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1 Definitions

A phylogenetic tree T is a graph (V(T),E(T)), with a set V(T') of vertices and a set E(T') of directed edges
(v,u). Let e(v) be the edge (v,p(v)), where p(v) is the parent of node v. We denote the children of a node v
as ¢1(v) and ¢ (v). The leaves of T are L(T') and the internals nodes are I(7'). Also, let 7(v) be the length of
branch e(v) expressed in units of time (generations). We use t(v) to represent the age of a node v (i.e. the
length of any path from v to the leaves). We use the relation v < w to mean that v is a descendant of w and
we use v < w to mean that v is either a descendant or is equal to w. We also define the relation for edges
e(v) <e(w)ifv<w.

2 Relevant probabilities for the DL.Coal model

2.1 Review of the coalescent model

The coalescent model describes the rate at which lineages within a population find a common ancestor
(coalesce) as one goes backwards in time. For a diploid species with an effective population size N, the
probability that any pair of k lineages coalesce at generation ¢ is

Pk, N) = @;Ve p< (’;) 2;:) )

The process is repeated until all lineages coalesce into a single common ancestor, and the tree generated by
this process is called a coalescent tree. Alternatively, the process can be terminated at some predetermined
time, in which case it is possible that not all lineages fully coalesce. This truncated process is call the
censored coalescent (Rannala and Yang 2003) and it has been derived (Saunders et al. 1984, Rosenberg
2002) that the probability of a lineages coalescing into b lineages in time ¢ generations is

—k(k—1) 2k—1)(=1)*" = (b+y)(a—y)
P(bla,t,N) = ZCXP( t>b'(k b)'(k+b—1)yl:l aty @)

An important special case is the probability that no coalescent occurs for & lineages before time ¢ gener-
ations, which is

k(k—1
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Another important special case occurs in our bounded coalescent process, where we have b =1,
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2.2 The bounded coalescent

In this work, we introduce a new process called the bounded coalescent (Figure S1a). In this process, we
imagine that we have a new allele (black dot) occurring at a known time ¢*, and we are given k lineages
at time ¢ = 0 that also have the allele. For our purposes, the new allele represents the presence of a new
duplicate and the old allele (white dots) represents its absence. In addition, we have no knowledge of the
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Figure S1: Bounded coalescents. (a) A bounded coalescent is a coalescent where the time of the MRCA
fmrca 1s more recent than some deadline #*. This is equivalent to conditioning the process on having a new
mutation (black dots) occurring at time #* and all k leaves have the mutation. The frequency of the mutation
is unknown (grey dots) for all other times in the tree. (b) A bounded multispecies coalescent (BMC) is a
multispecies coalescent with the condition that the root r of the gene tree has a time t(r) more recent than
some deadline *.

frequency of the allele at any other time (grey dots). Let the coalescent times of the k lineages be described
by a new process called the bounded coalescent.

We can derive the distribution of the coalescent times in the bounded coalescent by making the following
observation. Requiring that all k lineages have the new allele, implies that the k lineages must be descendants
of the first individual with new allele at time #*, and only coalescent trees whose most recent common
ancestor has a time f3;rc4 more recent than ¢* satisfy this condition. Furthermore, given that a coalescent tree
has fyrea < t*, there is a 1 /2N probability that root of the tree has the new allele. Notice that this probability
is independent of the tree’s topology or branch lengths. Therefore, a coalescent process conditioned on
tvwrca < t* is an equivalent definition of the bounded coalescent. The probability density of the time ¢ of the
next coalescent between & lineages in the bounded coalescent process is then

P(l‘,lMRCA < l*|k,N)

Ptltrea <17 kN) = P(tmrea < t*|k,N) oY
Plrlk.N) ifz <t
= P(IMRCA < l‘*|k,N) ’ MRCA (5b)

, otherwise

Notice, that the term P(tyrca < t*|k,N) is equivalent to the probability that k lineages go to 1 lineage in
time t* (Equation 4).

2.3 The bounded multispecies coalescent (BMC)

Another useful process to define is the coalescence of the descendants of a duplication that occurs higher up
in a species tree (Figure S1b). Using the same arguments, we can model these gene lineages as a multispecies
coalescent with the condition that the age of their MRCA 1(r) is more recent than the time of the duplication
t*. We call this conditioned process, the bounded multispecies coalescent (BMC).

