevisiae.

Figure 6: Heatmap showing the spearman correlation of half-life estimates obtained by linear regression of the
rpb1-1 and heat-shock timecourse measurements equated to the timepoint of extraction. Suffix numbers indicate
different Yeast strains or different biological replicates. ’rpb1-1’ and ’heat-shock’ were obtained from gene-wise
medians of the measurements. ’DTA’ gives our half-life estimates.
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Figure 7: Correlation analysis of half-life measurements. Color-coded heatmap shows pairwise spearman correlation
coefficients of half-life measurements. (white: negative or zero correlation to purple: pefect correlation).
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3 Supplementary Figures S3
(Growth curves)

Figure 8: 2 replicate growth curves of the slow Pol II mutant. Growth rate: 150 min

Figure 9: 2 replicate growth curves of the ccr4 deletion mutant. Growth rate: 219 min

Figure 10: 2 replicate growth curves of the pop2 deletion mutant. Growth rate: 126 min
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Figure 11: 2 replicate growth curves of the rpb1-1 mutant and its isogenic wild-type (BY4741 rpb1:.KanMX
pRS315-Rpb1 wt bzw. pRS315-Rpb1 Mut G1437D). Growth rate: 153.8 min/107.6 min

Figure 12: 2 replicate growth curves of the rpb1-1 mutant and its isogenic wild-type (BY4741 rpb1::KanMX
pRS315-Rpb1 wt vs. Rpb1 Mut G1437D). Growth rate: 161.2 min/121.8 min
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Figure 13: Growth curves of the wild-type (BY4741), wild-type with added DMSO (BY4741+DMSO) and wild-type
with added 4-thiouracil (BY4741+4tU).
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4 Supplementary Figures S4
(Differences in Sp vs. Sc total mRNA levels can essentially be ex-
plained by one global multiplicative factor)

After identifying orthologous transcripts in Sc and Sp [2], we compared Sc and Sp mRNA turnover of orthologous
transcripts. Visual inspection suggests that most of the differences in total expression levels can be explained by a
global multiplicative factor:

(a) (b)

Figure 14: Scatter plot of mRNA half-lives [min] and synthesis rates [counts/cell/90min] are shown for S. cerevisiae
(left) and S. pombe (right). Colored points belong to the following gene sets: green, ribosomal biogenesis genes;
violet, ribosomal protein genes; red, stress genes; dark gray, transcription factors (TFs). Assuming gene sets to be
gaussian distributed, ellipses show the 75% regions of highest density for the respective sets. Black lines indicate
median half-life/synthesis rate (Sc: 12/53, Sp: 59/44).

(a) (b) (c)

Figure 15: Scatter plot comparing mRNA half-life (a), synthesis rate (b) and total expression (c) of S. pombe vs S.
cerevisiae orthologs (>25% protein sequence identity). The offset of dashed lines to (parallel) black lines indicate
ratios of median half-life resp. synthesis rate resp. total mRNA of S.p. to S.c. (4.92/0.83/2.72).
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5 Supplementary Figures S5
(Correlation of synthesis and decay rates in Sc and Sp with transcript
length)

We compared the unspliced transcript length of orthologous genes in Sc and Sp to verify that they essentially agree:

Figure 16: Comparison of the lengths of unspliced transcripts of Sc/Sp orthologs. There were 76 Transcripts of
length greater than 5000 (in either Sc or Sp) that are not shown here for convenience. The diagonal line indicates
identical transcript length of orthologs in Sc and Sp.

When plotting the mRNA synthesis rates versus their unspliced transcript length for both Sc and Sp (Figure 5),
we observed a clear dependence. We therefore investigated if this dependence can be explained by Pol II drop off
during elongation. Our model is based on two assumptions: 1) The transcription initiation rate is not dependent
on the transcript length. 2) The Pol II drop off rate r is constant along the transcript. Based on these assumptions,
one can predict the decrease of the average synthesis rate (SR) as a function of the transcript length l by

SR(l) ∝ (1− r)l , or log SR(l) = l · (1− r) + const (1)

Equation (1) can be used to estimate the drop off rate r in a linear regression of log SR(l) versus l. The regressions
were performed using transcripts of a length between 700 and 2000 nucleotides. This was done to exclude potential
estimation artifacts for long and short transcripts, which might arise from residual biases that have not been removed
by our normalization. The results remain qualitatively unchanged if all genes are included (data not shown). It
turned out that Sc (resp. Sp) synthesis rates slightly decrease with the length of the transcript, namely by a 21%
(resp. 47%) [molecules/cell/cell cycle] per 1000 nucleotides transcript length (see also Table 7). The Null hypothesis
(r = 0) could be rejected with a p-value of < 10−6 in both cases.
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(a) (b)

Figure 17: Correlation of (log) synthesis rates with length for Sc (a) and Sp (b). The linear regression and the
Pearson correlation were calculated for the transcripts with a length between 700 and 2000 nucleotides.

We also assessed the transcript length dependence of the Sc resp. Sp decay rates. It turned out that the Sc
decay rates increases with transcript length, by 7.7 · 10−3[1/min] per 1000 nucleotides, whereas the Sp decay rates
decreases slightly by 0.9 · 10−3[1/min] per 1000 nucleotides. This amounts to a relative change of merely 0.017%
per 1000 nucleotides (compared to the median decay rate in Sc). In Sp, this corresponds to a relative change of
merely 0.0081% per 1000 nucleotides (compared to the median decay rate in Sp). We conclude that these changes
are of no biological relevance (though they are statistically significant, p-value in a linear regression < 10−6 for Sc
resp. < 10−4 for Sp).

(a) (b)

Figure 18: Correlation of decay rates with length. Pearson correlations were calculated for the transcripts with a
length between 700 and 2000. a) Length dependence of S.cerevisiae decay rates b) Length dependence of S.pombe
decay rates.

Without showing the results, we remark that these section’s findings remain qualitatively unchanged if one restricts
the analysis to orthologs with a certain minimum amount of sequence identity (e.g., of at least 25% - there are 2568
such transcripts).
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6 Supplementary Figures S6
(Reproducibility)

Figure 19: Barplot of measured global shifts (total expression, labeled expression, labeled to total ratio (decay
proxy), decay rate, half-life and synthesis rate) of the slow Pol II mutant vs. its isogenic wild-type in log scale.
Error bars indicate the standard deviation of pairwise comparison of respective replicates.

