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I. Data access. 

Paired end 76x76 bp sequencing data obtained in this study have been submitted to the NCBI 

Sequence Read Archive database (http://www.ncbi.nlm.nih.gov/sra; accession number 

SRA046085). The transcript assembly code used in this study is available at: 

http://pritch.bsd.uchicago.edu/software.html. The full database of assembled gene sequences, 

full gene multi-species alignments, orthologous coding region multi-species alignments, lineage-

specific dN/dS results, normalized gene expression estimates, log likelihood ratios for lineage-

specific expression level changes, and the identified SNPs and genotype data for each species 

are available as a Supplemental Database file on the Genome Research website and at 

http://giladlab.uchicago.edu/data.html.  

  

II. Liver tissue samples and library preparation. 

Common and scientific names for the species in the study are provided in the below table: 

Common Name Scientific name 

Human Homo sapiens 

Chimpanzee Pan troglodytes 

Rhesus macaque Macaca mulatta 

Vervet (green monkey) Chlorocebus aethiops 

Common marmoset Callithrix jacchus 

Mohol bushbaby (galago) Galago moholi 

Slow loris Nycticebus coucang 

Aye-aye Daubentonia madagascariensis 

Black and white ruffed lemur Varecia variegata variegata 

Coquerel’s sifaka Propithecus coquereli 

Mongoose lemur Eulemur mongoz 

Crowned lemur Eulemur coronatus 

Northern treeshrew Tupaia belangeri 

House mouse Mus musculus domesticus 

Nine-banded armadillo Dasypus novemcinctus 

Gray short-tailed opossum (laboratory opossum) Monodelphis domestica 

 

Liver samples were obtained from the National Disease Research Interchange (human), 

Yerkes National Primate Research Center (chimpanzee, rhesus macaque), Southwest 

Foundation for Biomedical Research (rhesus macaque, marmoset, opossum), Alpha Genesis 
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(vervet), Duke Lemur Center (slow loris, bushbaby, aye-aye, Coquerel’s sifaka, black and white 

ruffed lemur, mongoose lemur, crowned lemur), David Fitzpatrick – Duke University (tree 

shrew), Michael Nachman and Matt Dean – University of Arizona (F1 offspring of wild-born 

house mouse), Richard Truman – National Hansen’s Disease Program, Louisiana State 

University School of Veterinary Medicine (armadillo). See Supplemental Table S8 for 

individual-level information on each sample, including age and sex where known. Liver tissue 

samples were harvested within 4 hours of death and flash frozen in liquid nitrogen or frozen 

immediately at -80° C under IRB or IACUC approval of the institutions listed above, and stored 

at -80° C until RNA extraction. Samples from four unrelated individuals were collected for all 

species except armadillo (n = 2). For each RNA extraction, 0.1 g tissue was homogenized in 

Trizol (Invitrogen) and purified according to manufacturer instructions. RNA sample quality was 

assessed with the Agilent 2100 Bioanalyzer using an RNA 6000 Nano chip (Supplemental Fig. 

S2). 

RNA-seq libraries were prepared as described previously (Marioni et al. 2008) except 

with insert sizes ~380 bp and using Illumina paired-end adapters. Each RNA-seq library was 

sequenced using one lane of the Illumina Genome Analyzer IIx with paired-end, 76 bp reads (2 

x 76 bp), using Cluster Generation Kit v3 and Sequencing Kit v2.  

 

III. Transcript assembly and alignment of orthologs. 

While the total number of nucleotides in the transcriptome is only a small fraction of the number 

of nucleotides in the whole genome, there are several challenges particular to de novo gene 

assembly from RNA-seq data. First, even among appreciably-expressed genes there is an 

extreme range in sequence coverage. For example, reads from a single gene (ALB; Albumin) 

comprised ~12% of the data in each species, such that coverage levels for sequencing errors at 

this gene (at a random ~1% sequence error rate) were often greater than those for many other 

genes that were ultimately assembled. Second, both pre- and mature-mRNA molecules are 

sequenced. While pre-mRNA represents only a small proportion of reads, this presents a 

problem because introns often harbor repetitive elements, which in turn can be highly similar to 

repetitive elements elsewhere in the genome (e.g., in introns from other genes or in 5’ and 3’ 

UTRs). Third, alternative splicing can generate multiple transcripts per gene. To overcome 

these specific computational challenges, we customized a de novo assembly approach, 

described below. 

Several programs for transcriptome assembly have been released previously. These 

include Trans-ABySS (Robertson et al. 2010) and Oases 
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(http://www.ebi.ac.uk/~zerbino/oases/), which function by interpreting output from established 

whole genome assemblers, ABySS (Simpson et al. 2009) and Velvet (Zerbino and Birney 

2008), respectively. A more recent program, Trinity (Grabherr et al. 2011), performs direct 

transcriptome assembly. All of these programs use the de Bruijn graph framework. Our 

assembly method differs from these existing tools in several respects, as described below. The 

various tools may be more or less appropriate for a particular study, depending on the specific 

dataset and downstream analysis goals. We have not evaluated and compared the performance 

of the different algorithms, as this is beyond the scope of our study. However, we note that our 

algorithm was specifically developed to facilitate subsequent comparative genomic analyses; it 

uses a sequence similarity-based comparative assembly approach, thereby establishing multi-

species gene orthology as a property of the initial assembly. This unique aspect of our approach 

facilitates direct inter-species comparison of gene sequences and expression levels in an 

evolutionary framework. 

 

Pre-assembly / correction of Ns. To facilitate the assembly we required that all reads contain 

only ACGT characters, since this significantly reduces the complexity of the graph assembly 

problem. To do this one could discard reads with Ns, or shorten them since Ns predominantly 

occur at the ends of reads. However, in the sequencing of one flowcell the 39th basepair was 

recorded as N in all reads due to machine error; it was determined that a nucleotide was 

skipped based on alignment to reference genomes. To recover the data from this one flowcell, 

we had to develop an effective error-correcting procedure, that is similar in some respects to 

previously-published approaches (Pevzner et al. 2001; Kelley et al. 2010; Medvedev et al. 

2011). Once developed, we decided to apply the procedure for data from all flowcells, not only 

the flowcell with the 39th basepair error. 

Specifically, for each read we recorded all kmers of length k=25, and recorded the 

coverage of each k-mer (i.e., the number of reads containing that k-mer and its complement) 

that did not overlap with an N. For each read with an N, we then replaced the N with all four 

possible nucleotides and recorded the total coverage (the original k-mer coverage values for k-

mers without Ns, plus the 4 N-corrected k-mers) of the resulting 25-mers overlapping the N-

basepair. The N-basepair was replaced with the nucleotide that produced the highest k-mer 

coverage in this analysis. To assess the accuracy of this error-correction procedure, we aligned 

reads from one human and one macaque individual to their respective reference genome 

transcript databases and compared our corrected nucleotide at each N position to the 

nucleotide in the reference transcript. We found that our corrected nucleotides in 98.5% of 5.4 
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million human Ns and 98.3% of 4.5 million rhesus macaque Ns were identical to the 

corresponding nucleotide in the respective reference genome transcript databases, 

demonstrating that our approach is effective and highly accurate. 

Assembly. The assembly process is divided into 9 steps. The inputs are the N-free reads from 

the sequencer as well as a reference transcriptome. As a reference transcriptome we used the 

human RefSeq database (hg19), consisting of 28,098 isoforms from 18,606 genes. For each 

species, the assembly was performed using the combined RNA-seq reads from all individuals of 

that species. 

	
  
1. Create the de Bruijn graph. For each read we recorded all k-mers of k=39. At k=39, 

sequencing errors tend to create tips instead of bubbles in the de Bruijn graph (which 

are easier to remove or correct than bubbles). Each read of 76 bp generates 38 distinct 

k-mers. 

We found that most k-mers observed only once resulted from sequencing errors 

or were generated by very lowly-expressed genes that ultimately could not be 

assembled. These singleton k-mers contributed substantially to the memory overhead of 

the program. We therefore revised the algorithm to focus on all k-mers with coverage 2 

or higher by filtering out uniquely occurring kmers using a Bloom Filter approach 

(Melsted and Pritchard 2011). 

To build the de Bruijn graph, we recorded the coverage of each k-mer (i.e., the 

number of reads containing that k-mer and its complement), and all adjacent k-mers. 

Once the de Bruijn graph was constructed, we simplified the graph by correcting obvious 

sequencing errors appearing in the graph as short tips, in a manner similar to Velvet’s 

error correction (Zerbino and Birney 2008). 