Let r be the root (MRCA) of the gene tree G = (T,t) with topology T and branch lengths ¢t. Let n
be a vector of gene counts for each extant species, such that n, = [{v: R(v) = u,v € L(T)}| for u € L(S).



Typically n, = 1, unless multiple extant individuals are present per species in the data. The probability
distribution of the gene tree is then

P(G,R,t(r) <t*|n,S,N)

P(G,R|t(r) <t*,n,S,N) = P(r) < 7.5, N) (6a)
P(G,R|n,S,N) .
f *
_! Pr<rinsNy TSt (6b)
0, otherwise

The numerator is the probability of a gene tree in the multispecies coalescent, which has been derived
by Rannala and Yang (Rannala and Yang 2003). The denominator has also been derived by Efromovich and
Kubatko (Efromovich and Kubatko 2008) and we review its calculation using our own notation.

2.4 The age of the MRCA in a multispecies coalescent

We briefly review the computation of P(t(r) < t*|n,S, N'), which is the cumulative distribution function
(CDF) of the age of the MRCA of a gene tree. This probability can computed as

M
P(t(r) <t*In,S,N) = Z P(t(r) <t*lk,n,S,N)P(k|n,S,N), @)
k=2

where & is the number of lineages present at root(S) and M = Y ;n;. The first term is an application of
Equation 4,

P(t(r) <tlk,n,S,N) =P(b=lla=k,t =t" —1(root(S)),N = N(r)). ®)

The second term can be computed using dynamic programming. Let a(u) be the number of lineages
present at node u € V(S). Thus, a(u) = n, for u € L(S). Let b(u) be the number of lineages present at the
top of branch e(u). Let ¢; (u) and ¢ (u) be the left and right children of u. Therefore,

a(u) = blc1(u)) +b(ca(u)).
Using these definitions, we can express our desired term as
P(k|n,S,N') =P(a(root(S)) = k|n,S,N), 9)

and we can compute it recursively. First, note the probability of seeing b(u) lineages at the top of branch
e(u) in the specie stree is

P(b(u) =kln,S,N) = iP(b =kla=1i,t =t(u),N =N(u))P(a(u) =iln,S,N), (10)
i=1

where

M, = Z ny,

veL(S,)
and S, is the subtree of S beneath node u. The probability of seeing a(u) lineages at node u is

k—1
; P(b(ci(u)) = iln,S, N)P(b(ca(u)) = k—iln,S,N), ifu € I(S)

P(a(u) =kn,S,N) = (11)

Tjn, if ucL(S)

where I is an indicator function.



2.5 Review of the multispecies coalescent

The multispecies coalescent (Rannala and Yang 2003, Degnan and Rosenberg 2009) is a generalization of
the coalescent for multiple populations connected into a tree representing the evolution of a set of species.
The tree is called a species tree S = (S,¢(S)) where S is a topology and ¢(S) is a vector of branch lengths
expressed in generations. We initialize the process by specifying a number of gene lineages n, present in
each species leaf u € L(S). For each branch e(u) of the species tree, we run a censored coalescent (Rannala
and Yang 2003) process that coalesces a(u) lineages into b(u) lineages over time #(u«). Lineages that remain
after this process proceed onto the parental branch e(p(u)).

For the root node root(S) of the species tree, we run a normal coalescent process to coalesce a(root(S))
lineages into one lineage with no restriction on coalescent time.

This process generates a gene tree G = (T,¢(T') ), where T is the topology and ¢(7') is a vector of branch
lengths expressed in number of generations, such that each branch e(v) € E(T') has length #(v). The process
also produces a reconciliation R : V(T') — E(S), which is a mapping of vertices in the gene tree to edges in
the species tree.

The number of lineages starting and ending on each branch of the species tree are very useful for several
calculations. If one has a reconciliation R, the lineage counts a(u) and b(u) for all u € V(S) can be computed
using recursion. First, we can initialize the lineage counts at the leaves,

a(u) ={v:R(v) =e(u),v€ L(T)}|, if u € L(S). (12)

The lineage counts b(u) present at the top of a branch e(u) equals the count at the bottom a(«) minus
the number of coalescences in e(u),

b(u) =a(u) —|{v:R(v) =e(u),v € I(T)}|. (13)

Lastly, the ending counts of two child branches of e(u) sum together to give the starting count of branch
e(u). Therefore, for each internal node u € I(S) and its children c¢; (u) and c,(u) we have,

a(u) =b(c1(u)) +b(ca(u)), ifu e I(S). (14)