Figure 20: Barplot of measured global shifts (total expression, labeled expression, labeled to total ratio (decay
proxy), decay rate, half-life and synthesis rate) of the ∆ccr4 mutant vs. wild-type in log scale. Error bars indicate
the standard deviation of pairwise comparison of respective replicates.
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Figure 21: Barplot of measured global shifts (total expression, labeled expression, labeled to total ratio (decay
proxy), decay rate, half-life and synthesis rate) of the ∆pop2 mutant vs. wild-type in log scale. Error bars indicate
the standard deviation of pairwise comparison of respective replicates.
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7 Supplementary Figures S7
(Synthesis and decay rate regulation is independent of transcript
length)

The discovery of a global regulation of mRNA transcription activity raises the question about the responsible
mechanism. A straightforward hypothesis is that transcription inhibition is achieved by increasing the abort rate
of Polymerase during transcription elongation. However, the abort rate of Pol II (as estimated in Supplementary
Figures S4) in all three mutants (slow Pol II mutant, deadenylation mutants ∆ccr4 and ∆pop2) is comparable to
that of Sc wild type, see Figure 7, and Table 7. This is particularly remarkable for the slow Pol II mutant. It
is thus likely that the feedback mechanism does not intervene at the elongation stage, but rather at the stage of
transcription initiation or during the transition from transcription initiation to elongation.

(a) (b) (c)

Figure 22: Dependence of synthesis rates on transcript length for the slow Pol II mutant (a), the deadenylation
mutants ∆ccr4 (b) and ∆pop2 (c).

S.cerevisiae S.pombe Slow Pol II Ccr4 mutant Pop2 mutant
drop off rate
per nucleotide 2.3 · 10−4 6.4 · 10−4 2.9 · 10−4 3.7 · 10−4 2.3 · 10−4

Pol II drop off
per 1000 nucleotides 21% 47% 26% 31% 21%

Table 3: Pol II drop off rates estimated from Equation (1).

An alteration of the Pol II abort frequency affects the synthesis rates of longer transcripts stronger than those of
shorter transcripts, which is indeed observed (Figure 7). According to our model in Supplementals S4, we are able
to calculate the relative proportion of Pol II successfully terminating a hypothetical transcript of length 8000nt in
the slow Pol mutant versus the Sc wild type. Doing so, we arrive at an estimate of 57%, i.e., for a given transcription
initiation rate at this transcript, its synthesis rate in the slow Pol II mutant would be 57% of the synthesis rate in
the Sc wild type. This is in excellent agreement with an estimate obtained by a direct experimental method in [7].
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(a) (b) (c)

Figure 23: The (log2) quotient of mRNA synthesis rates of the slow Pol II mutant (a), the deadenylation mutants
∆Pop2 (b) and ∆Ccr4 (c) relative to the wild type synthesis rates, plotted as a function of the transcript length.
The decrease (per 1000nt) in relative synthesis rates caused by different drop off rates is given in the header of the
plots. Estimations were based on transcripts of length between 700nt and 2000nt, as indicated by dashed vertical
lines.
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8 Supplementary Method S8
(A model of regulated mRNA synthesis and degradation)

We model the dynamics of the mRNA concentration a gene G by a first order rate equation. It is determined by
the synthesis rate SR(G) at which G is produced, and the decay rate DR(G) at which G is degraded:

dg

dt
= SR(G)−DR(G) (2)

DR(G,D) = λG · g · h(d) For clarity of presentation, we explicitly state the assumptions that underlie our model.

Assumption 1: There are two proteins, S (the transcription modulator), and D (the degradation modulator),
that globally modulate mRNA synthesis and degradation activity, respectively. The synthesis rate SR(G,S) is a
function of the (characteristics of) gene G and the transcription modulator S. More specifically, we assume that the
synthesis rate SR(G,S) = µG ·f(s) decomposes into a gene-specific, constant term µG, the so-called transcriptional
efficiency of G, and a gene-independent term f(s) that depends on the expression level s of the gene corresponding
to S. The degradation rate DR(G,D) is a function of the (characteristics of) gene G and the degradation modulator
D. More specifically, we assume that DR(G,D) = λG · h(d) · g decomposes into a gene-specific, constant term λG,
the so-called degradation efficiency of G, and a gene-independent term h(d) that depends on the expression level d
of the gene corresponding to D.

The differential equation describing the dynamics of the mRNA population of a gene G becomes

dg

dt
= SR(G,S)−DR(G,D) = µGf(s)− λGh(d) · g (3)

This is a very general model for regulated mRNA turnover. By choosing f and h the constant function with
value 1, we obtain the classical model of RNA dynamics without regulation, henceforth called the naive model,
i.e., SR(G,S) = SR(G) = µG and DR(G,D) = DR(G) = λG · g. In the naive model, the synthesis rate equals
the transcriptional efficiency, but these two quantities are distinct in general. The same holds for the constant λG
which determines the degradation rate in the regulation-free model, but which is modulated by a factor h(d) in the
general case. Under steady state conditions (dgdt = 0), we can solve (3) for the expression level of G,

g =
µG
λG
· f(s)

h(d)
(4)

Assumption 2: All meausrements were made under steady state conditions. This is clearly the case for the
experiments in our paper.

The quotient g1/g2 of the mRNA concentration of two genes G1 and G2 is independent of s and d, since

g1
g2

=
µG1

µG2

· λG2

λG1

(5)

Observation 1: Equation (5) implies a convenient property of a gene regulatory system: Relative expression levels
are kept constant, independent of the modulator levels s and d. Changes in modulator activity only affect the total
mRNA level.

When comparing mutant strains with defects in the general transcription/degradation machinery, we assume that
these defects affect the transcription/degradation efficiencies of all genes in the same way:

Assumption 3: In our slow Pol II mutant, the transcriptional efficiencies are decreased relative to wild type by
a global factor, whereas degradation efficiencies are unchanged. In the ccr4 and the pop2 deletion mutants, the
degradation efficiencies are decreased relative to wild type by a global factor, whereas transcription efficiencies
are unchanged. This assumption can be justified by the fact that gene-specific transcriptional efficiencies resp.
degradation efficiencies quantify a biochemical interaction between an enzyme (Polymerase II resp. Ccr4/Not
deadenylation complex) and the substrate (the DNA gene sequence resp. the mRNA transcript of the gene). Since
the substrates do not change in our experiment, a change in synthesis-/degradation efficiency can only result from
a change in the enzyme (e.g., a point mutation in Pol II resp. a removal of a protein of the Ccr4/Not complex).
That this change in the enzyme results in a proportional change in the efficiencies is highly likely, because, up to
random variation, we do only observe global, proportional changes in synthesis-/decay rates.
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Formally, we will consider steady state conditions C, C’ (with mRNA concentrations denoted by g resp. g′) in which
the corresponding transcriptional efficiencies µG, µ′G respectively degradation efficiencies λG, λ′G are proportional,
i.e., µ′G = βµG and λ′G = γλG for positive constants β, γ, and for all genes G. In such a situation

g1
g2

=
µG1

µG2

· λG2

λG1

=
βµG1

βµG2

· γλG2

γλG1

=
µ′G1

µ′G2

·
λ′G2

λ′G1

=
g′1
g′2

(6)

Observation 2: The relative mRNA concentrations of two genes are invariant under global proportional changes
in transcriptional efficiency and degradation efficiency.