 

2. K-mer to gene alignment. Our goal in this step was to identify regions of small-scale 

similarity in the de Bruijn graph generated for each species, to human RefSeq gene 

sequences. These homologous regions were used to set general expectations for 

transcript coverage levels and to isolate the portion of the graph likely to contain 

individual gene sequences. We note that for the ultimate assembly of a transcript, it is 

not necessary to identify homology across the entire gene length. The assembly process 

can proceed from a limited number of homologous regions for a given gene, because of 

the interconnectedness of de Bruijn graph contigs that correspond to a particular 

expressed transcript. Moreover, we note that while our approach relies on the 
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maintenance of some degree of sequence similarity in gene coding regions between 

non-human species and humans, our simulations show that our assembly method is 

robust to relative gains and losses of internal exons in non-human species (see 

Analysis of Changes in Exon Structure, below). 

For each human reference gene, we collapsed all of the associated isoforms to a 

single consensus sequence that included all coding region exons arranged by their 

genomic order. Then, for each species, every k-mer in the graph was aligned against the 

reference sequence (one gene at a time) and we recorded all matches. To speed up the 

matching process we required an exact match of short length (i.e., a seed), similar to the 

heuristic used by BLAT: 

(i) For all reference genes we kept a map of seeds to (gene, position) pairs. 

(ii) For each k-mer we evaluated whether there were any matching seeds. 

(iii) Given a match, we evaluated whether there was a full local alignment for that 

k-mer to the gene. 

We varied the length of the seeds and the number of mismatches allowed, taking into 

account the sequence divergence between species. In this procedure, it is important to 

set the length of the seed appropriately. If the seed length is too small, then there might 

be too many spurious hits, which will greatly increase the computational requirements. If 

the seed length is too large, then we might miss regions with higher divergence from the 

reference sequence. We similarly controlled the maximum sequence divergence 

between homologous regions by limiting the number of mismatches: Allowing too few 

mismatches would limit our ability to assemble a large proportion of genes; allowing too 

many mismatches could result in improperly assembled sequences. 

To set these parameters appropriately, we estimated the expected coding region 

sequence divergence between humans and all other species, based on available data. 

For species for which such data were not available, we used approximate divergence 

dates to estimate sequence divergence. This analysis was based on phylogenetic clades 

of species with similar distance from human. For example, all strepsirrhine primates 

were assumed to have similar divergence from humans. 

We then used the sequence divergence estimates to establish the number of 

mismatches allowed in the search for potentially orthologous k-mers. One would expect 

a range of sequence divergence values among k-mers along a particular gene. Matching 

does not need to be complete for the appropriate contigs to be identified from the graph 

to achieve successful gene assembly. The table below provides the seed lengths, 
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mismatches allowed, and corresponding divergence cutoff, used for each species in the 

‘k-mer to gene’ alignment process. For comparison, we also show the actual coding 

region sequence similarity to human assembled sequences, based on concatenation of 

multi-species alignments (performed with FSA (Bradley et al. 2009)) of the common set 

of 515 genes that were ultimately assembled for all 16 species in the study. 

 
Species Seed length Mismatches Divergence 

cutoff 
Actual sequence 

similarity 
 Human 33 1 97.4 100.0 
 Chimpanzee 27 2 94.8 99.6 
 Macaque 21 3 92.3 98.0 
 Vervet 21 3 92.3 98.0 
 Marmoset 21 3 92.3 96.5 
 Slow Loris 18 3 92.3 93.0 
 Bushbaby 21 3 92.3 92.9 
 Aye-aye 18 3 92.3 94.4 

 Sifaka 18 3 92.3 93.9 
 Black & white ruffed lemur 18 3 92.3 93.9 
 Mongoose Lemur 18 3 92.3 93.9 
 Crowned Lemur 18 3 92.3 93.9 
 Tree Shrew 14 5 87.2 91.9 
 Mouse 15 4 89.7 88.9 
 Armadillo 15 4 89.7 91.5 
 Opossum 15 4 89.7 83.7 

 

 

Our next goal was to identify the path through the de Bruijn graph that corresponded to 

each gene and to extract the transcript sequence (steps 3-9).  These steps were 

repeated for each gene (and species) in isolation. 

 

3. Determine coverage levels. For each gene, we estimated the expression level for that 

gene in the species of interest, using the set of k-mers that were homologous to the 

reference sequence. In order to be robust to species-specific exon loss or alternative 

splicing, we used the 90th percentile of these coverage estimates as the representative 

value for the gene coverage level for later filtering steps in the assembly.  
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4. Graph filtering. Based on the coverage estimated in step 3, we set a coverage 

threshold that was 10% of the estimated value, but not less than a coverage of 3 reads. 

These thresholds were established by experimentation and by assessment against 

known reference genome transcripts for rhesus macaque and mouse.  

 Let c be the coverage threshold and G be the de Bruijn graph constructed in step 

1. The following steps work with the filtered de Bruijn graph Gc , which consists of all 

nodes with coverage greater than or equal to c. The reason for this filtering step is to 

remove parts of the graph that are irrelevant, such as sequencing errors and contigs 

representing intronic bleed-through (from pre-mRNA). Furthermore, this step simplifies 

the graph, as repetitive elements are more common in introns than exons. Since the de 

Bruijn graph G is shared by all genes, we do not modify the graph G, but apply the 

filtering as part of the per-gene assembly process. 

 

5. Initial contig generation. Starting from Gc we identified all contigs containing the 

associated k-mers from step 2. Note that contigs in Gc will generally be longer than 

contigs in G, since low coverage k-mers are removed and thus the graph has less 

branching.  

 

6. Graph exploration. Starting from the contigs from step 5, we identified the connected 

components, defined as all contigs containing the associated k-mers from step 2, plus all 

linked contigs. We note that sequencing errors and intronic sequences have likely been 

removed in the step 4 coverage-based filtering. Therefore, at this point we would not 

expect the total length of the connected contigs to greatly exceed that of the human 

reference gene. We set a threshold of 10 times the length of the human reference 

sequence, which we established by experimentation. If the total number of observed k-

mers in the connected contigs exceeded this threshold, then we rejected the graph and 

considered the assembly failed for that gene in this species. Otherwise, the subsequent 

filtering steps, described below, were generally sufficient to achieve successful transcript 

assembly. 

 

7. Error correction. Once the local de Bruijn graph was constructed, we removed tips 

and popped bubbles in the local graph in a similar fashion as performed in Velvet 

(Zerbino and Birney 2008). That is, when there were multiple paths through the graph 

caused by SNPs or any remaining sequencing errors that were not removed by the 
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coverage-based filtering, we compared coverage levels between alternate paths and 

removed the one with lower coverage. Note that when popping bubbles, we required that 

the two alternative paths differed by at most 10 bp in length. Thus, this step will remove 

bubbles that are the result of sequencing errors, SNPs, and short indels, but not bubbles 

that reflect alternative splicing of exons. However, we acknowledge that contigs 

reflecting alternatively spliced exons would have been removed in step 4 if they were 

expressed at much lower levels than the rest of the transcript. 

 

8. Path analysis. Once the local de Bruijn graph was simplified, we considered each 

possible remaining path that was at least 50% of the length of the coding region of the 

corresponding human reference orthologous sequence. Each path was then aligned 

against the reference sequence using the Fast Statistical Alignment algorithm (Bradley 

et al. 2009), and the best match was selected as the largest number of total aligned 

bases. 

  

9. Consensus sequence. If the proportion of nucleotides in the remaining path through 

the graph (after alignment to the human reference sequence) was above a set threshold 

(see table below), then we used this path to generate a consensus sequence for the 

gene. Otherwise, we rejected the path and generated no consensus sequence, 

considering the assembly failed for that gene. The alignment thresholds used in this step 

are described in the following table: 

 

Species Alignment threshold 

Human, Chimpanzee, Macaque, Vervet, Marmoset 80% 

Black and White Ruffed Lemur, Mongoose Lemur, 

Crowned Lemur, Sifaka, Aye-Aye, Slow Loris, Bushbaby 

70% 

Armadillo, Tree Shrew, Mouse, Opossum 60% 
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Post-assembly. We removed potentially erroneously-identified paralogous genes from the 

assembly by aligning each sequence against all genes in the set of human reference genes 

using BLAST. Any consensus sequence for which the top BLAST hit was not the associated 

gene, was removed. The final number of genes assembled per species and the number of 

potentially paralogous genes that were removed from the dataset are given in the table below. 

