

Supplemental Data

Supplemental Table S1. Complete list of plasmids used in this study

Plasmids	Description	Reference
pKN3050	Ty3- <i>HIS3</i> -ppt (galactose inducible Ty3 tagged downstream of <i>POL3</i> with a <i>HIS3</i> gene flanked by 60 bp unique sequences and followed by an extra copy of ppt and LTR sequences present in the <i>POL3</i> open reading frame)	This study
pKN3097	Ty3-ppt (as above but lacking the <i>HIS3</i> insertion and one of two unique 60 bp tag sequences)	This study
pXP622	Shuttle vector, Amp ^R , 2μ, loxP- <i>LEU2</i> -loxP, used to construct plasmid-borne targets	(Fang, Salmon et al. 2010)
pFA6a-3HA-KanMX6	Template for 3HA tag.	(Bähler, Wu et al. 1998)
pKN3481	pXP622 with loxP- <i>LEU2</i> -loxP replaced by loxP- <i>HIS3</i> -loxP	This study
pCR2.1	TA-cloning vector	Invitrogen, Inc. (Carlsbad, CA)
pXQ3617	pCR2.1, Ty3 U5 insertion at <i>tK(CUU)F</i> ; qPCR standard for chromosomal integration at <i>tK(CUU)F</i>	This study
pXQ3618	pCR2.1, Ty3 U5 insertion at <i>tG(GCC)G2</i> ; qPCR standard	This study
pXQ3619	pCR2.1, Ty3 U5 insertion at <i>tA(UGC)E</i> ; qPCR standard	This study
pXQ3620	pCR2.1, Ty3 U5 insertion at <i>tT(UGU)G1</i> ; qPCR standard	This study
pXQ3621	pCR2.1, Ty3 U5 insertion at <i>tG(CCC)D</i> ; qPCR standard	This study
pXQ3622	pCR2.1, Ty3 U5 insertion at <i>tG(GCC)F2</i> ; qPCR standard	This study
pXQ3623	pCR2.1, Ty3 U5 insertion at <i>tV(AAC)G1</i> ; qPCR standard	This study
pXQ3624	pCR2.1, Ty3 U5 insertion at <i>tD(GUC)K</i> ; qPCR standard	This study
pXQ3625	pCR2.1, Ty3 U5 insertion at <i>tQ(UUG)D1</i> ; qPCR standard	This study
pXQ3626	pCR2.1, Ty3 U5 insertion at <i>tV(AAC)G3</i> ; qPCR standard	This study
pXQ3627	pCR2.1, mimicked Ty3 U5 insertion at <i>ETC1</i> , amplified with primers XQ3398 and XQ3397; qPCR standard	This study
pXQ3628	pCR2.1, Ty3 U3 insertion at <i>tK(CUU)F</i> ; qPCR standard	This study
pXQ3629	pCR2.1, Ty3 U3 insertion at <i>tG(GCC)G2</i> ; qPCR standard	This study
pXQ3630	pCR2.1, Ty3 U3 insertion at <i>tA(UGC)E</i> ; qPCR standard	This study
pXQ3631	pCR2.1, Ty3 U3 insertion at <i>tT(UGU)G1</i> ; qPCR standard	This study
pXQ3632	pCR2.1, Ty3 U3 insertion at <i>tG(CCC)D</i> ; qPCR standard	This study
pXQ3633	pCR2.1, Ty3 U3 insertion at <i>tG(GCC)F2</i> ; qPCR standard	This study
pXQ3634	pCR2.1, Ty3 U3 insertion at <i>tV(AAC)G1</i> ; qPCR standard	This study
pXQ3635	pCR2.1, Ty3 U3 insertion at <i>tD(GUC)K</i> ; qPCR standard	This study
pXQ3636	pCR2.1, Ty3 U3 insertion at <i>tQ(UUG)D1</i> ; qPCR standard	This study
pXQ3637	pCR2.1, Ty3 U3 insertion at <i>tV(AAC)G3</i> ; qPCR standard	This study
pXQ3638	pCR2.1, mimicked Ty3 U3 insertion at <i>ETC1</i> , amplified with primers XQ3399 and XQ3397, and subsequently with primers XQ3418 and XQ3397; qPCR standard	This study

Plasmids	Description	Reference
pKN3525	pXP622, <i>tK(CUU)F</i> with 120 bp flanking sequence, amplified with primers KN2727 and KN2728; target	This study
pKN3540	pXP622, <i>tG(GCC)G2</i> with 120 bp flanking sequence, amplified with primers KN3102 and KN3122; target	This study
pJY3611	pXP622, <i>tA(UGC)E</i> with 120 bp flanking sequence, amplified with primers JY3400 and JY3401; target	This study
pJY3613	pXP622, <i>tT(UGU)G1</i> with 120 bp flanking sequence, amplified with primers JY3402 and JY3403; target	This study
pKN3471	pXP622, <i>tG(CCC)D</i> with 120 bp flanking sequence, amplified with primers KN2266 and KN2267; target	This study
pXQ3662	pXP622, <i>tG(GCC)F2</i> with 120 bp flanking sequence, amplified with primers JY3402 and JY3412; target	This study
pJY3615	pXP622, <i>tV(AAC)G1</i> with 120 bp flanking sequence, amplified with primers JY3406 and JY3407; target	This study
pJY3612	pXP622, <i>tD(GUC)K</i> with 120 bp flanking sequence, amplified with primers JY3408 and JY3409; target	This study
pKN3526	pXP622, <i>tQ(UUG)D1</i> with 120 bp flanking sequence, amplified with primers KN2731 and KN2732; target	This study
pJY3616	pXP622, <i>tV(AAC)G3</i> with 120 bp flanking sequence, amplified with primers JY3410 and JY3411; target	This study
pXQ3674	pXP622, 330 bp fragment containing <i>ETC1</i> , amplified with primers XQ3507 and XQ3508; target	This study
pXQ3675	pCR2.1, Ty3 U5 insertion on <i>tG(CCC)D</i> target plasmids; qPCR standard for integration on target plasmids using primers XQ2603 and XQ3313	This study
pXQ3639	pCR2.1, Ty3 U3 insertion on <i>tK(CUU)F</i> target plasmids; qPCR standard for integration on target plasmids using primers XQ3135 and XQ3582	This study
pXQ3689	pCR2.1, Ty3 U5 insertion at <i>tF(GAA)H1</i> ; qPCR standard for chromosomal integration using primers XQ2603 and XQ3621	This study
pKD3400	pXP622, <i>iYIL100W</i> -flanking fragment (290 bp to the left and 312 bp to the right) amplified with primers KD3089 and KD3090	This study
pKD3401	pXP622, <i>iCLD1</i> -flanking fragment (236 bp to the left and 95 bp to the right) amplified with primers KD3103 and KD3104	This study
pKD3402	pXP622, <i>iSCS3</i> -flanking fragment (191 bp to the left and 213 bp to the right) amplified with primers KD3087 and KD3808	This study
pXQ3406	pXP622, <i>iRHB1</i> -flanking fragment (278 bp to the left and 278 bp to the right) amplified with primers XQ3291 and XQ3292	This study
pXQ3670	pXP622, <i>iYJL206</i> -flanking fragment (253 bp to the left and 264 bp to the right) amplified with primers XQ3482 and XQ3483	This study
pJY3640	pKD3402, <i>iSCS3</i> fragment truncation, left half (191 bp)	This study
pJY3641	pKD3402, <i>iSCS3</i> fragment truncation, right half (213 bp)	This study
pXQ3671	pKD3402, <i>iSCS3</i> fragment mutation, left-side Box B	This study
pXQ3672	pKD3402, <i>iSCS3</i> fragment mutation, right-side Box B	This study
pXQ3676	pKD3400, <i>iYIL100W</i> fragment Box B mutation	This study