Let T, T ′ be the total mRNA concentrations in conditions C resp. C ′. For any gene Y with concentration y we
have

T ′

T
=

∑
all genes g

′∑
all genes g

=
y′

y
·
∑

genesG(g′/y′)∑
genesG(g/y)

(Obs.1)
=

y′

y
(7)

This leads us to

Observation 3: The quotient y′/y of any gene Y equals the relative total mRNA concentrations in C ′ and C. Our
model therefore predicts global (proportional) changes in mRNA concentrations in response to global (proportional)
changes in synthesis and degradation efficiency, in good agreement with our experimental data.

For convenience, we define the constant c = s/d. Be aware that by Observation 1, this quotient does not change
across (steady state) conditions, since s/d = s′/d′ for different conditions C and C ′. Letting G = D in equation
(4),

d =
µD
λD
· f(cd)

h(d)
, and d′ =

µ′D
λ′D
· f(cd′)

h(d′)
(8)

Let α =
µ′
D

µD
· λD

λ′
D
. In the naive model, the quotient α equals the relative total mRNA concentrations in C ′ and C

(in this case, α
(8)
= d′/d

(7)
= T ′/T ). The case α > 1, e.g., occurs when comparing the ccr4 or pop2 knockout strains

(condition C ′) to wild type (condition C). In condition C ′, the function of deadenylation complex is impaired,
and hence the degradation efficiencies are globally decreased, λ′G = α−1λG. At the same time, the transcription
efficiencies are unchanged, µ′G = µG, for all genes G. The case α < 1 is observed for the comparison of the slow Pol
II mutant (C ′) and wild type (C). The transcriptional efficiencies in the slow Pol II mutant are globally decreased,
µ′G = αµG, while the degradation efficiencies are unaffected, λ′G = λG, for all genes G.

Observation 4: The relative change in total mRNA concentration in C ′ and C is given by

T ′

T

(7)
=
d′

d

(8)
= α · f(cd′)

h(d′)
· h(d)

f(cd)
(9)

We do not observe a hypercompensation in our experiments, i.e., the direction of the observed total mRNA changes
(T ′ > T resp. T ′ < T ) agrees with the changes predicted by the naive model (α > 1 resp. α < 1). A compensatory
effect (buffering) occurs when the observed relative change in total mRNA concentration, T ′/T , is closer to 1 than
the change predicted from the naive model, α.

Let d′ > d. Then T ′ > T , and by lack of hypercompensation α > 1. By compensation, T ′/T < α, or equivalently,
f(cd′)
h(d′) ·

h(d)
f(cd)

(9)
= T ′

T α
−1 < 1. We conclude:

Observation 5: If buffering, but no hypercompensation, occurs,

h(d′)

f(cd′)
>

h(d)

f(cd)
for d′ > d (10)

In other words, a necessary condition for buffering to occur is that h(d)/f(cd) be a monotonically increasing function
in d. By symmetry reasons, the same monotonicity condition emerges when assuming d′ < d (exchange of conditions
C and C ′ converts this case into the case d′ > d).
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Assumption 4: The functions f and h are monotonic. In other words, if the transcription modulator S is an
activator (resp. an inibitor), f = f(s) is a monotonically increasing (resp. monotonically decreasing) function.
Similarly, if D stimulates degradation, h = h(d) is monotonically increasing, and if D is a degradation inhibitor, h
is monotonically decreasing. This seems a rather uncritical since natural restriction to f and h.

We will discuss the plausibility of different biological scenarios in the light of condition (10). Some properties of
the functions f and h are determined by the mode of operation of the transcription resp. degradation modulators
S and D. First note that f and h are positive functions by definition, i.e. they assume only positive values.

Case 1. S is a transcription activator, D is an degradation inhibitor (f increasing, h decreasing). Then, h(d)/f(dc)
is monotonically decreasing in d, which contradicts condition (10). We exclude this case.

Let us make some general considerations about the size of compensation effects. Sensibly, the larger the effects on
total mRNA levels are (larger T ′/T ), the more adverse the effects to the cell. The quotient T ′

T α
−1 = f(cd′)

h(d′) ·
h(d)
f(cd)

measures the discrepancy between the observed ratio of total mRNA concentrations and the relative concentrations
predicted by the naive model. The smaller T ′

T α
−1, the stronger the buffering. Thus the efforts to compensate for

these changes / the buffering strength should increase along with T ′/T . We will show that only two of the remaining
cases meet these needs.

Case 2. S is a transcription activator, D is an degradation activator (f increasing, h increasing). Typically, activitor
functions f and h show an asymptotic behaviour if their arguments tend to infinity. Thus it is sensible to assume
that in the current case, h(d)/f(cd) converges to a finite number for increasing d. Together with the fact that
the degradation molecule D needs to be present abundantly (d, d′ large), this in turn implies that the size of the
compensation effect, T

′

T α
−1 = f(cd′)

h(d′) ·
h(d)
f(cd) , tends to one. In the light of the above considerations, such a mechanism

is not well suited to achieve a fast and robust buffering.

Case 3. S is a transcription inhibitor, D is an degradation inhibitor (f decreasing, h decreasing). Although we
cannot exclude this case, we argue that the relation of f and h needs to be properly fine-tuned in order to obtain an
increasing quotient h(d)/f(cd). For example, if f(s) = s−a and h(d) = d−b for some a, b > 0, h(d)/f(cd) = cada−b,
and a needs to be substantially smaller than b in order to achieve a strong compensation effect T ′

T α
−1 = (T

′

T )a−b .

Case 4. S is a transcription inhibitor, D is an degradation activator. Then, f is monotonically decreasing, h
is monotonically increasing, and the quotient h(d)/f(cd) is monotonically increasing for any choice of h and f

compatible with Case 4. More conveniently, the compensation effect, T
′

T α
−1 automatically increases for increasing

T ′/T , i.e. buffering is stronger the stronger the effect on total mRNA levels is. Since no exact tuning of the functions
h and f is needed to achieve a strong buffering effect without hypercompensation, this is arguably the most natural
and hence the most likely case.