 In addition, we performed a similar analysis for high sequence identity to pseudogenes, 

by downloading a list of human pseudogenes from the Ensembl database (version 64) with the 

Biomart tool, using the pseudogene filter (Flicek et al. 2011). We then repeated the BLAST-

based analysis used to identify potentially erroneously-identified paralogous genes with the 

combined set of human RefSeq genes and pseudogenes. The number of genes identified by 

this analysis, between only 24 and 135 genes per species, is provided in the table below.  

We confirmed that had we removed from further analysis the genes identified based on 

similarity to pseudogenes, none of the specific results we discuss would be affected (positive 

selection examples, enrichment analyses, etc.). Moreover, as the removal of such a small 

proportion of genes (0.4% - 2.7%, depending on the species) does not affect any of the general 

patterns we reported on either (e.g., based on genetic diversity estimates), in final analysis, we 

decided not to apply the filter for pseudogenes in the analysis presented in the paper. 

Indeed, we are unsure that a pseudogene filter is truly effective, because there are three 

practical differences between filters for similarity across paralogs and pseudogenes: (i) 

comparative studies have shown that a large fraction of the ~22,000 pseudogenes in the human 

genome are not shared with more distantly-related primates including New World Monkeys and 

especially strepsirrhines (e.g., bushbabies, lorises, and lemurs) (Zheng et al. 2007). For more 

distant species especially, filtering against these genes results in the erroneous removal of 

orthologous genes that might be one or a few nucleotides more similar to a pseudogene, by 

chance. (ii) Pseudogene sequences evolve faster than functional genes. Thus, ancient 

pseudogenes, shared across species, are not likely to be recognized by our initial assembly 

approach in the first place. (iii) Finally, pseudogenes, recognizable or not, are only a problem for 

our analysis if they are expressed, and only a minority of pseudogenes are expressed at 

detectable levels.  

	
  
Species Assembled 

genes 
Paralogous 

genes (removed) 
Pseudogene filter 

(not removed) 
 Human 5,523 239 24 
 Chimp 5,294 333 44 
 Macaque 5,497 478 65 
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 Vervet 5,646 431 76 
 Marmoset 5,313 437 71 
 Slow Loris 4,789 549 83 
 Bushbaby 2,680 311 64 
 AyeAye 5,339 588 89 

 Sifaka 5,646 630 98 
 Black & white ruffed 
lemur 

5,627 640 106 

 Mongoose Lemur 5,443 637 96 
 Crowned Lemur 5,487 668 99 
 Tree Shrew 5,924 883 122 
 Mouse 5,239 792 129 
 Armadillo 5,625 971 107 
 Opossum 4,851 658 135 

 

IV. Estimating gene expression levels. 

To estimate the expression level of each gene, for each sample we first aligned the sequenced 

reads against a reference containing the sequences of the set of assembled genes for the 

appropriate species using BWA (Li and Durbin 2009) with default parameters, considering only 

uniquely mapped reads. For this analysis, we analyzed separately the two reads of each pair. 

Individual reads not aligned in the first step were evaluated using a gapped alignment 

approach (Pickrell et al. 2010b), to account for potential alternative splicing. To do so, we 

independently aligned the first and last 20 bp of each remaining read to all transcripts using 

BWA, and performed the following steps to determine whether the alignment supports an exon-

junction read. 

• If both ends of a read mapped to the same transcript, then we internally extended 

each alignment. If the internal sequence could not be fully extended, then we 

discarded the read. 

• If both ends of a read mapped to only one transcript and could be fully extended, 

then we included the read in the expression estimate for that gene. If there were 

full extensions for the read to multiple transcripts, then we discarded the read 

(this would be considered a non-unique alignment). 

• If only one end of a read mapped to the transcript, then we internally extended 

that alignment as far as possible and searched the transcript for a perfect match 

to the remainder of the read if the remainder of the read was at least 10 bp. If 

there was a perfect match, then the read was kept. If the remainder of the read 
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was less than 10 bp or could not be perfectly matched if at least 10 bp, then the 

read was discarded. 

For our evolutionary analysis of gene expression levels, we chose to consider 

orthologous gene regions across species rather than the fully assembled gene sequence from 

each species. That is, if the full gene sequence was not assembled for every species, then we 

restricted our analysis to the specific region of the gene that was commonly assembled across 

species. This approach makes it less likely that our inter-species comparison of gene 

expression levels would be affected by sequencing biases or the inclusion of alternatively 

spliced exons in some species only. To do so, we performed a multi-species alignment (Bradley 

et al. 2009) and identified the maximum orthologous region that was fully aligned across all 

species. Reads contributing to a gene’s expression level were restricted to those falling in the 

maximum orthologous region, which was itself constrained to exclude non-coding regions (i.e., 

UTRs were not included in the gene expression analysis). 

We used the total number of reads mapping to the identified orthologous region of a 

transcript (including exon-junction reads) as a measure of its expression level. Having done this, 

we next normalized these data within each species using the following steps. We first divided 

the expression level of each transcript by the transcript’s length. Second, since it has previously 

been shown that gene expression levels measured in different lanes of RNA-sequencing can 

show systematic differences that are correlated with the gene’s GC content, we accounted for 

this using the following procedure, motivated by the method described by Pickrell et al. (Pickrell 

et al. 2010a): Within each species, let zij denote the expression level of transcript j in individual i. 

Let yij = zij/Σizij be the proportion of reads mapping to transcript j in individual i. Subsequently, we 

regressed yij against gj, where gj is the GC content (measured as a proportion) of transcript j. If fij 

is the fitted value from the loess regression for transcript j of individual i, we calculated the 

normalized expression value for transcript j for individual i as: xij = (meanj(fij)/fij) * zij 

Having performed the within-species corrections, we next normalized the data to 

account for differences between species. This is necessary to ensure that estimates of gene 

expression levels are comparable across species. The challenge, however, is that different 

gene sets were assembled in different species. Our approach proceeded as follows. First, using 

expression measurements for all assembled transcripts, we calculated the average expression 

value for each gene, across all species. Second, we ranked these “average” expression values 

to create a synthetic distribution, and calculated the median of this distribution (medSyn). Third, 

for each sample, we calculated a normalization factor NormSamp = medSyn/(sampleMedian) 

and adjusted the expression of all assembled transcripts using this factor so that the median 
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was equal to medSyn for all samples (Bullard et al. 2010). 

We took advantage of the availability of high quality sequenced genomes for 6 of the 

species in our study to evaluate the quality of our gene expression estimates based on the de 

novo assembly approach. To do so, we compared the de novo assembly-based estimates to 

corresponding gene expression estimates based on a more typical read alignment analysis 

against transcript sequences that were predicted from the reference genome sequences of 

human, chimpanzee, rhesus macaque, marmoset, mouse, and opossum (http://hgdownload-

test.cse.ucsc.edu/goldenPath/hg19/multiz46way/alignments/). We found that gene expression 

estimates based on the two approaches were highly correlated (Supplemental Fig. S4).  

We also evaluated pairwise correlations of normalized gene expression levels between 

all pairs of individuals and species in the study. As expected, we observed higher correlation 

estimates for within-species comparisons than for comparisons of individuals between species, 

with lower correlations for pairs of more distantly-related species (anthropoid versus 

strepsirrhine primates, primates versus non-primates; Supplemental Fig. S5). The estimated 

average gene expression levels across species are also more strongly correlated between more 

closely-related pairs of species (Supplemental Fig. S6). 

 

V. SNP genotyping. 

Special considerations for SNP identification from RNA-seq data. We interrogated the RNA-seq 

reads from each individual to infer the positions of single nucleotide polymorphisms (SNPs) in 

the corresponding genomic DNA. A genomic position for which an individual is heterozygous 

may theoretically be identified from either high-coverage genomic DNA or RNA-seq data, when 

the proportion of sequencing reads with each of the two variant nucleotides is ~0.5, allowing for 

sampling variation. With RNA-seq data, however, SNP identification is more complex than with 

genomic DNA sequencing data. First, there is the issue of allele-specific expression (Pastinen 

2010), when transcripts are not expressed at equal levels from each of an individual’s two 

chromosomes. Second, one needs to consider the possible effects of RNA editing (Li et al. 

2011). 

It should be noted that since the primary goal of our analysis was to compare the 

estimates of genetic diversity among the 16 species in our study, these two issues would not be 

expected to affect the observed relative differences between species, unless rates of allele-

specific expression or RNA editing varied significantly across taxa. However, our preference 

was to establish parameters for SNP identification such that neither allele-specific expression 

nor RNA editing had substantial adverse effects on our ability to accurately call SNPs from 
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RNA-seq data. To assess the accuracy of our approach (described below), we made the 

following assessments and validations: 

(i) Compared the human SNPs we identified to genome-wide SNP genotype data 

collected from genomic DNA for the same human samples in this study using the 

Illumina 1M-Duo SNP array platform. 