Supplemental Table S2. Oligonucleotides

Oligo	Sequence (5' - 3')	Description
KN1606	CGGTTCAAGGGTGAGAGTATGTGTCGAATC ATCGCCTAGACCGAAATGCC	Unique tag flanked by <i>Sac</i> I/ <i>Afl</i> II introduced in pKN3050
KN1607	TTAAGGCATT CGGTCTAGGCATGATTG ACACATACTCTACCCTGAACCGAGCT	Unique tag flanked by <i>Sac</i> I/ <i>Afl</i> II introduced in pKN3050. Rev
KN1608	GGTCCTAGTCGCACGCTTGTAGTGGATCGT CTGCATAATATCGTGTGAC	Unique tag flanked by <i>Sbf</i> I/ <i>Xma</i> I introduced in pKN3050. For
KN1609	CCGGGTACACGATATTATGCAGACGATCC ACTACAAGCGTGCAGACTAGGACCTGCA	Unique tag flanked by <i>Sbf</i> I/ <i>Xma</i> I introduced in pKN3050. Rev
KN1939	CTTCCCGGGTGAGAGAGAGGAAGATGTTGT ATCTCAAAATGAGATATGTCAGTATGAC	Introduction of intact 3' LTR into pKN3050. For
KN1940	GTAGCGGCCGCCTGTTGTATTACGGGCTCG AGTAATACCG	Introduction of intact 3' LTR into pKN3050. Rev
KN2037	CTCCTAGTCGCACGCTTGTAGTGGATCGTCT GCATAATATCGTGTGAC	Unique tag flanked by <i>Sac</i> I/ <i>Xma</i> I introduced in pKN3097. For
KN2038	CCGGGTACACGATATTATGCAGACGATCC ACTACAAGCGTGCAGACTAGGAGAGCT	Unique tag flanked by <i>Sac</i> I/ <i>Xma</i> I introduced in pKN3097. Rev
XQ3627	CAGCTCAGTGTGCAAGTTGTT	<i>tM(CAU)J3</i> For
XQ3628	TGAGGCATACTGATCGAGAATT	<i>tM(CAU)J3</i> Rev
XQ3629	TTGGAAGGCCATGATGTGTA	<i>tP(UGG)O1</i> For
XQ3630	TGCGTACACATGCTACATCG	<i>tP(UGG)O1</i> Rev
XQ3631	CATCTTGGAAAGGACCGGATA	<i>tY(GUA)J2</i> For
XQ3632	TTGCAAGTCTGGAAAGTGAA	<i>tY(GUA)J2</i> Rev
XQ2603	TCGAGCCC GTAA TACA ACA	U5 insertion qPCR forward primer, also used in standard construction
XQ3135	GGGTGACGTATTGTCATACTG	U3 insertion qPCR reverse primer, also used in standard construction
XQ3376	GACATATCTCATTGAGATAACAACA	U3 insertion forward primer, used in standard construction
XQ3418	GGGTGACGTATTGTCATACTGACATATCTC ATTTGAGATAACAACA	Extended U3 insertion forward primer, following XQ3376
XQ3377	CCTAGTTTGCTGTATAAGAGCCGAG	<i>tK(CUU)F</i> integration qPCR Rev
XQ3378	GAGAGGTGATTCTAGAGCATGTC	<i>tG(GCC)G2</i> integration qPCR Rev
XQ3379	CTGTTTCCCTGTGGGTGAG	<i>tA(UGC)E</i> integration qPCR Rev
XQ3380	GGCGCGATAATTCTATAACCG	<i>tT(UGU)G1</i> integration qPCR Rev
XQ3381	GGCGTAGCGCTCCTGATCTTGTG	<i>tG(CCC)D</i> integration qPCR Rev
XQ3382	CTTGCTTATATGCGAAGTGACTACG	<i>tG(GCC)F2</i> integration qPCR Rev
XQ3383	<u>TCGAGCCC GTAA TACA ACA AA ATAAGCGCAA</u> GTGGTTAGTGGT	<u>U5 LTR-tG(GCC)F2</u> forward primer for standard construction