Another useful definition is to consider the subgraph T of the gene tree T that contains any edge
that “crosses into” branch e(u). This subgraph T" is a forest of trees whose leaves represent the starting
lineages, roots represent the ending lineages, and topology represent the particular pattern of coalesce. We
define these subgraphs and their reconciliations R* as,

= (V(T"),E(T")) (152)
{v:R(v) =e(u) VR(v) <e(u) <R(p(v))} (15b)
{(vyw):veV(T"),weV(T")} (15¢)
R(v),Yv e V(T"). (15d)

44 )
E(T")
R'(v)

2.6 The probability of a reconciled topology in the multispecies coalescent

As currently formulated in the DLCoalRecon algorithm, we only consider the topology of the gene tree 7.
In the main text, we show how the probability of a gene tree topology can be computed. One of the terms
needed for this calculation is the probability of a reconciled gene tree topology in the multispecies process,
P(T,R|S,t,N). Here we show how this can be computed efficiently.

Degnan and Salter (Degnan and Salter 2005) were the first to introduce general equations for computing
the probability of the gene tree topology with an arbitrary number of leaves for the coalescence process. A



major complexity in that work was summing over reconciliations. However, our current problem is much
simpler since the reconciliation R is proposed.

Let T be the gene tree topology, R be the reconciliation, and (S,t) be the species tree topology and
branch lengths in time. Lastly, let /N be a vector of population sizes. The coalescences are independent in
each branch e(u) of the species tree, so we can factor a gene tree T into its subgraphs 7,

P(T,RIS,t,N) = ] P(T",b=b(u)la = a(u),t = t(u),N = N(u)). (16)
uev(S)

For each subgraph, we continue to factor,

P(T",b(u)la(u),t(u),N(u)) =P(T"|a = a(u),b = b(u),t = t(u),N = N(u)) (17a)
P(b=b(u)la = a(u),t = t(u),N = N(u)). (17b)

The second term is defined by Equation 2. Once we condition on going from a lineages to b lineages,
we only need to compute the probability of the topology T%. This can be done by working with labeled
histories.

A labeled history is a labeled topology with an ordering defined on the internal nodes (representing the
order of the coalescences). One convenient property of labeled histories is that for a given number of leaves
a and roots b, each labeled history is equally likely. The total number of possible labeled histories H,, for a

leaves and b roots is
a\ fa—1 b+1 a i
ma=(5)(2')-("2) = I1,() s

Next, we need to compute how many of these labeled histories have labeled topology T%. In general, the
number of labeled histories H(T') that have labeled topology T is

H(T)=|(T)|! T (1) (19)

vel(T)

where 7, is the subtree of T rooted at v. Thus, the probability of a topology T is

P(T"a,b, () NGw) =T T e 20)

Hyp vel(T®)

For the basal species branch u = root(S) we have

P(T"a(u),t(u),N(u)) = 2D

and

So in conclusion,

()|

P(T,RIS,t,N)= [] P ),t(u),N(u)) o

uev(S)

[T 1@ (22)

vel(T")



2.7 Derivation of posterior probability of reconciliation

In the main text, we presented a new reconciliation algorithm called DLCoalRecon. The reconciliation
problem is to determine the evolutionary events necessary for explaining a given gene tree G = (T9,t%) and
species tree S = (S, %) (Goodman et al. 1979, Page 1994). Usually, a reconciliation is defined as a mapping
from vertices in the gene tree to vertices and edges in the species tree, however, in the DLCoal model, the
reconciliation R is a tuple

R = (T%,R, R, &), (23)

where T is the locus tree, RC is a mapping from the gene tree to the locus tree, R” is a mapping from the
locus tree to the species tree S, and 8 is a set of daughter nodes. Given our model parameters,

0= (tS,N,k,‘u),

our goal is to compute the maximum a posteriori reconciliation, thus

R =argmax P(R|TY,S,0) (24a)
R
P(TS, T, RO RL 818,60
= argmax (=T FeTrr 5.8) (24b)
TL,RG RL 5L P(T€S,9)
= argmax P(T° TL RO R G(S,0). (24c)
TL,RG,RL,SL

Notice, that maximizing the posterior is the same as maximizing the joint probability when T is given.
We currently assume that £© is unknown, since in practice such times are not directly known without a
molecular clock assumption. By introducing the locus tree branch lengths t“, we can now separate the
variables for the gene tree and locus tree.