(ii) Compared the human SNPs we identified to SNP position calls from the 1000 

Genomes project (The 1000 Genomes Project Consortium 2010) that were based on 

genomic DNA resequencing data from 179 individuals from four human populations. 

(iii) Used PCR and Sanger sequencing, performed on genomic DNA for the same 

samples used in this study, to validate a subset of SNPs in four species: human, rhesus 

macaque, Coquerel’s sifaka, and black and white ruffed lemur. 

 

The results of these comparisons demonstrated that our SNP identification approach was highly 

accurate (see SNP genotyping validation, below). 

 

SNP identification. We first aligned all reads from each individual to the database of consensus 

sequence transcripts that we assembled for that species (see above), using the default 

parameters of BWA (Li and Durbin 2009). In the final preparation step of the RNA-seq libraries, 

there is a PCR amplification step that uses the ligated adapter sequences as primer sites for 

consistent amplification. To help limit any bias from PCR amplification in the SNP identification 

process, we performed a read-filtering step to consider only one read pair from each uniquely-

aligned starting position and strand. Specifically:  

(i) If two paired reads each had the same start position for read 1, but different start 

positions from read 2, then these reads were considered to have originated 

independently and were both kept in the analysis. 

(ii) When more than one paired read had identical aligned start positions from each read, 

we kept one read at random and excluded the remaining reads from further analysis. For 

this filtering decision, we ignored the alignment quality score, as single nucleotide 

differences from the consensus sequence due to true SNPs could have subtle effects on 

that score. We did not consider any base call with a Phred-scaled quality score < 30. 

 

 To establish SNP identification criteria, we systematically assessed genotyping accuracy 

as a function of multiple different per-strand coverage requirements and “SNP call definitions” 

based on the proportion of the most common nucleotide at each site. By “SNP call definition”, 
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we mean the threshold at which a heterozygous site would be called, when the proportion of 

reads with the most common nucleotide at a given position was at or below that threshold (for 

reads aligning to both strands). By requiring the SNP definition to be met by reads mapped to 

each strand, we limited the effects of potential strand-specific sequencing biases (Nakamura et 

al. 2011). Examples of SNP call definitions that we considered were ≤ 0.6, ≤  0.65, ≤  0.7, ≤ 

0.75, etc. 

To determine the coverage requirement and SNP call definition thresholds, we 

compared SNP genotypes from the 1M-Duo Illumina SNP array platform data collected for each 

of the four human samples in the study, to the variants inferred from the RNAseq data using our 

method (Supplemental Fig. S8). Based on this analysis, we chose to assess all sites covered 

by a minimum of 15 sequence reads per strand (minimum of 30 total reads) and, of such sites, 

we classified as heterozygous those for which the proportion of the most common nucleotide 

was ≤ 0.7 on each strand. This general approach for SNP calling is similar to that which we 

previously used with genomic DNA sequencing data and found to result in highly accurate SNP 

identification (Perry et al. 2010). 

Finally, we performed a sub-sampling analysis with the reads from each individual. For 

this analysis, reads were randomly distributed into two subsets. SNPs were identified from each 

subset of the data using the coverage and SNP call definition threshold criteria described 

above. We then determined the consistency of SNP inferences in the subsampled data within 

each individual. We removed three samples, one chimpanzee and two aye-ayes, from further 

SNP analysis due to relatively low concordance in heterozygous site identification in the 

subsample analysis (Supplemental Table S4). 

For each individual, we classified each analyzable site as either (i) non-coding (UTR) / 

undefined, (ii) nonsynonymous (amino acid changing), or (iii) synonymous by inferring the 

corresponding codon positions for each base within the transcript (see Section VII, below). 

Sites could be assigned fractional synonymous and nonsynonymous values (totaling 1), when 

change to some of the 3 possible alternative nucleotides would affect an amino acid substitution 

and others would not.  

All identified SNPs were classified as noncoding/undefined, nonsynonymous, or 

synonymous, with no fractional assignments, based on the two variable nucleotides. Genes on 

the human X chromosome were filtered from further analysis for all species. Heterozygous site 

summary statistics (including heterozygosity estimates) for each individual sample in the study 

are provided in Supplemental Table S2. 
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 For each species, we estimated genotypes for all sites with sufficient coverage for SNP 

identification in all individuals (n = 2 for armadillo and aye-aye, n = 3 for chimpanzee, n = 4 for 

all other species). We classified all heterozygous positions as well as any sites with 

homozygous differences between individuals as SNPs. SNP position and genotype data for 

each species are available at: http://giladlab.uchicago.edu/data.html. Species-level estimates of 

genetic diversity π (average pairwise genetic distance) and θ (sample-size corrected proportion 

of segregating sites) were computed for all genes with at least 100 sites with sufficient coverage 

for SNP identification in each individual of that species and are provided in Supplemental 

Table S1. For the six species with published reference genome sequences (human, 

chimpanzee, rhesus macaque, marmoset, mouse, opossum), we asked whether the accuracy of 

our assembled transcript sequences compared to the gene sequences from the reference 

genomes (Supplemental Fig. S3) affected SNP diversity estimates. To do so, we estimated 

genetic diversity for each of these six species separately for all genes with accuracy ≥ 99% and 

for all genes with accuracy < 99% (for genes with at least 100 sites with sufficient coverage ofr 

SNP identification in each individual of that species). As reported in the below table, diversity 

estimates are similar for the two datasets, supporting the inclusion of all genes in the analysis of 

genetic diversity. 

Species genes with >= 99% accuracy between 
assembled and reference transcripts 

genes with < 99% accuracy between 
assembled and reference transcripts 

 

Genes Synonymous 

sites 

Syn 

SNPs 
π  (syn) Genes Synonymous 

sites 

Syn 

SNPs 
π  (syn) 

Human 1047 166506.0 533 0.117% 5 1250.3 11 0.360% 
Chimpanzee 1168 181993.3 892 0.204% 33 6969.3 45 0.253% 
Rhesus 

macaque 1042 169485.0 1262 0.288% 37 5910.0 43 0.263% 
Marmoset 978 155894.7 514 0.122% 68 11009.7 41 0.140% 
Mouse 1199 191742.7 1911 0.370% 136 25239.0 238 0.353% 
Opossum 768 128597.0 494 0.161% 124 21260.7 97 0.183% 
 

For several of the species in our study, estimates of neutral genetic diversity from the 

nuclear genome (autosomal chromosomes) have been published previously. Our estimates for 

these species are generally comparable to those previous estimates, as shown in the below 

table: 
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Species π  (synon 
sites), this 
study 

Comments π  (presumably neutral 
sites), previous studies 

Previous study refs. 

Human 0.119% Our sample includes one 
individual who is primarily 
of African descent (synon. 
site heterozygosity = 
0.126%; versus 0.086%, 
0.087%, and 0.091% for 
non-African individuals) 

0.121% (Biaka, Africa) 
0.087% (Basque, Europe) 
0.081% (Han, SE Asia) 
0.110% (Hausa, Africa) 
0.085% (Italian, Europe) 
0.079% (Chinese, SE 
Asia) 

(Wall et al. 2008) 
(Wall et al. 2008) 
(Wall et al. 2008) 
(Voight et al. 2005) 
(Voight et al. 2005) 
(Voight et al. 2005) 

Chimpanzee 0.206% Synon. site heterozygosity 
estimates for 3 chimpanzee 
individuals = 0.089%, 
0.090%, and 0.216%. The 
ancestry of the third 
individual is at least 
partially, and perhaps 
wholly, from the central 
chimpanzee subspecies, 
based on mtDNA HVI 
sequencing (see below). 

0.082% (western) 
0.130% (central) 
0.12% (western) 
0.15% (central) 
0.081% (western) 

(Yu et al. 2003) 
(Yu et al. 2003) 
(Fischer et al. 2004) 
(Fischer et al. 2004) 
(Perry et al. 2010) 

Rhesus 
macaque 

0.288%  0.174% (Chinese) 
0.141% (Indian) 

(Hernandez et al. 2007) 
(Hernandez et al. 2007) 

Aye-aye 0.073%  0.081% (Perry et al. 2007) 
Mouse 0.368% Our samples are from F1 

mice of unrelated wild-
born parents caught 
around Tuscon, AZ. 