Let us put the 4 alternative hypotheses to the test and collect experimental evidence:

Denote the synthesis- and degradation rates in condition C (wild type) and condition C ′ (e.g. a mutant) by SRC(G)
and SRC′(G) respectively DRC(G) and DRC′(G). Then,

SRC′(G,S)

SRC(G,S)
=
µ′Gf(s′)

µGf(s)
, and

DRC′(G,D)

DRC(G,D)
=
λ′Gh(d′) · g′

λGh(d) · g
(11)

For the pop2 and ccr4 mutants (condition C ′) relative to wild type (condition C), we have λ′G = αλG for some
α < 1, and µ′G = µG, for all genes G. From our measurements, we find that the total levels increase in the mutants
(by a factor of 1.78 in pop2 and a factor of 1.34 in ccr4 ). Thus, T ′ > T and s′ > s. It follows from (11) that
f(s′)/f(s) = SRC′(G)/SRC(G) for all genes G. Thus, f(s′)/f(s) can be estimated reliably by

f(s′)

f(s)
= medianG

(
SRC′(G,S)

SRC(G,S)

)
=

{
0.4 for pop2
0.6 for ccr4

< 1 (12)

Observation 5. From s′ > s and f(s′) < f(s) it follows that f is monotonically decreasing, i.e. S is a transcriptional
inhibitor.

For the slow Pol mutant (condition C ′) relative to wild type (condition C), we have λ′G = λG, and µ′G = αµG, for
some α < 1 and for all genes G. The changes in total mRNA are given by T ′/T = g′/g for all genes G, and thus
relative total mRNA levels can be estimated by

T ′

T
= medianG

(
g′

g

)
= 0.75 (13)
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Thus, T ′ < T and d′ < d. Again from (11), we have

h(d′)

h(d)
=
SRC′(G)

SRC(G)′
· T
T ′

for all genes G (14)

and a reliable estimate of h(d′)/h(d) is given by

h(d′)

h(d)
= medianG

(
DRC′(G,D)

DRC(G,D)

)
· T
T ′

= 0.28 · 0.75−1 = 0.37 < 1 (15)

Observation 6. From d′ < d and h(d′) < h(d) it follows that h is monotonically increasing, i.e. D is a degradation
stimulator.

Conclusion. Our data provide support for a scenario in which a transcription inhibitor and a degradation stimulator
establish a regulatory circuit for the global stabilization of both the absolute and the relative cellular mRNA levels.

We conclude with the discussion of some objections to our model.

1. One or both modulators might not be proteins, hence there is no term f(s) resp. h(d) that depends on
mRNA concentrations of the modulators S and D. Or, although S and D are proteins, their activity might be
subject to posttranscriptional / posttranslational modifications and therefore cannot be adequately modeled by
a function of their corresponding mRNA levels. This is a justified objection, and we definitely and explicitely
do not rule out alternative mechanisms of synthesis-/decay modulation that cannot be described in terms
of mRNA abundances. In addition, it is well possible that there exist several independent mechanisms that
establish a robust feedback.

2. The synthesis rates SR(G,S) and the decay rates DR(G,S) might not factor into a gene-specific and a
modulator-specific term. This however would imply that the shift of synthesis rates would in general not be
global but gene-specific. E.g., in the deadenylation mutants ∆ccr4 or ∆pop2 (in which µ′G = µG holds), we
would expect from (11) that

SRC′(G,S)

SRC(G,S)
6= µ′Gf(s′)

µGf(s)
=
f(s′)

f(s)
(16)

and the left hand side term in equation (16) would become gene-dependent, in contrast to our model (right
hand side). However, we do observe a strong global proportional shift of synthesis rates in three experimental
conditions (slow Pol II, ∆ccr4 and ∆pop2 deletion mutants), and the deviations from this proportional shift
are not larger than expected from random variations in the measurements. Future research will have to
provide further experimental evidence for this proportional shift by measuring other strains with an altered
transcriptional / degradation efficiency.

3. The changes in transcriptional resp. degradation efficiency might not be proportional (for all genes G). This
would lead to the same conclusion as in the previous point, that the shift in synthesis rate resp. degradation
rate is not proportional, and the same argument applies.

4. The functions f and hmight not be monotonic. It is sensible and consistent with the assumption of monotonic-
ity to believe that f and h are asymptotically constant, i.e. for large values, they converge to a constant value,
respectively. However, to us there is absolutely no reason why the strength of modulation should suddenly
increase above some modulator concentration when it was constantly decreasing below that concentration, or
vice versa. We discard this case as unlikely, though we cannot definitely exclude it.

5. The model does not take into account spatial inhomogeneities in the mRNA- or modulator concentration within
the cell, in particular one should at least formulate a compartment model including the nucleus and the cytosol.
One could envisage to model the formation of mRNA processing bodies (P-bodies) with increased degradation
modulator concentrations relative to other regions. Though desirable, these models require spatially resolved,
genome-wide synthesis and degradation measurements which cannot be provided by cDTA, nor by any other
current experimental method.
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9 Supplementary Methods S9
(Modeling and estimation of synthesis and decay rates)

9.1 A model for mRNA synthesis and degradation

mRNA levels in a cell are the consequence of two opposing mechanisms, namely mRNA synthesis and mRNA
degradation. DTA allows monitoring these contributions in a non-perturbing manner. The experimental setup for
DTA requires culturing cells in the presence of a labeling substrate (e.g. 4 thiouridine (4sU) or 4 thiouracil (4tU))
for a certain amount of time. Until the extraction of the mRNA sample, the analogous (labeling) substrate will
be incorporated into newly transcribed mRNA. This setup yields three types of mRNA fractions: total cellular
mRNA, newly transcribed labeled mRNA and pre-existing unlabeled mRNA. All three fractions can subsequently
be quantied through gene expression profiling on microarrays or next generation sequencing (RNAseq).