Oligo	Sequence (5' - 3')	Description
XQ3384	<u>GACATATCTCATTGAGATACAACAAATA</u> AGCGCAAGTGGTTAGTGGT	<u>U3 LTR-tG(GCC)F2</u> forward primer for standard construction
XQ3385	GAACGGAAAGTAGGACAACCTACC	<i>tV(AAC)G1</i> integration qPCR Rev
XQ3386	<u>TCGAGCCCCTAATACAACACGAAACATCAA</u> AAAACCTGGTTCTGTGGTC	<u>U5 LTR-tV(AAC)G1</u> forward primer for standard construction
XQ3387	<u>GACATATCTCATTGAGATACAACACGAA</u> ACATCAAAAAACTGGTTCTGTGGTC	<u>U3 LTR-tV(AAC)G1</u> forward primer for standard construction
XQ3388	ACGCTTGGGAATTCCCTTCACG	<i>tD(GUC)K</i> integration qPCR Rev
XQ3389	<u>TCGAGCCCCTAATACAACACAACAAATAAC</u> GTTCCGTGATAGTTAATGG	<u>U5 LTR-tD(GUC)K</u> forward primer for standard construction
XQ3390	<u>GACATATCTCATTGAGATACAACACAAC</u> AAATAACGTTCCGTGATAGTTAATGG	<u>U3 LTR-tD(GUC)K</u> forward primer for standard construction
XQ3391	GCGAGGGGCTGTGCAATTCAAAGC	<i>tQ(UUG)D1</i> integration qPCR Rev
XQ3392	<u>TCGAGCCCCTAATACAACACCAATCGTCCA</u> TTTTAGGGTCCTATAG	<u>U5 LTR-tQ(UUG)D1</u> forward primer for standard construction
XQ3393	<u>GACATATCTCATTGAGATACAACACCAA</u> TCGTCCATTAGGGTCCTATAG	<u>U3 LTR-tQ(UUG)D1</u> forward primer for standard construction
XQ3394	TGCGCTTGCAGAGTACGTTC	<i>tV(AAC)G3</i> integration qPCR Rev
XQ3395	<u>TCGAGCCCCTAATACAACAAATTCAATTAA</u> GTGGTTTCGTGGTCTAG	<u>U5 LTR-tV(AAC)G3</u> forward primer for standard construction
XQ3396	<u>GACATATCTCATTGAGATACAACAAATTTC</u> AATTAAGTGGTTCTGTGGTCTAG	<u>U3 LTR-tV(AAC)G3</u> forward primer for standard construction
XQ3397	CTCGCTCTAAAATGGTAGTTCTAGTG	<i>ETC1</i> integration qPCR Rev
XQ3398	<u>TCGAGCCCCTAATACAACACATCAACCTTG</u> AGGCTAGGAG	<u>U5 LTR-ETC1</u> forward primer for standard construction
XQ3399	<u>GACATATCTCATTGAGATACAACACATC</u> AACCTTGAGGCTAGGAG	<u>U3 LTR-ETC1</u> forward primer for standard construction
JY3435	GTGCCACCTGACGTCTAAGAA	pXP622 backbone For
JY3436	GCTCTGATGCCGCATAGTTA	pXP622 backbone Rev
XQ3133	GGG GAT CCT CTA GAG TCG ACC	Target plasmids integration qPCR reverse primer, pair with XQ2603
XQ3582	GTCGACCTGCAGGCATGC	Target plasmids integration qPCR reverse primer, pair with XQ3135
KN2406	ATTAATTACGACGCCATTGACGGTTGTTTA GGACTAGTTACCCATACGATGTTCTGAC	flanking sequence upstream of stop codon of BRF1 and 5' end of 3HA
KN2407	GCGTGACATAACTAATTACATGACTCGAGG ATTCATTAAGCAGCGTAATCTGGAACGTC	3'end of 3HA, stop codon and 5' end of CYC1term
KN2408	GACGTTCCAGATTACGCTGCTTAATGAATC CTCGAGTCATGTAATTAGTTATGTCACGC	3'end of CYC1term and loxP- <i>HIS3</i> -loxP
KN2409	TTTCCTTCCTAGGGTTGATTACCTAACGTT AGAATTGAGCTCGGTACCCGGG	downstream region of loxP- <i>HIS3</i> -loxP into the template backbone and flanking sequence downstream of the stop codon of BRF1
KN2410	GATA GTGTCAAGAACATGTTGCAGAAGGCC AGTTTCTCCAAGAAGATTAATTACGACGCC	flanking sequence upstream of stop codon of BRF1 and 5' end of 3HA and overlapping sequence to the 5' end of PCR Fragment 1
KN2411	AGCCAAAACCAAATGTATTGCGTCTTATT	overlapping sequence to the 3' end of