0.325% (Iran) 
0.260% (France) 
0.126% (Germany) 

(Baines and Harr 2007) 
(Baines and Harr 2007) 
(Baines and Harr 2007) 

 

The chimpanzee mtDNA HVI type was classified with PCR and Sanger sequencing of genomic 

DNA extracted from the same liver sample used in the RNA-seq analysis. Primers used were 

(both 5’-3’) CTCTGTTCTTTCATGGGGAAGC and CGGGATATTGATTTCACGGAGG. The 

obtained sequence was included in an analysis with HVI sequences from wild-born 

chimpanzees of known capture location and subspecies (Stone et al. 2002). Specifically, a 

Neighbor Joining tree was estimated using MEGA4 (Tamura et al. 2007); this individual’s 

mtDNA HVI sequence was located within a cluster of individuals from the central chimpanzee 

subspecies (Pan troglodytes troglodytes). We were unable to determine whether this 

chimpanzee individual was wild-born or captive-born. 

 

SNP genotyping validation. We specifically wanted to assess whether allele-specific expression 

and RNA editing, or some unknown source of error, may have affected our SNP calls. 

Ultimately, we expect that heterozygous positions in transcripts with extreme allele-specific 

expression bias (e.g., imprinted genes) would have not been identified by our approach. 

However, based on our external comparison to the genome-wide SNP genotype data from 
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genomic DNA of the same individuals, this issue did not have a large effect on our ability to call 

true SNPs, at least in humans (overall 99% accurate identification of heterozygous sites; range 

98.1% to 99.7% for the four human individuals; see table below). This result indicates that our 

false-negative SNP calling rate is low. The following table shows genotype consistency between 

RNA-seq SNP calls and 1M-Duo Illumina genotypes, for sites with sufficient coverage for SNP 

identification in the RNA-seq data in each individual human sample:  

 

Sample Total sites Consistent 

genotypes 

% 

consistent 

Heterozygous 

sites 

Consistent 

genotypes 

% 

consistent 

Hsa58876 2099 2088 99.5% 291 290 99.7% 

Hsa56295 1986 1973 99.3% 336 333 99.1% 

Hsa56655 1016 1010 99.4% 177 175 98.9% 

Hsa56720 1298 1287 99.2% 216 212 98.1% 

 

 In addition, our expectation was that the majority of SNPs identified among the four 

human samples in our study would also have been observed in the larger sample of the 1000 

Genomes project, which is comprised of 59 Yoruba individauls from Ibadan, Nigeria (YRI), 60 

European-Americans from Utah (CEPH), 30 Han Chinese individuals from Beijing (CHB), and 

30 Japanese individuals from Tokyo (JPT). For this analysis, we again focused on the 1,272 

SNPs for which there was sufficient coverage to identify variants in all four human individuals. 

To translate the transcript-relative coordinates in our assembly to the genomic coordinates used 

in the 1000 Genomes database, we used BLAST to identify the location of the sequences 

surrounding each variant in the 1000 Genomes assembly. Specifically, for each SNP site, we 

separately localized the flanking 80bp immediately upstream and downstream of the variant, 

and excluded from further analysis any sites for which both sequences did not localize to a 

single position, or for which there was no single perfect match in either of the flanking 

sequences. Of the resulting 833 variant sites that were identified in our RNA sequencing data 

with corresponding unambiguous positions in the 1000 Genomes assembly, 704 (84.5%) were 

annotated as SNPs in the 1000 Genomes database (2010_07 release) (The 1000 Genomes 

Project Consortium 2010). 

 The remaining 129 SNPs (15.5%) may be: 

• False-positives in our dataset. 
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• False-negatives in the 1000 Genomes data, perhaps related to the low per-individual 

sequence coverage for most individuals in the 1000 Genomes project and the 

potential under-identification of low frequency SNPs 

• Rare SNPs present in one of the four individuals in our study but not in any of the 

1000 Genomes individuals. There are likely to be few SNPs falling into this category, 

according to neutral population genetic theory. 

To distinguish among these possibilities, we used genomic DNA-based PCR and Sanger 

sequencing to validate 11 putative SNPs, from 11 different genes, that we identified from our 

RNA-seq data but that were not annotated in the 1000 Genomes database. Genomic DNA 

primers were designed such that at least one primer was intronic. Primers and results are 

provided in Supplemental Table S7. Of the 11 putative SNPs, nine (82%) were confirmed by 

Sanger sequencing, suggesting that these SNPs were likely rare SNPs or false negatives in the 

1000 Genomes data. Therefore, on the basis of the broader comparison to the 1000 Genomes 

Project database we conclude that our false-positive SNP calling rate is likely low, and, 

indirectly, that RNA editing does not appreciably affect our ability to accurately identify SNPs or 

our genetic diversity estimates. 

 Finally, we used PCR and Sanger sequencing to validate small subsets of SNPs 

identified in each of four species: human, rhesus macaque, Coquerel’s sifaka, and black and 

white ruffed lemur. These validations were performed using as template genomic DNA extracted 

from the same liver samples used for RNA-seq analysis. The selected SNPs were each from a 

different coding region, and located at least 50 bp from each end of an exon to aid in primer 

design, and a maximum of one SNP per gene was validated. Otherwise, the SNPs were chosen 

at random, without respect to properties of the SNP call. We successfully validated 21/23, 

15/16, 21/23, and 15/19 SNPs for human, rhesus macaque, Coquerel’s sifaka, and black and 

white lemur, respectively (the unequal number of validation attempts per species is due to 

different numbers of failed PCR primers across the species), demonstrating the high accuracy 

of our SNP calling approach. The assayed SNPs, primers used, and results are provided in 

Supplemental Table S3. These validation results demonstrate the accuracy of our SNP calling 

approach, even for species relatively divergent from humans and with high levels of estimated 

genetic diversity (i.e., black and white lemur and Coquerel’s sifaka).  

We do not believe that biases potentially associated with phylogenetic distance from 

humans (our assembly process was based on homology to human RefSeq gene sequences) 

have adversely affected our ability to make relative comparisons of SNP diversity among the 

species in our study. If SNP diversity estimates were strongly affected by such a bias, then we 
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would expect species of similar distance to humans (e.g., all lemurs) to be similarly affected. 

Yet, lemurs include both aye-aye, with the lowest genetic diversity estimate of any primate 

species (and similar to that reported in a previous study based on PCR and Sanger sequencing, 

as reported in the table above), and Coquerel’s sifaka, with the highest diversity estimate of any 

primate, and for which we successfully validated 21/23 SNPs to demonstrate the accuracy of 

the high genetic diversity estimate for this species.  

 

Population structure. To analyze the ancestry of the human samples in the study, we used 

principal components analysis (PCA) to compare our samples to those from a sample of 

worldwide humans with known ancestry. We first combined the Illumina 1M-Duo SNP genotype 

data of our samples with that from the Human Genome Diversity Panel (Li et al. 2008), and then 

thinned the data by removing all SNPs with an r2 value greater than 0.1 in a sliding window of 

50 SNPs. This was done using the option "--indep-pairwise 50 10 0.1" in PLINK (Purcell et al. 

2007). We then performed principal components analysis (PCA), using the implementation in 

smartpca (Price et al. 2006). Based on the PCA, two of the individuals are primarily of European 

ancestry, one individual is primarily of East Asian ancestry, and one individual primarily of 

African ancestry (Supplemental Fig. S9). As expected, synonymous site heterozygosity was 

highest for the individual primarily of African ancestry, π = 0.126%, versus 0.086% for the 

individual primarily of East Asian ancestry and 0.087% and 0.091% for the two European 

American individuals (Supplemental Table S2). 

 We also asked whether the relatively high estimates of genetic diversity for Coquerel’s 

sifaka and the black and white ruffed lemur, as well as the relatively low genetic diversity 

estimate for aye-ayes, might have been affected by population structure and sampling, or by 

outbreeding strategies in captive populations. While we sampled unrelated individuals from 

each species, some individuals were born in the wild and some individuals were born in 

captivity. Therefore, if founder individuals for the sampled captive sifaka and ruffed lemur were 

captured from very different populations with substantial between-population genetic 

differentiation, then our high estimates of genetic diversity in these species could reflect 

population structure rather than the genetic diversity from a typical population sample. For aye-

ayes, because they have the largest species range of any extant lemur (Mittermeier et al. 2010), 

we asked whether the observed low genetic diversity estimate was reflective of the species as a 

whole, or due to restrictive sampling of founder individuals. To address these issues, we 

considered the capture locations of founders and pedigrees for the individual samples included 

in our study, based on information maintained by the Duke Lemur Center, along with individual-
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level estimates of synonymous site heterozygosity (Supplemental Table S2). 