Let r ∈ R be a sample. At time t = 0, we start the mRNA labeling. At the timepoint tr, when the mRNA
is extracted, the total mRNA amount Cgr(tr) of gene g in the sample r is composed of the amount Bgr(tr) of
(pre-existing) mRNA that has been synthesized before t = 0 and the amount Agr(tr) of mRNA that has been newly
synthesized after t = 0,

Cgr(tr)︸ ︷︷ ︸
total RNA

=
Agr(tr)︸ ︷︷ ︸

newly synthesized mRNA
+

Bgr(tr)︸ ︷︷ ︸
pre-existing mRNA

(17)

Let Nr(tr) denote the number of cells in the sample r at time tr. The cells are grown and harvested during mid-log
phase, i.e. the cell number follows an exponential law with growth rate,

α =
log(2)

CCL
≥ 0 (18)

with cell cycle length CCL, this means

dNr(t)

dt
= αNr(t) (19)

and therefore
Nr(tr) = Nr(0)eαtr . (20)

α is often refered to as dilution rate, i.e. the reduction of concentration due to the increase of cell volume during
growth. Say we have a cellular expression level mg = mg(t) (transcripts of gene g per cell), then

Cgr(t) = mg(t)Nr(t) (21)

and hence

dCgr(t)

dt
= mg(t)

dNr(t)

dt
+
dmg(t)

dt
Nr(t) (22)

= mg(t)αNr(t) +
dmg(t)

dt
Nr(t)

=

(
mg(t)α+

dmg(t)

dt

)
Nr(t).

We assume that the mRNA population of a gene g decays exponentially at a (relative) rate given by λg = λg(t) if
no other processes interfere. This means that the amount of λg(t)Cgr(t) is degraded at time t. We further assume
that the mRNA population of a gene g is synthesized at an absolute rate per cell given by µg = µg(t). Hence the
amount of µg(t)Nr(t) is synthesized at time t. This means for the total mRNA amount that

dCgr(t)

dt
= µg(t)Nr(t)− λg(t)Cgr(t) (23)

= µg(t)Nr(t)− λg(t)mg(t)Nr(t)

= (µg(t)− λg(t)mg(t))Nr(t).
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Using Equations (22) and (23), we get

(µg(t)− λg(t)mg(t))Nr(t) =

(
mg(t)α+

dmg(t)

dt

)
Nr(t) (24)

and hence
µg(t) = mg(t) (α+ λg(t)) +

dmg(t)

dt
. (25)

Additionally, we assume that the pre-existing mRNA population of a gene g decays exponentially at a (relative)
rate given by λg = λg(t). This means for the pre-existing mRNA fraction that

dBgr(t)

dt
= −λg(t)Bgr(t). (26)

Consequently, the newly synthesized mRNA fraction can be given by

dAgr(t)

dt
=
dCgr(t)

dt
− dBgr(t)

dt
= µg(t)Nr(t)− λg(t)Agr(t). (27)

9.2 Constant synthesis and decay rates

To simplify our model, we assume genes to have a (time averaged) constant synthesis rates µg and decay rates λg
during 4sU/4tU labeling, i.e. µg(t) and λg(t) are given piecewise constant. For the newly synthesized mRNA, this
means

dAgr(tr)

dt
= µgNr(tr)− λgAgr(tr) = µgNr(0)eαtr − λgAgr(tr). (28)

The solution of this differential equation yields

Agr(tr) = ce−λgtr +
µgNr(0)eαtr

α+ λg
(29)

with an initial value Agr(0) = 0, and so

0 = c+
µgNr(0)

α+ λg
. (30)

This finally leads to

Agr(tr) =
µgNr(0)

α+ λg

[
eαtr − e−λgtr

]
(31)

and therefore
µg =

Agr(tr)(α+ λg)

Nr(0) [eαtr − e−λgtr ]
. (32)

For the total mRNA, this means

dCgr(tr)

dt
= µgNr(tr)− λgCgr(tr) = µgNr(0)eαtr − λgCgr(tr). (33)

The solution of this differential equation yields

Cgr(tr) = ce−λgtr +
µgNr(0)eαtr

α+ λg
(34)

with
c = Cgr(0)− µgNr(0)

α+ λg
(35)

This finally leads to

Cgr(tr) = Cgr(0)e−λgtr +
µgNr(0)

α+ λg

[
eαtr − e−λgtr

]
(36)
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and finally
Bgr(tr) = Cgr(tr)−Agr(tr) = Bgr(0)e−λgtr (37)

with Bgr(0) = Cgr(0). From (32) and (36) we can deduce

Cgr(tr) = Cgr(0)e−λgtr +Agr(tr) (38)

and rearrange it as follows
Cgr(tr)−Agr(tr) = Cgr(0)e−λgtr . (39)

So
e−λgtr =

Cgr(tr)−Agr(tr)
Cgr(0)

(40)

and finally

λg = − 1

tr
log

[
Cgr(tr)−Agr(tr)

Cgr(0)

]
(41)

or
λg = − 1

tr
log

[
Bgr(tr)

Cgr(0)

]
. (42)

As λ is assumed to remain constant in the above derivation, its value will be an average value along the labeling
period.

9.3 Special case: steady state

Now we assume that the cells exhibit constant growth under constant environmental conditions. In particular, this
implies that the amount of each mRNA population is constant over time, being the result of a dynamic equilibrium
of a constant mRNA synthesis and decay, i.e. steady state. In this case we assume genes to have a (time averaged)
constant cellular expression level mg during 4sU/4tU labeling. Thus, equation (21) simplifies to

Cgr(tr) = mgN(tr) (43)

and leads to
Cgr(tr) = mg(0)Nr(0)eαtr (44)

as mg(t) = const. = mg(0) = mg and hence

Cgr(tr) = Cgr(0)eαtr . (45)

So, equation (41) can be written as

λg = −1

t
log

[
Cgr(tr)−Agr(tr)
Cgr(tr)e−αt

]
(46)

and therefore
λg = −α− 1

t
log

[
1− Agr(tr)

Cgr(tr)

]
(47)

or
λg = −α− 1

t
log

[
Bgr(tr)

Cgr(tr)

]
. (48)

Steady state mRNA levels can now be derived, for α = 0 from

dCgr(tr)

dt
= µgNr(tr)− λgCgr(tr) = mg(tr)αNr(tr) = 0

and thus
µgNr(0)− λgCgr(0) = 0.

25



Consequently

Cgr(0) =
µgNr(0)

λg
(49)

For α 6= 0
dCgr(tr)

dt
= µgNr(tr)− λgCgr(tr) = mg(tr)αNr(tr)

which yields
mg(0) =

µg
α+ λg

and so
Cgr(0) =

µgNr(0)

α+ λg
(50)

gives the total mRNA level achieved by a dynamic equilibrium of a constant mRNA synthesis and decay. In this
special case µg can be stated as

µg = mg(0)(α+ λg) (51)

by implication.