Oligo	Sequence (5' - 3')	Description
	CCGTTCCCTTTCTCCTAGGGTTGAT	PCR Fragment 1 and flanking sequence downstream of the stop codon of BRF1
KN2727	GGACATATGTATTCTCTACTTTGTGCAAT GTGAAAGGACAAAGAGACAGG	PCR forward primer, 120 bp upstream of <i>tK(CUU)F</i>
KN2728	TGGAAGCTTATCTTTTATATGAACCTAGT TTTGCTGTATAAGAGCCGAGA	PCR <i>tK(CUU)F</i> coding sequence and 120 bp downstream sequence
KN3102	CCTCATATGGATTAGAGTCATAAATTAA TTCCCTTCTAATGGGTACTCTTGC	PCR forward primer, 120 bp upstream of <i>tG(GCC)G2</i>
KN3122	GGGAAGCTTTAAGAGGTTATAGATGTA AAAATGAACAATAAGAATAATTAAATTG	PCR reverse primer <i>tG(GCC)G2</i> coding sequence and 120 bp downstream sequence
JY3400	GGACATATGTAGGCATACTCAATCTTACCTT TT	PCR forward primer, 120 bp upstream of <i>tA(UGC)E</i>
JY3401	TGGAAGCTTAATAGTCATTAGCAGCCGTT C	<i>tA(UGC)E</i> 120 flanking reverse
JY3402	GGACATATGCACCTTCTTAGAAAATTGCA AATTATAG	PCR forward primer, 120 bp upstream of <i>tT(UGU)G1</i>
JY3403	TGGAAGCTTACCTAAATCTTACTCGGCCCT G	<i>tT(UGU)G1</i> 120 flanking reverse
KN2266	GGACATATGTAGTGAGCTTCAGTCAGTCTTTT AGATGTAGTTAGCAATTACTATTTAGG	PCR forward primer, 120 bp upstream of <i>tG(CCC)D</i>
KN2267	CAAGCTTCTGTTGAAGTACGCAATTAGTG GATTGCTCATCCAAATATCTT	PCR reverse primer <i>tG(CCC)D</i> coding sequence and 120 bp downstream sequence
JY3404	GGACATATGCTTATTGAGAAAGATAAGAAT ACAGAGACA	PCR forward primer, 120 bp upstream of <i>tG(GCC)F2</i>
JY3412	CCCTGCAGGCATGCAAGCTCTACGAAATA TTAAGGGAAAATATACGA	<i>tG(GCC)F2</i> 120 flanking reverse
JY3406	GGACATATGGCTATAGATGGTGGTCGATT CTT	PCR forward primer, 120 bp upstream of <i>tV(AAC)G1</i>
JY3407	TGGAAGCTAAAAGACGAAAAGAACGGAA AG	<i>tV(AAC)G1</i> 120 flanking reverse
JY3408	GGACATATGGTGATTCTTATTAGACACA ATAAA	PCR forward primer, 120 bp upstream of <i>tD(GUC)K</i>
JY3409	TGGAAGCTAAAATATGCATCGTTGCAC	<i>tD(GUC)K</i> 120 flanking reverse
KN2731	GGACATATGTTCTGTAAGAAGAGTAAAC CATAACCTAAGTCATATCAAATTAGG	PCR forward primer, 120 bp upstream of <i>tQ(UUG)D1</i>
KN2732	TGGAAGCTAGAAATTGCCCTATTCCTCG CCTTTTCCTTTTCAG	PCR <i>tQ(UUG)D1</i> coding sequence and 120 bp downstream sequence
JY3410	GGACATATGGTGCAGTAATGGCTGGTA	PCR forward primer, 120 bp upstream of <i>tV(AAC)G3</i>
JY3411	TGGAAGCTAAAATTGGAAGCAACAATAGT ATATATATATATGC	<i>tV(AAC)G3</i> 120 flanking reverse
XQ3507	GTCATATGATACGACAATTCTGGCCATAGC	PCR forward primer, <i>ETC1</i> fragment
XQ3508	GTAAGCTGAGGAACCTTCTGCTCGCTC	PCR reverse primer, <i>ETC1</i> fragment
KN2803	CCGGAAATAATCAAAAAAGATTAGAGTCGA TAAATTAAATTCCCTCTAATGGGTACTCTT	<i>tG(GCC)G2</i> , ChIP-qPCR, Forward
KN2804	TTTAAATTGTTTATTGAGAGGGTATTTC TAGAGCATGTCAAACCTTACTATTCAAGGG	<i>tG(GCC)G2</i> , ChIP-qPCR, Reverse

Oligo	Sequence (5' - 3')	Description
KN2560	TAGTGAGCTTCAGTCTGTTTAGATGTAGT TAGCAATTACTATTTAGG	<i>tG(CCC)D</i> , ChIP-qPCR, Forward
KN2039	TCTGTTGAAGTACGCAATTAGTGGATTGCTC ATCCAAATATCTTG	<i>tG(CCC)D</i> , ChIP-qPCR, Reverse
KN2805	AGAACTCGGATGTAAACTAACTAATAAGTG CTTATTGAGAAAGATAAGAATACAGAGACA	<i>tG(GCC)F2</i> , ChIP-qPCR, Forward
KN2806	CTTGCTTATATGCGAAGTGAACGAAATA TTAAGGGAAAATATACGACAATTCTGTG	<i>tG(GCC)F2</i> , ChIP-qPCR, Reverse
KN2566	GCATGCCTTTGTATTCTGTAAAGAAGAGT AAACCATAACCTAACAGTC	<i>tQ(UUG)D1</i> , ChIP-qPCR, Forward
KN2215	CTGAGAAACATTAAATACAGTTGAAA GGGAGGGGCGAGAGGGG	<i>tQ(UUG)D1</i> , ChIP-qPCR, Reverse
KN2617	ATACGACAATTCTGGCCATAGCTTTGGAA AGATTATTGGA	<i>ETC1</i> , ChIP-qPCR, Forward
KN2618	GAGGAACCTCTGCTCGCTCTAAATGGTA GTTCTAGTGA	<i>ETC1</i> , ChIP-qPCR, Reverse
XQ3621	TGCGAATTCTGTGGATCG	<i>tF(GAA)</i> family integration qPCR, Reverse
KD3087	ATTCATATGGTCACCCGGACTAACCGCGCG TTGGCG	<i>iSCS3</i> fragment, Forward
KD3088	AGGAAGCTCTGCCATTCTGCGCGTACAA GTGAGCCA	<i>iSCS3</i> fragment, Reverse
KD3089	CCGCATATGGTTGTGTGGGGAGAAGAACTG GATGCG	<i>iYIL100W</i> fragment, Forward
KD3090	CGGAAGCTTGCGCAGGAGGAAACAGGGAA CCAA	<i>iYIL100W</i> fragment, Reverse
KD3103	CGCCATATGCTTCCCTAGCTGAACCTACCCA AAG	<i>iCLD1</i> fragment, Forward
KD3104	CCGAAGCTTAGATGCTCATCACAGCTACTC C	<i>iCLD1</i> fragment, Reverse
XQ3291	GTCATATGGGATTCAACGAACCGCGATTG	<i>iRHB1</i> fragment, Forward
XQ3292	GTAAGCTTCCTTGCCTTCAGCTTCCTCT	<i>iRHB1</i> fragment, Reverse
XQ3482	GTCATATGTGACGATACCGTATTGTGTC	<i>iYJL206C</i> fragment, Forward
XQ3483	CCCTGCAGGCATGCAAGCTTAGCAATGTT AGCAAACCTTGAAGGC	<i>iYJL206C</i> fragment, Reverse
JY3421	GTAAGCTTAAGTATTGATGGCAGCGG	<i>iSCS3</i> cloned fragment left-half, Reverse primer, pair with KD3087
JY3422	GTCATATGTTATTGATGACCAAGATGCA	<i>iSCS3</i> cloned fragment right-half, Forward primer, pair with KD3088
XQ3488	AACTCTGGGACCGCTCCATAGGGTCCATAC AGGGCGCCCTGCAGGGACG	<i>iSCS3</i> left side Box B mutation, For
XQ3489	CGTCGCCTGCAGGGCGCCCTGTATGGACCC TATGGAGCGGTCCCAGAGTT	<i>iSCS3</i> left side Box B mutation, Rev
XQ3490	GCCATTGGGCTGGAGGGACACGACCCCTTCGG GGCACGTGTTCTGGCCACC	<i>iSCS3</i> right side Box B mutation, For
XQ3491	GGTGGCCAAGAACACCGTCCCCGAGGGGTC GTGTCCTCCAGCCCAATGGC	<i>iSCS3</i> right side Box B mutation, Rev
XQ3512	GCTGTTGTTCAATGGATGCGcTTtGAGGCC AGCGCAAGGGGG	<i>iYIL100W</i> Box B mutation Forward