 Our estimate of synonymous site genetic diversity (π) for Coquerel’s sifakas is 0.681%. 

Of the four individuals from this species in our study, one was wild-born and the other three had 

two wild-caught parents, each from different capture locations. These capture locations are not 

from opposite ends of the species range, but with little a priori understanding of population 

structure among populations in this species, we cannot automatically equate physical distance 

to levels of population differentiation. The individual-level synonymous site heterozygosity 

estimate for the wild-caught individual is 0.533%, compared to 0.615%, 0.642%, and 0.671% for 

the three captive born individuals. Under neutrality and in the absence of population structure, 

species-level genetic diversity and individual-level heterozygosity estimates are expected to be 

similar. Therefore, the higher species-level estimate of genetic diversity, combined with the 

higher estimates of individual-level heterozygosity in the captive-born individuals, suggests non-

negligible population structure in Coquerel’s sifakas. Such population structure could be of 

interest in future conservation genetic studies and conservation planning. However, even the 

synonymous site heterozygosity estimate of the single wild-born individual (0.533%) is nearly 

five times the estimated genetic diversity in humans (which itself is slightly elevated due to some 

structure in that population sample, as discussed above), and it is greater than or similar to the 

estimated nucleotide diversity levels of any other species in this study (the second largest 

species estimate is for tree shrew; synonymous site π = 0.532%). Furthermore, microsatellite 

data from a different endangered sifaka species, the golden-crowned sifaka (Propithecus 

tattersalli), also indicate relatively high genetic diversity (Quemere et al. 2010), suggesting that 

high genetic diversity might not be unusual for sifakas and providing indirect support for our 

finding. 

 Two of the black and white ruffed lemur individuals in our sample were wild-born, and 

these individuals have synonymous site heterozygosity estimates of 0.258% and 0.309%. 

These estimates are similar to those of the two captive-born individuals in the study: 0.222% 

and 0.294%. All individual-level values are high compared to the species-level estimates of 

most of the other primates. However, while the original capture locations for the two wild-caught 

individuals and the wild-caught ancestors of the two captive individuals are not well known, 

black and white lemur species-level synonymous site π is 0.375%, higher than the estimated 

heterozygosity of any individual. Similar to our analysis in Coquerel’s sifakas, this result also 

suggests the possibility of non-negligible wild population structure in black and white ruffed 

lemurs that may be of interest to conservation biologists. 

 Of the two aye-aye individuals included in the SNP analysis, one was wild-born, 
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captured from Northeast Madagascar. The other individual was captive-born with two wild-born 

parents, one parent from a similar region in Northeast Madagascar as the wild-born individual in 

our sample, but the other parent from Northwest Madagascar. Synonymous site heterozygosity 

is 0.067% for the wild-born individual and 0.080% for the captive-born individual. Thus, while the 

parents of the captive-born individual are not from the extreme ends of the aye-aye species 

distribution, this result suggests that diversity of aye-ayes is quite low, and that the results we 

have reported for this species are not likely to reflect sampling from a single region in which 

genetic diversity happens be unusually low for the species.  

 

Variation at functional versus putatively neutral sites. For each species, we observed 

substantially higher levels of genetic diversity at synonymous sites than at nonsynonymous, or 

amino acid changing, sites (Supplemental Table S1). This observation is expected, given that 

most nonsynonymous mutations are thought to be deleterious and therefore would be removed 

or kept below intermediate frequencies by purifying selection, while most synonymous sites are 

presumed to be neutral. We did observe variation in the ratio of nonsynonymous to synonymous 

site diversity across species. This ratio could be considered a measure of the efficiency of 

purifying selection, where a smaller ratio is consistent with stronger purifying selection against 

nonsynonymous mutations. We observed a negative relationship between synonymous site 

diversity and the ratio of nonsynonymous to synonymous site diversity (Supplemental Fig. 

S10A), as predicted by population genetic theory (Kimura et al. 1963). Humans have the 

second lowest level of synonymous site diversity (next to aye-aye) of any species in the study, 

and the largest ratio of nonsynonymous to synonymous site diversity. Conversely, the 

Coquerel’s sifaka has the highest level of synonymous site diversity of any primate in the study, 

and the lowest ratio of nonsynonymous to synonymous site diversity. 

 

VI. Analysis of changes in exon structure. 

Exon structure differences based on multi-species alignment of assembled transcripts. After 

multi-species alignment (Bradley et al. 2009) of each gene, we identified 308 internal gaps of ≥ 

50 bp, which  consisted of assembled sequence in at least one species but no sequence in at 

least one other species. These potential between-species exon structure differences were then 

evaluated in greater detail: 

(i) To determine whether there were single or multiple paths (i.e., alternative splicing) 

through the de Bruijn graphs for these genes for the different species around the gapped 

positions. 
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(ii) To consider any known evidence of alternatively-spliced exons based on the 

AltEvents database from the UCSC genome browser (hg19). 

(iii) To visually inspect the FSA alignments for quality. 

We found that 304 of the 308 gaps were either associated with evidence for alternative splicing 

or could be explained by alignment error. Alignment errors were especially prevalent in the UTR 

regions for opossum versus other species. Thus, there were only four remaining and potentially 

fixed inter-species exon structure differences, observed in the following genes and species: 

CAST (exon skipped in opossum; consistent with N-SCAN prediction), CD46 (exon skipped in 

black and white ruffed lemur), FAM149B1 (exon skipped in Armadillo), TRIM35 (exon skipped in 

opossum). 

 We selected one gene for further study, KIAA0494, which exhibited a multi-species 

alignment gap in a clear phylogenetic pattern, but for which there was also evidence for 

alternative splicing. Specifically, KIAA0494 exon 8 was not assembled for any strepsirrhine 

primate but was assembled for non-strepsirrhine primates. However, multiple paths through the 

de Bruijn graph around exon 8 were observed for both strepsirrhines and non-strepsirrhine 

primates. Starting with amplification primers designed from exon 8 regions that were conserved 

across non-lemur species in our study, we PCR amplified and Sanger sequenced exon 8 from 

each of the five lemurs in the study, using genomic DNA extracted from the liver of one 

individual per species. The sequences for KIAA0494 exons 6, 7, 8, and 9 of each species 

(lemurs and non-lemurs) were then used to construct a database of all potential junction read 

sequences, comprised of 60 bp from the 3’ end of the upstream exon + 60 bp from the 5’ end of 

the downstream exon. We then used BWA (Li and Durbin 2009) to align all 76 bp reads for each 

species against this database to generate precise exon junction read counts (Fig. 3A). 

 Additionally, we performed quantitative PCR on cDNA synthesized from total RNA using 

two pairs of primers that were 100% conserved among the consensus sequences of human, 

rhesus macaque, vervet, black and white ruffed lemur, and Coquerel’s sifaka. The forward 

primer of one pair spanned the junction between exons 7 and 9, while the reverse primer was 

located wholly in exon 9, which exhibited no signs of alternative splicing (F 5’ 

TCCTTCAGCATGAAAGAAGATA 3’; R 5’ GCCTGTTGCTCTCAGGTTTG 3’). The forward and 

reverse primers of the second pair were both in exon 9 (F 5’ CAAACCTGAGAGCAACAGGC 3’; 

R TGAAAATTTTGGCAATGCTG). Samples were run in triplicate in 25 µL reactions using iQ 

SYBR Green Supermix (Bio-Rad) with a BioRad iCycler Thermal Cycler (Supplemental Fig. 

S11). 
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Power to detect between-species exon differences from assembled transcripts. Our de novo 

assembly strategy was designed to isolate portions of the de Bruijn graph based on anchors of 

homology to human RefSeq gene sequences, while still allowing for accurate reconstruction of 

internal between-species exon usage differences. To estimate our power to detect exon 

structure changes in the data, we simulated an inclusion and loss of an exon with respect to the 

Human reference. 

To simulate a novel exon (with respect to human) we selected 1,132 assembled genes 

in rhesus macaque and mouse, and masked the anchors of homology for each exon by 

excluding all k-mers that overlapped the exon in the human sequence and 10 basepairs into the 

adjacent exons. We then attempted to assemble the gene with the reduced set of anchors and 

count the number of successful assemblies as those that correctly included the exon without 

human anchor sequence. We reconstructed 10,762 out of 11,017 (97.7%) rhesus macaque 

exons and 9,400 out of 9,993 (94.1%) mouse exons. In the following table, we further break 

down the fraction of reconstructed exons by expression quantiles from the normalized 

expression levels. These results suggest slightly reduced power to detect exon structure 

differences for lower-expressed transcripts: 

 

Expression quintile 
Reconstructed exons 

Rhesus macaque Mouse 

Lowest 20% 4887 of 5020 (97.3%) 4097 of 4409 (92.9%) 

20-40% 2558 of 2629 (97.3%) 1908 of 2003 (95.2%) 

40-60% 2462 of 2509 (98.2%) 1766 of 1861 (94.9%) 

60-80% 754 of 758 (99.4%) 1230 of 1298 (94.8%) 

80-100% 101 of 101 (100%) 399 of 422 (94.5%) 

 

To simulate the loss of an exon in non-human species, we took 1,000 genes in the 

human reference sequence and included a 150 basepair sequence from the intron of the gene. 