9.4 Adaption to measured values

We now have to relate the measured levels of Lgr(tr), Ugr(tr) and Tgr(tr) to the levels of the mRNA fractions
Agr(tr), Bgr(tr) and Cgr(tr). Ideally, these fractions would respectively equal each other. There are however
disagreements that are due to mRNA extraction efficiencies, amplification steps in the biochemical protocol and
scanner calibration of the flourescence readouts. The amount Lgr(tr) of labeled mRNA for instance is proportional
to the amount of labeled mRNA Agr(tr) at the time tr of sampling,

Lgr(tr) = arAgr(tr) , (52)

with an unknown array-specific constant ar. Analogously, the measured amounts Tgr(tr) and Ugr(tr) depend on
the actual amounts Cgr(tr) and Bgr(tr) respectively via

Tgr(tr) = crCgr(tr) , (53)

and
Ugr(tr) = brBgr(tr) = br (Cgr(tr)−Agr(tr)) (54)

with unknown array-specific constants cr and br.

There can also be disagreements that originate from the 4sU/4tU labeling efficiency (see Figure 24). Let pr be the
probability that during the labeling process of sample r, a Uridine is replaced by 4sU/4tU and afterwards attached
to a Biotin molecule. Let lgr represent the fraction of newly synthesized mRNAs of gene g in sample r that are
biotinylated. We assume that all biotinylated mRNAs are captured by the Streptavidin beads. Denote by #ug the
number of Uridine residues present in the mRNA corresponding to gene g. We can calculate lgr as

lgr = l(pr,#ug) = 1− (1− pr)#ug (55)

lgr is thus the probability that at least one Uridine is replaced by 4sU and afterwards attached to a Biotin molecule.
Accordingly, we have to correct equations (52),(53) and (54) to that effect. As a consequence we have the depen-
dencies:

Lgr(tr) = lgrarAgr(tr) , (56)

and

Tgr(tr) = crCgr(tr) , (57)

and
Ugr(tr) = br (Cgr(tr)− lgrAgr(tr)) . (58)

(59) can also be stated as
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Ugr(tr) = brugrBgr(tr) (59)

where ugr gives the increase of pre-existing mRNAs by newly synthesized mRNAs of gene g in sample r that are
not biotinylated. With equation (58) and (59) we have

Cgr(tr) = lgrAgr(tr) + ugrBgr(tr) , (60)

and therefore

ugrBgr(tr)−Bgr(tr) = Agr(tr)− lgrAgr(tr) (61)

with respect to equation (17). If we solve for ugr we get

ugr = 1 +
Agr(tr)

Bgr(tr)
(1− pr)#ug (62)

and thus

ugr

(
pr,

br
ar
, ug

)
= 1 +

br
ar

(1− pr)#ug if
ugrLgr(tr)

lgrUgr(tr)
= 1 . (63)

The proportional constants then relate as follows

cr
ar

=
br
ar

1 + br
ar

if also
Lgr(tr)

lgrTgr(tr)
= 1 . (64)

9.5 Parameter Estimation

Our model contains the parameters Θ = {α, pr, ar, br, cr, λgr, µgr | r ∈ R, g ∈ G}. It contains an implicit nor-
malization procedure, because the two sources of experimental bias are part of the model (the parameters ar, br, cr
account for multiplicative bias introduced via sample preparation and array scanning, and pr models the labeling
bias (Figure 24)). We propose a 5-step procedure for the identification of the parameters Θ. There are often genes
that can not be accurately measured, i.e. genes that are not expressed often lead to noisy measurement signals.
These could lead to flawed parameters, and therefore all genes that are considered valid for the parameter estimation
are aggregated in Greliable. Since the doubling times of the cells are usually known or can be measured accurately,
α is given by α = log 2/CCL.

9.5.1 Estimation of the labeling probability pr

The estimation of the sample-related parameters {pr, ar, br, cr | r ∈ R} is done on the basis of the reliable genes
Greliable. The quotient of observed total and labeled mRNA levels can be written as

Lgr
Tgr

=
lgrarAgr(tr)

crCgr(tr)
= lgr

ar
cr

[
1− e−tr(α+λg)

]
(65)

The first equation follows by (56) and (57), the second by (36) and (31). We can visualize this dependence
conveniently by plotting ug versus log

Lgr

Tgr
(see Figure 24). If all decay rates were equal, all points would lie on the

graph given by the relationship of ug versus log lgr+log ar
cr
. The scatter around this graph is caused by measurement

errors and differences in decay rates. We can also calculate the quotient

Ugr
Tgr

=
brugrBgr(tr)

crCgr(tr)
= ugr

br
cr

[
e−tr(α+λg)

]
(66)

This equation follows by (57) and (58). We will predominantly use equation (65) for the estimation of pr. Taking
logs in Equation (65) and rearranging terms, we obtain

log
Lgr
Tgr

= log
ar
cr

+ log l(pr, ug) + log
[
1− e−tr(α+λg)

]
(67)
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pr < 0.95 implies that for #ug > 700 say, the approximation log(lgr) ≈ 0 is almost exact, as (1 − pr)#ug is a
monotonic sequence with

lim
#ug→∞

(1− pr)#ug = 0

and (1− pr)700 < 2.5 · 10−16. Hence Equation (65) simplifies to

log
Lgr
Tgr

= log
ar
cr

+ log
[
1− e−tr(α+λg)

]
for #ug > 700 (68)

If we additionally assume that the distribution of decay rates do not depend on the number of the uridines, the right-
hand side in (68) becomes a constant plus some error term with expectation 0. Thus, we estimate asymptoteL/Tr

by letting

asymptoteL/Tr = median
{

log
Lgr
Tgr
| g ∈ Greliable, #ug > 700

}
(69)

Given equation (69), it is relatively easy to compute a good estimate of pr by finding an optimal fit to (67) (see
Figure(24)), for all g ∈ G with #ug < 500. So we optimize the value of pr, r ∈ R, by minimizing the l1-loss function

pestr = argmin
q∈(0, 1)

loss(q) with loss(q) =
∑

g∈G,#ug<500

∣∣∣∣ logLgrTgr
− log lgr(q, ug)− asymptoteL/Tr

∣∣∣∣ (70)

Here, 500 is an upper bound that ensures that the measurements are still responsive to changes in ug.

Figure 24: The number of Uridines #ug is plotted versus the log-ratio of Lgr and Tgr for two replicates of S.cerevisiae
at a labeling time of 6 minutes. The points of the scatterplot are colored according to the (estimated) point density
in that region [10]. The labeling bias parameter pestr = 0.0048 and pestr = 0.0055 imply that approximately every
208th resp. 182th Uridine residue is replaced by 4sU. mRNAs which contain less than 500 Uridine residues (approx.
72% of all S.cerevisiae mRNAs) are not captured efficiently.