Oligo	Sequence (5' - 3')	Description
XQ3513	CCCCCTTGCCTGGGCCTCAAAGCGCATCC ATTGAACAAACAGC	<i>iYIL100W</i> Box B mutation Reverse
XQ3563	CTTTCAACGTTCCAGCCTCTACG	<i>ACT1</i> -qPCR, Forward
XQ3564	GTTCGAAGTCCAAGGCGACG	<i>ACT1</i> -qPCR, Reverse

Supplemental Table S3A and 3B (applies to each). Analysis of aligned Ty3-genome joint reads (all sequences are available on NCBI Gene Expression Omnibus; <http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSExxx>) **A. Uniquely aligning sequence reads. B. Multiply aligning sequence reads.**

Column definitions

clusterid - unique ID for each cluster, starting at 1.

clusterwidth - cluster width in bp determined by junction sites

pos - cluster reads on the W (top) strand

neg - cluster reads on the C (bottom) strand

avg - average between both experiments (pKN3050YMA1322 + pKN3050YMA1356) / 2)

Nearest upstream and downstream features (e.g. PolIII txd, ORF, LTR, ARS). The cluster's "orientation" is always on the top Watson strand in chromosomal coordinates. Distance to features to the left of the cluster in chromosomal coordinates are positive (upstream) on the Watson strand and negative (downstream) on the Crick strand. Features to the right of the cluster are the reverse. Numbers represent the coordinate difference from the nearest edge of the feature to the nearest edge of the cluster. Where distance is "0", feature and cluster overlap.

Orientation of features - Positive is on W strand; negative is on C strand

Feature density (Pol III) - average number of features in a window of +/- 7 kbp (14 kbp total) around the cluster

Feature upstream/downstream - Closest feature 5'/3' of cluster

BoxA(BoxB).BBLS - Bayesian Branch Length Score of the closest Box A(Box B) sequence, found from the MotifMap pipeline

BoxA_BoxB_pairs.source_BBLS - Bayesian Branch Length Score of the closest Box A sequence that is within 100 bp of a Box B on the same strand, found from the MotifMap

pipeline. The BBLS score estimates the probability that a motif is conserved across seven yeast species (including *S. cerevisiae*) (Xie, Rigor et al. 2009).

BoxA_BoxB_pairs.target_BBLS - Bayesian Branch Length Score of the closest Box B sequence that is within 100 bp of a Box A on the same strand, found from the MotifMap pipeline.

NLOD scores- Normalized Log Odds Scores of the closest Box A/Box B sequences, found from the MotifMap pipeline. The NLOD estimates the degree of relatedness to the consensus motif (Xie, Rigor et al. 2009).

Supplemental Table S4. Ty3 insertion reads not associated with a known Pol III-transcribed gene.

Cluster ID #	Location	HTS fraction	Vicinity Gene (Coordinates)	Relative location	Cloned fragment	Plasmids	Plasmid integration	Possible mechanism
89	chrIII: 169,065	7.9E-04	<i>RHB1</i>	Downstream (1000 bp)	168,448-169,343	pXQ3406	No	Sigma distal artifact
98	chrVII: 271,599	3.6E-04	<i>SCS3</i> 271,003-272,145	Inside ORF	271,408-271,812	pKD3402	Yes	Box A/B
117	chrVII: 712,550	6.6E-05	<i>CLDI</i>	Upstream (1150 bp)	712,314-712,645	pKD3401	No	Sigma distal artifact
72	chrIX: 177,569	3.6E-05	<i>YIL100W</i> 177,370-177,723 <i>YIL100C-A</i> 177,340-177,678	Inside both ORFs	177,279-177,881	pKD3400	Yes	Box A/B
99	chrVII: 287,305	2.9E-05	<i>tW(CCA)G1</i>	Downstream (45 bp)	N/A	N/A	N/A	Unknown
49	chrX: 48,796	5.9E-06	<i>YJL206C</i> 47,659-49,935	Inside ORF	48,543-49,060	pXQ3670	No	Unknown
169	chrIV: 1,023,475	5.6E-06	<i>YDR282C</i>	Downstream (34 bp)	N/A	N/A	N/A	Sigma distal artifact
172	chrIV: 1,118,706	1.6E-06	<i>YCG1</i> 1,117,122-1,120,229	Inside ORF	N/A	N/A	N/A	Unknown

Supplemental Table S5. Integration sites analyzed by qPCR.