P(TC RC TE RE,&(S,0) :/P(TG,RG,TL,tL,RL,SL\S,e)dtL (25a)
:/P(TG,RG|TL,tL,RL,SL,S76)P(TL,tL,RL,6L|S,6)dtL. (25b)

Furthermore, we can factor the second term above into a probability for the locus tree branch lengths,
daughter nodes, and topology, giving us

/ P(TC,RC|TE tb &8, NE)P(th|TE RE,S,0)P(8"| T, RE, S)P(TL RE|S,0)dt" (25¢)
=P (8" T, R",S)P(T*,R"|S,0) / P(TC,RO|TE L &8, NEYP(#L|TE RL,S,0)dt". (25d)

The term P(TL,RE|S,0) has been derived (Arvestad et al. 2003; 2009) and for the daughters set &, we
have

P(8"|T%, R, S) = 2~ ldup(T".RE.S)] (26)

where dup(T*,R",S) gives the number of duplications in the locus tree. This probability is derived from the
fact that there are two ways to choose a daughter node for each duplication in the locus tree. We perform
the integration by sampling as is done in (Arvestad et al. 2004, Rasmussen and Kellis 2010).



The probability of the reconciled topology 7¢, R in the multilocus coalescent (MLC) process can be
derived as follows. Since the MLC is the multispecies coalescent with the condition that coalescence is
complete within each daughter edge, we can write the term as,

P(TC,RC|TE tE, NL 1(root (TO)) < 1(p(v)) Vv € &) =
P(TY,RO|TE tE, NT) (27
[Tiest P(t(root (T4Y)) < t(p(v))|THY, ¢4, NEY)”

where TC" are the subtrees of 7C that evolve inside daughter subtrees 7X". Here, we use the fact that if
the reconciled topology T¢, RS shows complete coalescence within each daughter edge, then the numerator
simplifies to the probability of a reconciled topology in the multispecies coalescent (Equation 22). We factor
the denominator into the probability that each daughter subtree 7% completely coalesces before its deadline
T(p(v)). Each term of the product can be computed using Equation 7 or Efromovich e al. (Efromovich and
Kubatko 2008).

3 Simulation

For this work, we implemented a simulation program for our DLCoal model, where given a species tree
S with divergence times ¢, population sizes IN, and duplication-loss rates A,u we can sample a locus tree
(TE,tE,85) and a gene tree (T9,t%). Sampling the locus tree is done with the birth-death process (Arvestad
et al. 2004, Rasmussen and Kellis 2010). Here, we describe several algorithms needed for sampling the gene
tree from the multilocus coalescent process.

3.1 Coalescent times conditioned on lineage counts

First, we describe a useful sub-procedure for sampling coalescent times conditioned on the starting lineage
counts a and ending counts b over a time ’. The distribution of the waiting time x is then

P(x,b =kyla=k;,t =1',N)

P(xla=ky,b=ky,t =t',N) = 28
(x’a 1 25 ) ) P(b:k2|a:k1,t:t’,N) ( a)
P(b=kla=k —1,t =t —x,N)P(x|a =k|,N
_ ( 2’61 1 ) X, ) (X‘Cl 1y ) (28b)
P(b:kz\a:kl,t:t’,N)
For sampling, we use root finding on the cumulative distribution function (CDF) which is
Px<xXla=ky,b=ky,t =t") (29a)
1 kot Y 2k—1 o
= |— exp(kt) exp((?»l—k)x)dxiCk,l (—7»1)P(b=k2|a:k1,l‘:t) (29b)
kZ!k:kz 0 k—|—k2—1
1 At 1—exp((M —A)x) 2k—1
=|— A Cio1 | (M)P(b=kola=ky,t=1)"". 29
[kz!k_kzexp( ) =Y 1O (=M)P(b=kola=ki,t =1") (29¢)
where
—k(k—1) —ky(k; —1)
A=—— = N =———=.
aN AN

This sampling problem has also been investigated previously by Blum and Rosenberg using a slightly
different approach (Blum and Rosenberg 2007).



3.2 Sampling the bounded coalescent

Once we have defined sampling with conditioned lineage counts, we can sample the bounded coalescent by
specifying ¢/ =t* and b = 1.

3.3 Sampling the multilocus coalescent (MLC)

We have implemented a sampling method of the multilocus coalescent (MLC) using a multi-step strategy:
we first sample the gene lineage counts a(u),b(u) in each branch of the locus tree e(u), then we sample
coalescence times conditioned on the beginning and ending lineages counts for each locus branch (using
Section 3.1).