9.5.2 Estimation of the ratio of labeled to unlabeled mRNA br
ar

Notice that for the purpose of synthesis and decay rate estimation it is sufficient to determine the quotients br
ar

,
ar
cr

or br
cr

instead of the individual constants ar, br and cr. As in described in section (9.5.1), we can use equation
(66) to estimate

asymptoteU/Tr = median
{

log
Ugr
Tgr
| g ∈ Greliable, #ug > 700

}
(71)
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and consequently optimize the value of br
ar
, r ∈ R, by minimizing the l1-loss function

br
ar

est

= argmin
q∈(0, 5)

loss(q) with loss(q) =
∑

g∈G,#ug<500

∣∣∣∣ logUgrTgr
− log ugr(pr, q,#ug)− asymptoteU/Tr

∣∣∣∣ . (72)

Figure 25: The number of Uridines #ug is plotted versus the log-ratio of Ugr and Tgr for two replicates of S.cerevisiae
at a labeling time of 6 minutes. The labeling bias parameter pestr = 0.0048 and pestr = 0.0055 estimated via the
labeled mRNA fraction Lgr as described in section (9.5.1) reveal the ratio of newly synthesized to pre-existing
mRNA given by br

ar

est
.

9.5.3 Estimation of the ratio of labeled to total mRNA ar
cr

and unlabeled to total mRNA br
cr

In order to determine the quotients ar
cr

or br
cr
, we simply multiply equations (65) and (66) by the inverse of those

quotients and add them up to obtain

cr
ar

Lgr
Tgr

+
cr
br

Ugr
Tgr

= 1 or Tgr(tr) =
cr
ar
Lgr +

cr
br
Ugr (73)

Equation (73) describes a plane {(Tgr, Lgr, Ugr) | Tgr = cr
ar
Lgr + cr

br
Ugr} in a 3-dimensional Euclidean space. As

the observed variables have measurement errors on both sides of Equation (73), we perform a total least squares
regression of Tgr versus Lgr and Ugr, which accounts for a Gaussian error in the dependent variable Tgr and, in
contrast to ordinary linear regression, also in the independent variables Lgr, Ugr. The total least squares regression
minimizes the orthogonal distance of the datapoints to the inferred plane as opposed to a linear regression, which
minimizes the distance of Tgr to the inferred linear function of Lgr and Ugr. We use a robust version of total
least squares regression. After the first run, we remove the data points with the 5% largest residues to avoid the
potentially detrimental influence of outlier values on the parameter estimation process (see Figure (26) and (27)).
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Figure 26: Two rounds of total least squares regression (tls) for two replicates of S.cerevisiae at a labeling time of
6 minutes. The resulting plane is colored green. The x-axis is chosen as the orthogonal projection on Lgr. The
y-axis is the normal of the plane. The second round of tls is performed without the 5% largest residues of the 1st

round, depicted in red. Red planes indicate maximal residues.

Figure 27: Two rounds of total least squares regression (tls) for two replicates of S.cerevisiae at a labeling time of
6 minutes in a different representation. The resulting plane is shown exactly from the side and is indicated by the
green line. As in Figure (26), the x-axis is chosen as the orthogonal projection on Lgr, but in logarithmic scale. The
y-axis is the normal of the plane. The 5% largest residues of the 1st round are depicted in red. Red lines indicate
maximal residues.
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9.5.4 Estimation of the decay rate λgr

To estimate the decay rate λgr, we use equation (41) to yield

λgr = − 1

tr
log

[
Tgr(tr)− cr

lgrar
Lgr(tr)

Tgr(0)

]
(74)

for the dynamic case, and equation (47) to deduce

λgr = −α− 1

tr
log

[
1−

cr
lgrar

Lgr(tr)

Tgr(tr)

]
(75)

for the steady state case. It is also possible to estimate the decay rate λg in an alternate way according to equation
(48) as

λgr = −α− 1

tr
log

[
cr

ugrbr
Ugr(tr)

Tgr(tr)

]
. (76)

All three equations (74), (75) and (76) are subject to logarithmic calculation. The decay rate λg can not be
calculated in cases where the quotient in the logarithm is ≤ 0. If this quotient reaches a certain size, the equations
(74), (75) and (76) will yield negative decay rates which are then discarded. This circumstance is assessed in Figure
(28). Each reasonable λg estimate can be used to calculate the half-life estimate

t1/2gr =
log(2)

λgr
. (77)

All measured samples r are combined to yield estimates

λestg = median {λgr | r ∈ R} , (78)

and

test1/2gr
= median

{
t1/2gr | r ∈ R

}
. (79)

The reproducibility of replicate measurements can be investigated by comparison of the quotient in the logarithm
of equations (74), (75) and (76), see Figure (29).

Figure 28: Dependency of the term 1 − cr
arlgr

Lgr/Tgr to the resulting decay rate for two replicates of S.cerevisiae
at a labeling time of 6 minutes. Reasonable decay rates can only be obtained for 1− cr

ar
Lgr/Tgr values between the

two dashed lines.
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Figure 29: Pairwise heatscatter plots of the ranks of the respective 1 − cr
arlgr

Lgr/Tgr value distributions for two
replicates of S.cerevisiae at a labeling time of 6 minutes are shown in the upper panel. The lower panel shows the
respective spearman correlations.

9.5.5 Estimation of the synthesis rate µgr

To estimate the synthesis rate µgr, we use equation (32) to yield

µgr =

cr
lgrar

Lgr(tr)(α+ λgr)

[eαtr − e−λgrtr ]
. (80)

since Nr(0) is set to 1, these values are on an arbitrary scale. For each replicate experiment r, the number mgr of
mRNA transcripts per cell of gene g is proportional to its total mRNA intensity value Tgr, mgr = drTgr. Assuming
a total number of #mRNAs mRNAs per cell, this means that

#mRNAs =
∑
g∈G

mgr = dr ·
∑
g∈G

Tgr , (81)
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and therefore
dr =

#mRNAs∑
g∈G Tgr

. (82)

Together with equation (51), we may estimate µgr as

µrescaledgr =
mgr

Tgr
µgr · CCL = drµgr · CCL (83)

in molecules per cell and cell cycle. All measured samples r are combined to yield estimates

µestg = median {µgr | r ∈ R} . (84)

To get an overview of the correlations of the measured and derived value distributions, see Figures (30) and (31).