The sequence of the intron was screened for repetitive elements using RepeatMasker, resulting 

in 733 novel exons inserted. To test the robustness of the method, we included the modified 

sequence in the search for anchors (step 2 in the assembly methods, described above) and 

attempted to assemble the modified genes. We correctly assembled 567 of 590 rhesus 

macaque genes (96.6%) and 434 out of 441 mouse genes (98.4%).  
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Our estimate of the power to detect a novel or absent exon indicates that the 

observation of a lack of fixed inter-species gene structure changes cannot be attributed to the 

use of the human reference transcript sequence to identify anchors for assembly.  

 

Genome assembly-based exon structure analysis. The inference that inter-species fixed 

changes in exon structure are rare is intriguing. We wanted to provide further support for this 

inference. Specifically, since we were not able to assemble each gene in all 16 species, or 

necessarily the entire gene in each species in which it was assembled, we also performed a 

second, reference genome-based analysis, to evaluate exon structure conservation. Here, we 

considered our RNA-seq data against the human, chimpanzee, rhesus macaque, and mouse 

reference genome sequences to identify and compare annotated and novel exon splice 

junctions between human and each non-human species with an available high quality 

sequenced genome. In each species, exons were annotated based on the sequencing data in 

two steps: 

(i) Reciprocal alignment of human Ensembl exons across the human and non-human 

genomes. 

(ii) The identification of novel exons spliced to Ensembl exons based on the presence of 

one or more junction-spanning reads in our RNA-seq data. 

Once exons were annotated, we counted the number of spliced-junction reads entering, leaving, 

and skipping each exon, and identified significant between-species exon skip rate differences 

using a logistic regression model. To do so, we first compiled, for each human gene with at least 

three exons in Ensembl, a set of non-overlapping exons (taking the union of exons in each 

annotated transcript). Then, for each species: human (using genome assembly hg18), 

chimpanzee (panTro2), rhesus macaque (rheMac2), and mouse (mm9), we performed the 

following steps: 

 

1. For non-human species, we used liftOver to map the coordinates of each exon in 

humans to the coordinates in the other species. We then used liftOver to map these 

coordinates back to human. We removed all exons for which the liftOver analysis to the 

non-human species did not return a unique match for either splice site or for which the 

reciprocal liftOver analysis back to humans did not return the original coordinates. We 

then removed all genes for which more than 50% of the exons were filtered. Using this 

approach, we kept 20,872, 19,751, and 16,829 genes for analysis in chimpanzee, 

rhesus macaque, and mouse, respectively. 
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2.  We mapped the sequencing reads from each lane to the corresponding genome and 

used the algorithm in Pickrell et al. (Pickrell et al. 2010b), with a small modification, to 

identify splice junctions from the reads that did not map to the genome. In Pickrell et al. 

(Pickrell et al. 2010b), the authors used 20 base pairs from each end of a read as seed 

alignments to identify splice junctions. Here, because our original reads were of longer 

length (76 bp) than in the previous study, we used 20, 35, and 50 bases from each end 

of a read as seed alignments, and merged the results, selecting the longest successful 

seed alignment. We then filtered these alignments as in Pickrell et al. (Pickrell et al. 

2010b). We kept all alignments where GT-AG or GC-AG dinucleotides appeared 

immediately intronic of the putative junction, and merged reads corresponding to the 

same putative junction. This procedure resulted in a classification of a set of splice 

junctions in each species. The numbers of identified splice junctions were similar across 

species.  

 

3. We used the splice junctions classified above to identify new exons, which were either 

unannotated in human or specific to the non-human species. We first identified all 5’ and 

3’ splice sites that appeared between 20 and 700 bases of each other, and considered 

these as putative exons. Testing this procedure in humans, we were able to rediscover 

>90% of internal exons in genes expressed above the median expression level. 

Additionally, we identified all regions of the genome with putative expression (one or 

more mapped reads), and considered these as putative exons. These definitions of 

putative exons are purposefully liberal. We then identified all putative exons that (i) did 

not overlap an annotated exon and (ii) showed evidence of splicing to an annotated 

exon, and then filtered these newly identified exons by the criteria in step 1 above. All 

exons meeting these criteria were included in our subsequent analysis, resulting in the 

addition of 1,833, 9,983, and 7,695 exons to the sets of analyzed chimpanzee, rhesus 

macaque, and mouse exons, respectively (out of 216,308, 213,610, and 192,859 total 

exons).  

 

4. For each exon in each gene, we counted, for each individual, the number of reads 

covering each end of the exon and the number of reads skipping the exon. These counts 

were our primary data for the analysis of changes in alternative splicing.  
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We then compared levels of alternative splicing between humans and the non-human species 

using the following procedure: 

 

1. We simulated 20 base pair reads tiling each exon in both species, and mapped these 

back to the corresponding genome. In each species, the fraction of reads mapping back 

uniquely to the correct exon were considered the “mappability” score of the exon. All 

exons with a difference in mappability of >10% were excluded from further analysis. 

 

2. To limit our initial analysis to exons that showed reliable evidence of alternative 

splicing, we removed all exons with fewer than 10 reads covering junctions from both the 

5’ and 3’ end of the exon summed across all individuals of both species, or fewer than a 

total of 8 reads either entering, exiting, or skipping the exon in each species 

 

3. We defined exon skip rate as the number of reads skipping the exon divided by the 

number of reads skipping the exon plus half the number of reads covering either end. 

This is the fraction shown in Fig. 3B.  

 

We used a generalized linear mixed effects model to identify exons with significant 

between-species skip rate differences: 

logit(fijk) = αi + βij + γik 

where i indexes exon, j indexes species, and k indexes individual. α is the intercept term, β is 

the fixed effect for the species, and γ is a random effect for each individual. fijk is the inclusion 

fraction of the exon in each individual, estimated as the mean of the reads entering and exiting 

the exon, divided by that mean plus the number skipping the exon. The model was fit using the 

lme4 package in R. 

Consistent with the results from our analysis of the 16-species assembled gene 

transcripts, we observed very few exons that were skipped always in one species but never in 

the other (only three, five, and 19 exons in the chimpanzee-human, rhesus macaque-human, 

and mouse-human comparisons, respectively). While evidence of alternative splicing of these 

exons could still be uncovered in future studies using higher-coverage RNA-seq data, the 

general relationship between absolute exon skip rate differences and gene expression levels 

(Fig. 3C) also raises another possibility – that within-tissue splicing levels may simply be less 

conserved for lower-expressed genes. 
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Our finding of only a small number of fixed changes in gene structures across the 16 

species in our study is somewhat unexpected, given that a previous human-mouse bioinformatic 

and transcript comparison by Modrek et al. (Modrek and Lee 2003) suggested a relatively much 

larger number of genome-wide fixed differences in exon usage. Moreover, previous analyses of 

within-species RNA-seq data have shown that there are many mutations that create new exons 

or destroy existing ones (Pickrell et al. 2010b). Thus, it appears that the raw material for exon 

structure differences exists in the form of random mutations that affect splicing, yet such 

mutations are only rarely fixed. We note that both of our analyses – using the de novo 

assembled transcript alignments and the genome-based exon skip rates – are focused on well-

aligned, orthologous genes. Furthermore, our genome-based analysis only considers exons that 

can be reciprocally aligned between two genomes. Thus, a wholly deleted exon, or one no 

longer used and thus potentially not subject to selective constraint in one species (resulting in 

considerable nucleotide sequence divergence – a potential consideration especially for our 

human-mouse analysis given the high neutral substitution rates), may not have been 

considered. We note, however, that such internal exon structure differences would have been 

apparent in the de novo assembly alignment analysis. In addition, our simulations suggested 

that we would have the power to detect most such differences (as described above). In contrast, 

in the Modrek et al. study, if mouse sequences orthologous to an expressed human exon could 

not be identified, then those exons would have been considered present in one species and 

absent in the other (Modrek and Lee 2003), potentially explaining their findings. Finally, 

repetitive element-based exons, which may be the predominant mode of novel exon generation 

(Keren et al. 2010), may not have been reliably detected by either of our analyses. The 

presence of such exons may cause our de novo assembly process to fail, and in the genome-

based analysis such exons may fail in reciprocal alignment.  