Sampling lineage counts. To sample lineage counts a(u) and b(u) we recursively choose counts from the
root to the leaves of the locus tree.

First, consider a node u € V(T"), where we are given the ending count b(u). Given b(u), we would like
to sample the ending lineage counts of the children b(c;(«)) and b(cz(u)). The probability distribution is

P(b(c1(u)) = ki, b(ca(u)) = ka|b(u),6) (30a)
P(b(c1(u)) = ki,b(ca(u)) = ka,b(u)[6)
P(b(u)}0) oo
_ P(b(u)|b(c1(w)) = k1,b(ca(u)) = ka,0)P(b(c1(u)) = ki,b(ca(u)) = k2(6) (300)
P(b(u)|6)
:P(b(u)\a(u) =ki+ko,t =1(u),N=N(u))P(b(ci(u)) =ki|0)P(b(c2(u)) = k2|0) (30d)
P(b(u)|6) ’

where
0= (Tt tht N n).

The first term of numerator is Equation 2, and each of the other terms are applications of Equation 10.

We sample the above distribution with a simple rejection sampling algorithm. We recursively apply the
algorithm to sample lineage counts a(u) and b(u) for each branch e(u) in the locus tree TX. The sampling
is initialized with b(root(T*)) at the root of the locus tree. We then perform the following steps for each
branch e(u) in the locus tree in preorder traversal (top-down):

1. Sample b(c;(u)) = k; and b(ca(u)) = k, using the distributions P(b(c;(u)) = k1|0) and P(b(ca(u)) =
k|0). These are precomputed in the dynamic programming table of Equation 10.

2. With probability P(b = b(u)|a = ky + ka,t = t(u),N = N(u)), accept the sample. Otherwise, go to
step 1.

Once all lineage counts are sampled, use the distributions in Section 3.1 to sample times of all coales-
cences occurring on each branch e(u) of the locus tree.

3.4 Relaxing the hemiplasy assumption

For this current model and reconciliation algorithm, we made the simplifying assumption that hemiplasy of
duplication and loss events does not occur. Although it is more complicated, it is possible to implement a
simulator that allows duplication-loss hemiplasy. Using this simulator, we have found that such events only
occur in a small fraction of gene trees (5% of simulated fly gene trees with N = 10®,A = u = 0.0012).



The dup-loss hemiplasy simulator contains many of the same features as the DLCoal simulator described
in this section, but differs in its sampling of the locus tree. Here, we briefly describe the generative process
of the locus tree with dup-loss hemiplasy.

The process takes as input a species tree S, a vector of population sizes IV, an initial allele frequency
po, duplication A and loss u rates, and a time step 74. A locus tree is initialized with a single gene lineage
present at the root of the species tree and we recursively grow this lineage downwards. While growing the
lineage, we keep track of its frequency p in the population. Along the way several events can effect a gene
lineage.

Speciation. If a gene lineage reaches a speciation node in the species tree, the gene lineage bifurcates
into two gene lineages that grow in each descendant species branch independently.

Duplication. At a constant rate pA, a gene lineage can duplicate into two lineages: a mother and a
daughter. The daughter lineage is initialized with a small frequency (e.g. 0.05). For efficiency, we choose
a initial frequency greater than 1/2N, since most duplications starting at such a small frequency would go
extinct.

Loss. At a constant rate pu, a gene lineage can experience deletion. This is implemented as reducing the
frequency p by some small amount (e.g. 0.05).

Time step. At regular time intervals of 74, we update the frequency p of the gene lineage according to
a diffusion approximation of the Wright-Fisher process. During this process, p may fix to 1, where it will
stay unless a subsequent loss reduces it below 1. The lineage may also go extinct (p = 0), in which case we
terminate its growth down the species tree.

Extant species. If a gene lineage encounters a leaf of the species tree, we terminate the gene lineage and
mark its endpoint an extant gene.

Once all the gene lineages have terminated (i.e. become extant genes or go extinct), we next perform a
pruning step that removes any extinct lineages. The resulting tree is then called a locus tree. One additional
modification is that we define frequency dependent population sizes for the locus tree, such that

NE(v) = p(v) X N(R(v)),

where p(v) is the allele frequency along branch e(v). Lastly, we then run a multilocus coalescent process
within this generated locus tree to produce a gene tree.
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