Loci	U5 qPCR standard		U3 qPCR standard		Targets on plasmids		ChIP-qPCR primers
	Name	Cloning primers	Name	Cloning primers	Name	Cloning primers	
<i>tK(CUU)F</i>	pXQ3617	2603/3377	pXQ3628	3135/3377	pKN3525	2727/2728	2727/2728
<i>tG(GCC)G2</i>	pXQ3618	2603/3378	pXQ3629	3135/3378	pKN3540	3102/3122	2803/2804
<i>tA(UGC)E</i>	pXQ3619	2603/3379	pXQ3630	3135/3379	pJY3611	3400/3401	3400/3401
<i>tT(UGU)G1</i>	pXQ3620	2603/3380	pXQ3631	3135/3380	pJY3613	3402/3403	3402/3403
<i>tG(CCC)D</i>	pXQ3621	2603/3381	pXQ3632	3135/3381	pKN3471	2266/2267	2560/2039
<i>tG(GCC)F2</i>	pXQ3622	3383/3382	pXQ3633	3384/3382*	pXQ3662	3404/3412	2805/2806
<i>tV(AAC)G1</i>	pXQ3623	3386/3385	pXQ3634	3387/3385*	pJY3615	3406/3407	3406/3407
<i>tD(GUC)K</i>	pXQ3624	3389/3388	pXQ3635	3390/3388*	pJY3612	3408/3409	3408/3409
<i>tQ(UUG)D1</i>	pXQ3625	3392/3391	pXQ3636	3393/3391*	pKN3526	2731/2732	2566/2215
<i>tV(AAC)G3</i>	pXQ3626	3395/3394	pXQ3637	3396/3394*	pJY3616	3410/3411	3410/3411
<i>ETC1</i>	pXQ3627	3398/3397	pXQ3638	3399/3397*	pXQ3676	3507/3508	2617/2618

*PCR products were extended through another round of PCR using forward primer XQ3418, such that they could be bound by primer XQ3135.

Supplemental Table S6. Clusters close to existing chromosomal Ty3 LTRs (sigma elements). As a result of an iPCR artifact, double clusters were found at some integration sites. In these cases, clusters densities were combined from two clusters originating from the same target site, which were then used to generate the scatter plot in Fig. 3.

Single clusters		Double clusters		
Cluster ID #	Pol III	Cluster A ID #	Cluster B ID #	Pol III
14	<i>tE(UUC)E2</i>	10	11	<i>tQ(UUG)E1</i>
52	<i>tA(AGC)J</i>	16	17	<i>tH(GUG)E2</i>
75	<i>tI(AAU)I2</i>	29	30	<i>tG(GCC)B</i>
104	<i>tE(UUC)G2</i>	78	79	<i>tD(GUC)I1</i>
105	<i>tR(UCU)G1</i>	101	102	<i>tH(GUG)G2</i>
116	<i>tC(GCA)G</i>	119	120	<i>tR(UCU)G3</i>
117	<i>tC(GCA)G</i>	136	137	<i>tS(AGA)A</i>
127	<i>tG(GCC)G1</i>	160	161	<i>tI(AAU)D</i>
139	<i>tV(AAC)H</i>	164	165	<i>tY(GUA)D</i>
143	<i>tA(AGC)H</i>	192	193	<i>tL(UAA)N</i>
147	<i>tT(UGU)H</i>	204	205	<i>tK(UUU)P</i>
167	<i>tG(GCC)D2</i>	212	213	<i>tI(AAU)P2</i>
169	<i>tE(CUC)D</i>	219	220	<i>tK(CUU)K</i>
174	<i>tM(CAU)D</i>	271	272	<i>tA(UGC)O</i>
181	<i>tN(GUU)N1</i>	285	286	<i>tA(AGC)L</i>
185	<i>tP(UGG)N1</i>			
194	<i>tW(CCA)P</i>			
210	<i>tA(AGC)P</i>			
256	<i>tG(GCC)O1</i>			
262	<i>tT(AGU)O2</i>			
276	<i>tS(AGA)L</i>			
279	<i>tR(ACG)L</i>			

Supplemental Methods

Plasmid constructions. Ty3-ppt-*HIS3* was expressed under control of the *GAL1-10* UAS from a *URA3*-marked low-copy plasmid (pKN3050). Ty3 containing antisense insertion of *HIS3* derived from pNB2361 (Beliakova-Bethell, Terry et al. 2009) was cloned into YCplac33 (ATCC) via unique SacII and NotI sites. A SacI site was introduced at the end of *POL3*. Two unique tags flanked by SacI-AflII and SbfI-XmaI sites were inserted at 3'- and 5'-ends, respectively of *HIS3*. Because Ty3 *POL3* extends into the downstream LTR, insertion of the *HIS3* gene at the downstream end of *POL3* disrupted a key region for replication containing both the ppt and the downstream LTR. Therefore, the plasmid was linearized by digestion with XmaI and NotI downstream of the tagged *HIS3* gene. An intact copy of the 3'LTR was amplified from pDLC201 (Hansen, Chalker et al. 1988) using primer oligonucleotides KN1939 and KN1940 and was also cleaved with XmaI and NotI. The LTR fragment was then ligated into the linearized Ty3 plasmid regenerating Ty3 containing *HIS3*, a second copy of the polypurine tract (ppt), and an intact LTR, in that order (Ty3-ppt-*HIS3*). This Ty3 expression plasmid was designated pKN3050. Plasmid pKN3050 was cleaved with AflII and SbfI and religated thereby removing one tag and the *HIS3* gene and creating pKN3097 (Table 1A). Positive clones were verified by DNA sequencing. This and other sequence analysis was performed at Genewiz Inc. (La Jolla, CA).

In order to test specific loci for target activity 300- to 600-bp DNA fragments containing the loci were amplified in PCR reactions using primers with *Nde*I or *Hind*III restriction sites at the outside ends (Sup. Inform. Table S1). PCR products were digested with *Nde*I/*Hind*III and ligated into pXP622 restricted with *Nde*I/*Hind*III. In the cloning of the iRHB1 fragment, an internal *Nde*I site was used. In the cloning of tG(GCC)F2 and iYJL206C fragments, *Pst*I was used in place of *Hind*III because of the presence of internal *Hind*III sites. All plasmids were confirmed by DNA sequencing.

In order to test the requirement for box B in targets *iYIL100W* and *iSCS3s*, site-directed mutagenesis of plasmid-borne loci using primers described in Supplemental Information. Table S2 was substitute key conserved positions. Mutations were confirmed with DNA sequencing.