Figure 30: The pairwise correlations between the labeled expression values Lgr, total expression values Tgr, the
number of uridines per transcript #ug and the estimated synthesis rate µestg , decay rate λestg and half-life test1/2gr

is
given in a color-coded image plot for the genewise median of two replicates of S.cerevisiae at a labeling time of 6
minutes .

33



Figure 31: Comparison between the synthesis rate µgr and the labeled expression values Lgr of S.cerevisiae at a
labeling time of 6 minutes. The Spearman correlation coefficient is 1. Given the short labeling time of 6 min, the
differences are negligible, although we assume that the labeled RNA fraction is subject to degradation from the
very time it is synthesized.

9.5.6 Variation analysis for the estimation of the median synthesis and decay rates with cDTA

Given the small number of replicate measurements per condition, we pooled the variance of the median absolute
labeled and total RNA measurements respectively (4 wild-type, 2 ccr4, 2 pop2, 2 rpb1-N488D and 2 RPB1 mea-
surements for each fraction). The calculated variance was subsequently used to resample the whole data set with
medians randomly shifted according to this variance. This data was then re-analysed with cDTA (in particular
Equations (75) and (80)). This procedure was performed 1000 times to obtain a distribution of median decay
and synthesis rates. The 95% bootstrap confidence regions of the median synthesis and decay rates are shown in
Figure 6D in the main text. Since these regions are clearly separated from each other, this proves that the observed
coupling of decay rates and synthesis rates is not due to the variance of the estimators.
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10 Supplementary Method S10
(Calculation of the relative 4tU incorporation efficiency)

We define three probabilities associated with mRNA labeling process: The incorporation efficiency pinc is the
probability that a 4tU nucleotide is incorporated into a nascent mRNA instead of a uridine. It is the product of
the relative 4tU concentration (relative to the uridine concentration) in the nucleus and the relative affinity of the
Polymerase for 4tU (compared to uridine). Since we have no handle to separate these two quantities, we merge
them into pinc. Secondly, the capture efficiency pcap is the probability for a 4tU nucleotide which is included into
a mRNA of being biotinylated, captured and recovered from streptavidin beads. Third, the probability that both
events occur, assuming independence, is plab = pinc · pcap. We call plab the labeling efficiency. A labeling efficiency
substantially below 1 introduces a uridine-dependent labeling bias by letting newly transcribed, uridine-poor RNA
have a higher probability to escape labeling. All three probabilities are sample- and strain-specific. The labeling
efficiency can be estimated directly from cDTA data (see the folowing section). We can use cDTA to conclude from
plab to the relative incorporation efficiencies. Note that for a sample x,

pcap(x, Sc) = pcap(x, Sp) (85)

since the labeled Sc and Sp RNA from one sample are processed simultaneously. Moreover,

pinc(x, Sp) = pinc(y, Sp) (86)

for two experiments x, y, since we use a common Sp standard for all experiments. Then,

plab(x, Sc)

plab(x, Sp)
=
pinc(x, Sc) · pcap(x, Sc)
pinc(x, Sp) · pcap(x, Sp)

(85)
=

pinc(x, Sc)

pinc(x, Sp)
(87)

Consequently, the relative incorporation efficiencies of two samples x and y is

pinc(x, Sc)

pinc(y, Sc)

(86)
=

pinc(x, Sc)

pinc(x, Sp)
· pinc(y, Sp)
pinc(y, Sc)

(87)
=

plab(x, Sc)

plab(x, Sp)
·
(
plab(y, Sc)

plab(y, Sp)

)−1
(88)

Equation (88) can be used to estimate the variation in the relative incorporation efficiency, a variataion estimate is
given by

v = std.dev.
(
pinc(x1, Sc)

pinc(x2, Sc)
, xj∈replicates of group j, j = 1, 2

)
(89)

cDTA reveals different in vivo 4tU labeling and incorporation efficiency upon mutation

It turns out that the relative incorporation efficiency pinc(mutant, Sc)/pinc(wildtype, Sc) is less than 1 for all three
mutants considered by us (Table 10).

Slow Pol II ∆ccr4 ∆pop2
0.51± 0.07 0.49± 0.05 0.71± 0.08

Table 4: Relative incorporation efficiencies were estimated by Equation (88), standard deviations were calculated
using Equation (89).

Estimation of the labeling efficiency plab from the labeled and total mRNA expression data.

For the sake of self-containedness, we include a description of the estimation method for plab at this point. Actually,
we applied a slightly improved version of the method presented here. The details are given in (Miller et al.,
Supplements Section 13). The probability that the mRNA of gene g containing #ug uridines is not captured at
all (again assuming independence of events for each uridine position) is (1 − plab)#ug . Conversely, the probability
that a newly transcribed mRNA with #ug uridines is captured in the labeled fraction is 1− (1− plab)#ug . Let Lg
and Tg be the intensities measured for the labeled resp. total mRNA of gene g (recall that cDTA normalization
has been applied before, such that Lg and Tg equal the corresponding actual mRNA amounts in the resp. solution,
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up to a common factor c. The amount of total mRNA in the sample is cTg, the amount of newly transcribed
mRNA is cLg

[
1− (1− plab)#ug

]−1, where the factor
[
1− (1− plab)#ug

]−1 corrects for the mRNAs that escape
the labeling/capture process. Let λg be the decay rate of gene g. Taking into account the growth rate α (α =
log 2/cell cycle time) and the duration of the labeling process, the ratio of unlabeled mRNA over total mRNA is
exp(−(α+ λg) · t). It can be computed in a second way, using the amount of newly transcribed mRNA, namely

exp(−(α+ λg) · t) =
cTg − cLg

[
1− (1− plab)#ug

]−1
cTg

= 1− Lg
Tg

[
1− (1− plab)#ug

]−1
or, rearranging terms and taking logs,

log
Lg
Tg

= log [1− exp(−(α+ λg) · t)] + log
[
1− (1− plab)#ug

]
This equation holds for all genes. If we furthermore assume that there is no systematic dependence of the decay
rate λg on the uridine content of g, we can model the Lg/Tg ratio as

log
Lg
Tg

= log
[
1− (1− plab)#ug

]
+ εg

with i.i.d errors εg, g ∈ genes. It follows from this equation that a robust estimate of plab can be obtained as the
minimizer

p̂lab = argmin
p

∑
g∈genes

∣∣∣∣log
Lg
Tg
− log

[
1− (1− p)#ug

]∣∣∣∣
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Note

Plots have been produced using the open source R package LSD [10]

The analysis workflow has been carried out using the open source R/Bioconductor package DTA [11]
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