Construction of qPCR standard plasmids. To construct the plasmids used as qPCR standards for measurement of integration at specific chromosomal loci, tDNAs with a segment of flanking Ty3 insertion were amplified and cloned into the pCR2.1 vector (Invitrogen Inc. Carlsbad, CA) . For loci exhibiting high-frequency integration, Ty3-ppt was induced to transpose and loci together with integrated Ty3 were amplified using PCR primed with primers annealing to Ty3 and target loci. At loci exhibiting low or no integration frequency, the Ty3 associated product was amplified in a one or two-step reaction in which the locus was amplified and Ty3 ends were included in the PCR primer. Plasmids and qPCR standards for experiments in which target loci were plasmid-borne were constructed using an approach similar to that used for chromosomal targets. Amplicons were cloned into pCR2.1 using TA cloning and constructs were confirmed with DNA sequencing. Details of the constructions are provided in Supplemental Methods. Oligonucleotide primers are listed in Table S2. Product plasmids are listed in Table S1.

Ty3 transposition. For HTS analysis of Ty3-*HIS3* insertion sites, YMA1322 and YMA1356 transformed with the Ty3-*HIS3* expression plasmid pKN3050 were grown to log phase in SR -Ura, -His at 24°C (RT). From each culture, 2 x 10⁶ transformants were transferred to each of ten 100 mm plates of SG -Ura, -His medium or on SD-Ura, -His medium as negative control and maintained for 3 d to allow Ty3 expression. Subsequent steps were performed for both tested conditions. Cultures were replica-plated onto YPD, and incubated at 30°C for 24 h. Colonies were replica-plated onto SD -His medium supplemented with 0.1% 5-fluoro-orotic acid (5FOA) (Boeke, LaCroute et al. 1984) to select for cells that had lost the URA3-marked donor plasmid, but contained Ty3-*HIS3* chromosomal integrants. On average, there were approximately 10³ integrants per plate for Ty3 induced samples and 20 to 40 colonies for negative control samples. Approximately 10,000 colonies each for YMA1322 and YMA1356 cultures were scraped from plates. Harvested cells were inoculated into 10 ml SD -His and incubated at 30°C on a rotating wheel for 24 h. Genomic DNA was extracted according to standard procedures (Ausubel, Brent et al. 2007).

For quantitative comparison of transposition into different chromosomal target loci, yMA1322 transformed with Ty3-ppt donor plasmid pKN3097 was grown to log phase in SR-Ura medium, diluted into 25 ml SG-Ura medium to final concentration of 0.2 OD₆₀₀, and grown with shaking at 180 rpm, at RT for 24 h. As negative control, cultures were diluted into 5 ml SD-Ura medium to 0.2 OD₆₀₀ and allowed to grow for 24 h at RT. Quantitative comparison of transposition into plasmid-borne targets was performed similarly except that -Ura -Leu, medium was used to select for donor and target plasmids. Slower growth necessitated extending the SG -Ura -Leu incubation from 24 h to 36 h.

Construction of Brf1-3HA yeast strain: Brf1 was tagged with three copies of the hemagglutinin epitope (3HA) by introducing 3HA in frame at the downstream end of the respective ORF in YMA1322 by homologous recombination using a modified procedure of Longtine (Wach, Brachet et al. 1997; Longtine, McKenzie et al. 1998). The tagging fragment was produced by two-step nested PCRs: (1) 3HA from templates pFA6a-3HA-KanMX6 using primers KN2406FN and KN2407R containing 45-bp homology arm to the 3'end of Brf1 coding sequence and CYC1-terminator (*CYC1*-T), respectively, (2) *CYC1*-T-loxP-*HIS3*-loxP from pKN3481 (unpublished) using primers KN2408 and KN2409 containing homology arms to the 5'end of the endogenous terminator and the 3'end of loxP-*HIS3*-loxP, (3) Fusion of 3HA and *CYC1*-T fragments by PCR using primers KN2410-KN2411R. The final fusion PCR amplicons (500 ng to 1 μ g DNA) were used to transform yMA1322 strain, and transformants conferred His⁺ phenotype were screened by PCR using Brf1-specific primers KN2485F and KN2411R and verified by sequencing with KN2485F. Western blot analysis was performed using α -3HA to verify positive candidates from sequencing results. The resulting yeast strain is YKN1692 (Table 1A).

In order to monitor Brf1 occupancy at genomic loci, three copies of a sequence encoding the hemagglutinin epitope (3HA) were used as previously described for Brf1 ChIP (Harismendy, Gendrel et al. 2003; Roberts, Stewart et al. 2003). A fragment encoding the 3HA was introduced in frame at the downstream end of Brf1 in yeast strain

YMA1322 by homologous recombination using a modification of the procedure of Longtine et al. 1998 (Wach, Brachet et al. 1997; Longtine, McKenzie et al. 1998).

HTS sequence analysis of Ty3 insertion sites. One microgram of Ty3 ppt+ *HIS3* integrant gDNA was subjected to one of three parallel digestions using four base cutters *Csp6I*, *HaeIII*, and *HpyCH4V* (5-10 units/each) (New England Biolabs, USA) for 3 h at 37°C. Enzymes were inactivated for 20 min at 65°C. Complete digestion products were fractionated by electrophoresis on a 0.7% agarose gel, resulting in a smear from 300 bp to 10 kb. Digested gDNAs were purified using QIAquick Spin Columns 50 (Qiagen Inc., Germany) and eluted with 30 µl of sterile water. One hundred nanograms of digested DNA was self-ligated using 18 Weiss units of T4 DNA ligase (New England Biolabs, USA) at a concentration of 1 ng/µl at 15°C for more than 12 h in 10 µl of 10x ligase buffer (New England Biolabs, USA) diluted into a 100 µl reaction. Samples were ethanol precipitated.

Self-ligated DNA was amplified using forward (OM8763) and reverse (OM8764) primers (Table S2) with sequences complementary to Ty3 tag and U5 terminal sequences on the inside and to Illumina adapters on the outside ends (Fig. 1). The forward primer contained an additional sequence complementary to the Illumina sequencing primer. Five ng or one µg of circularized DNA was used as template for iPCR. The final concentration of all PCR components per 50-µl reaction was 0.5 x RedTaq buffer, 0.2 mM of each dNTPs, 1 M Betaine, 0.5 µM of each primer, 2 units or 4 units of RedTaq DNA polymerase (Sigma-Aldrich Inc.), 1 µg circularized DNA and water. Thermal cycler settings included 1 cycle at 93°C for 3 min, 32 cycles (93°C for 30 sec, 60°C for 6 min), and 1 cycle holding indefinitely at 4°C. Five µl of PCR products were fractionated by electrophoresis on a 0.7% agarose gel. Product size from iPCR was from 200 bp to 2 kb, but averaged approximately 400 bp. The PCR product was purified using a PCR purification kit (Qiagen Inc., Germany) and eluted with 30 µl of sterile water. Ten nM iPCR stock was prepared based on an estimation for a 200 bp DNA fragment (10nM is equivalent to 1.32 ng/ µl). Equal amounts of iPCR from three different restriction enzyme digests of the same sample were combined and submitted for 36 cycles of single-end sequencing in the GAIIX system.

Chromatin immunoprecipitation analysis of Brf1 binding to target loci. A 50-ml culture of $OD_{600} = 0.6-1.0$ was crosslinked at 24°C for 15 min using 37% formaldehyde at a final concentration of 1%. The crosslinking reaction was quenched by adding 2.5 ml of 2.5 M glycine and incubating at 24°C for 5 min. The culture was harvested and washed twice with 20 ml ice-cold 1x PBS buffer (0.14 M NaCl, 2.7 mM KCl, 8.1 mM Na₂HPO₄ and 1.5 mM KH₂PO₄). Cells were resuspended in 400 μ L ChIP lysis buffer [50 mM HEPES (pH 7.5), 140 mM NaCl, 1 % Triton x100, 0.1% Na-deoxycholate] supplemented with proteinase inhibitor mix: (w/v) 0.2% leupeptin, 0.2% aprotinin, 0.1% pepstatin, 7.5% PMSF and 0.6 g of glass beads. The cells were lysed by beating (speed setting: 4.5, 3x 40 sec) in a FastPrep-24 System (MP Biomedicals, LLC) at 4°C. The cell extract was transferred into a 15 ml Falcon conical tube (BD Bioscience), brought to 2 ml with cold ChIP lysis buffer with proteinase inhibitors, and sonicated in Bioruptor (Diagenode Inc., Denville, NJ) at 4°C for 15 min (Level: high; 30 s ON, 30 s OFF) to shear the majority of chromatin to 500-bp fragments. The extract was centrifuged for 30 min at 4°C at 13K rpm, and cleared lysate was transferred to a fresh tube. Protein was quantified by Bradford assay (BioRad Inc, Richmond, CA; cat# 500-0006). Twenty microliter of lysate was added to 180 μ L of ChIP elution buffer (50 mM Tris pH8.0, 1% SDS, 10 mM EDTA) and later to be reverse crosslinked to produce input sample (INPUT).

Five milligrams of total protein were aliquoted for each immunoprecipitation and incubated overnight at 4°C on a Nutator mixer (BD-Diagnostic system, cat# 421105) with 50 μ l of 50% slurry of n-ProteinA Sepharose 4 Fast Flow (GE Healthcare, cat# 17-5280-01) with either 2 μ g of anti-HA antibody (Roche Inc., cat# 1583816, San Francisco, CA) and cold ChIP lysis buffer to a final volume of 500 μ l. After 12-24 h of incubation, the IP reaction was centrifuged at 6K rpm for 5 min at 4°C. The recovered beads were washed thoroughly: twice with 1 ml/each of cold ChIP lysis buffer, twice with 1 ml/each cold ChIP wash buffer (10 mM Tris-HCl pH8.0, 250 mM LiCl, 0.5% NP-40, 0.5% Na-deoxycholate, 1 mM EDTA), and twice with 1 ml/each of TE (10 mM Tris-HCl, pH8.0, 1 mM EDTA) at 24°C. Washed beads were eluted with 100 μ l ChIP elution buffer and incubated at 65°C for 10 min. Eluate was transferred to a fresh microfuge tube (IP). The elution step was repeated once more and eluates were pooled. IP and INPUT samples

were incubated at 65°C overnight to reverse crosslinking. DNA was extracted and precipitated using standard procedures. DNA was dissolved in 200 uL deionized water and stored at -20°C.

References

Ausubel, F. M., R. Brent, et al. (2007). *Current Protocols in Molecular Biology*, John Wiley and Sons, Inc.

Bähler, J., J.-Q. Wu, et al. (1998). "Heterologous modules for efficient and versatile PCR-based gene targeting in *Schizosaccharomyces pombe*." *Yeast* **14**(10): 943-951.

Beliakova-Bethell, N., L. J. Terry, et al. (2009). "Ty3 nuclear entry is initiated by viruslike particle docking on GLFG nucleoporins." *J Virol* **83**(22): 11914-11925.

Boeke, J. D., F. LaCroute, et al. (1984). "A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance." *Mol Gen Genet* **197**(2): 345-346.

Fang, F., K. Salmon, et al. (2010). "A vector set for systematic metabolic engineering in *Saccharomyces cerevisiae*." *Yeast* **28**(2): 123-136.

Hansen, L. J., D. L. Chalker, et al. (1988). "Ty3, a yeast retrotransposon associated with tRNA genes, has homology to animal retroviruses." *Mol Cell Biol* **8**(12): 5245-5256.

Harismendy, O., C. G. Gendrel, et al. (2003). "Genome-wide location of yeast RNA polymerase III transcription machinery." *EMBO J* **22**(18): 4738-4747.

Longtine, M. S., A. McKenzie, 3rd, et al. (1998). "Additional modules for versatile and economical PCR-based gene deletion and modification in *Saccharomyces cerevisiae*." *Yeast* **14**(10): 953-961.

Roberts, D. N., A. J. Stewart, et al. (2003). "The RNA polymerase III transcriptome revealed by genome-wide localization and activity-occupancy relationships." *Proc Natl Acad Sci U S A* **100**(25): 14695-14700.

Wach, A., A. Brachat, et al. (1997). "Heterologous HIS3 marker and GFP reporter modules for PCR-targeting in *Saccharomyces cerevisiae*." *Yeast* **13**(11): 1065-1075.

Xie, X., P. Rigor, et al. (2009). "MotifMap: a human genome-wide map of candidate regulatory motif sites." Bioinformatics **25**(2): 167-174.