 

VII. Evolutionary analysis of coding region nucleotide sequences. 

For each gene, we used FSA (Bradley et al. 2009) to generate a multi-species alignment. We 

next removed 5’ and 3’ UTRs and start and stop codons, and corrected any out-of-frame indels 

introduced in the alignment step. To do so, we evaluated the trimmed alignments against the 

human RefSeq transcript coding sequence. When the frame of the aligned sequences was 

shifted with respect to the human reference transcript, we introduced 1-2 bp gaps in all 

sequences as a correction. The software we used for evolutionary analysis of the coding region 

nucleotide sequences ignores any 3 bp codons that contain indels in any species in the tree 

(Yang 2007); therefore, this adjustment does not produce any analysis artifacts. 
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 We used PAML (Yang 2007) to estimate ancestral sequences and the numbers and 

rates of nonsynonymous and synonymous substitutions on each branch. The ratio of the rates 

of nonsynonymous to synonymous substitution (dN/dS) can be examined to make inferences 

about long-term selective pressures on amino acid sequences. Small dN/dS ratios (significantly < 

1) are consistent with long-term purifying selection (functional constraint) on amino acid 

sequences (i.e., nonsynonymous mutations have been fixed at a much lower rate than relatively 

neutral synonymous mutations, presumably because most such mutations had detrimental 

effects on fitness). A dN/dS ratio ~1 is consistent with neutral evolution of amino acid sequences, 

while a dN/dS ratio significantly > 1 may reflect a past, long-term history of positive selection on 

amino acid substitutions (i.e., more nonsynonymous mutations were fixed than expected under 

neutrality, presumably because a subset of these mutations were advantageous). 

 For each lineage, we considered only those genes for which the branch in question could 

be reconstructed and studied properly in our evolutionary model, given the availability of the 

orthologous gene sequence for other species in the tree (recall that we were not able to 

assemble all genes from all species). We also required that sequence data be available for at 

least two outgroup species relative to the branch in question, in order to increase the confidence 

in ancestral sequence reconstruction. For example: 

• For analysis of sequence changes on the human-specific branch, we required the 

availability of sequence from human and chimpanzee, as well as any other species 

in the tree. 

• For analysis of sequence changes on the ancestral primate branch, we required the 

availability of sequences from at least one strepsirrhine primate, at least one 

anthropoid primate, tree shrew, and at least one other non-primate outgroup species 

besides tree shrew (mouse, armadillo, or opossum). 

We also restricted our analysis to genes with at least 150 assembled and aligned synonymous 

sites, and then removed genes with one or more branches for which the gene-specific dS value 

was ≥ 99% of the genes for that branch, as such cases may result from alignment artifacts. 

We calculated two dN/dS ratios for each remaining gene in each lineage. First, the 

conventional dN/dS value, where dS is based on the synonymous substitution rate for the 

individual gene on that branch. In addition, we calculated a single genome-wide dS value for 

each lineage, as the total number of synonymous substitutions summed across all genes 

available for analysis on that lineage divided by the total number of synonymous sites summed 

across all genes. The second dN/dS value uses the genome-wide dS value, which may be 
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valuable for interpreting results on shorter branches, on which there may have not been any 

synonymous substitutions for some genes. 

We considered genes and branches that meet any of the following conditions as 

potential candidates to have evolved under directional selection: dN/dS > 1 and dN/dSgenome > 

1, dN/dS > 1 and ≥ 2 synonymous substitutions (on short branches, stochasticity in the number of 

synonymous substitutions can lead to large numbers of genes with dN/dS > 1), or dN/dSgenome > 

1.5 (Supplemental Table S5). While it is probable that not all genes and branches meeting 

these conditions were subjected to positive selection at the amino acid sequence level, this set 

of candidates is likely enriched for such genes. However, we note that the power of this test 

diminishes with increasing branch lengths, where the large number of synonymous substitutions 

likely overwhelms even the strongest signals of repeated nonsynonymous fixations. For 

example, based on our criteria, we did not identify candidate genes for the mouse and 

treeshrew branches, and only two genes were identified for the aye-aye lineage (C11orf24, 

FOXRED1). These are three of the longest branches in our phylogeny excluding armadillo and 

opossum, which were not included in this analysis because they could not meet the 

requirements for the presence of outgroup sequences. 

We assessed patterns of variation in genome-wide dN/dS rates across lineages (namely, 

summing across all genes in each lineage). Lower genome-wide dN/dS values reflect greater 

efficiency of long-term purifying selection. We compared this measure of the strength of long-

term purifying selection against the shorter-term measure, the ratio of nonynonymous to 

synonymous site diversity, for each lineage/species. We observed a positive relationship 

(Supplemental Fig. S10B). We further examined the data for indications of changes in effective 

population size. For example, the Coquerel’s sifaka has a higher-than-expected estimate of 

genome-wide dN/dS, given the low ratio of nonsynonymous to synonymous site diversity 

observed for this species. This observation is consistent with a long-term effective population 

size that was smaller than that of more recent times. Humans have the highest nonsynonymous 

to synonymous genetic diversity ratios and the highest genome-wide dN/dS estimates of any 

species/ lineage in the study, followed by chimpanzee and aye-aye, consistent with relatively 

low efficiencies of purifying selection throughout the histories of these lineages. 

 

VIII. Detecting lineage-specific changes in gene expression levels. 

The evolution of expression levels of orthologous genes from multiple species can be modeled 

as a Brownian motion process along the branches of the phylogeny (e.g., Bedford and Hartl 

2009). In the null model, we consider that all genes evolve by Brownian motion along the same 
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tree (i.e., with shared branch lengths), but that the rate of evolution (i.e., the accumulated 

variance along each branch) varies across genes, since genes may differ in their level of 

constraint or the mutational target size of regulatory regions. Specifically, let vi be the length of 

branch i, and let σj
2 be the variance parameter for gene j.  Then the variance of the Brownian 

motion process for gene j on branch i is defined as viσj
2. Note that there is statistical 

nonidentifiability between σ2 and the branch lengths v (specifically, multiplying σ2 by a constant 

c and dividing all the branch lengths by c produces the same model). To deal with this we 

estimated the branch lengths subject to the constraint that the mean value of σj
2 across all 

genes was 1.    

 We next used the property that Brownian motion along the branches of a tree is equivalent 

to a multivariate normal process, in which the covariance matrix Σ is a simple function of the 

tree topology and branch lengths (Felsenstein 1973). Then, for each gene, if µj denotes the 

expression level for the common ancestor of all species in the tree (i.e., the root of the 

expression tree), and yj denotes the vector of gene expression levels for gene j from all sampled 

individuals, the expression data yj are distributed as a multivariate normal distribution: 

 
where s denotes the number of sampled individuals, and Σ is a simple function of the branch 

lengths v. 

 For our analysis, we first estimated the branch lengths of a common overall gene 

expression tree against which expression changes for individual genes were later evaluated. 

These branch lengths were estimated using the known phylogeny of the species in our study. 

We modeled the data from the separate individuals in each species as star trees at the tips of 

each branch of the species tree.  In this context, the branch lengths leading to individuals are 

estimates of the variance of each individual relative to the species means, and these reflect both 

genetic variation within species as well as random technical or environmental inter-individual 

variation.  We used this approach to model inter-individual variation because it allows us to 

incorporate the uncertainty in the species means in a straightforward way.  The branch lengths 

were fitted using all genes for which expression estimates were available for all 15 species (i.e., 

excluding bushbaby), with gene-specific µ and σ2. 

 In the above equation, σ2 is assumed to be constant across the expression tree for each 

gene. However, we are specifically interested in identifying genes whose expression patterns 

across the phylogeny deviate from the model shown in equation 1. In particular, we are 
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interested in genes with unusually large changes in expression on particular branches. Such 

changes might be detected either as individual species whose expression level for a particular 

gene is very different from the other most closely related species (in the case of selection on 

terminal branches) or as clades of species whose expression levels differ greatly from the rest 

of the tree. These are genes for which the standard model with a single evolutionary rate σj
2 

does not fit the data well. While we do not expect all such large deviations from the overall gene 

expression tree to reflect directional selection on gene expression levels, genes ranked at the 

top of the list in each branch – namely, genes with the largest lineage-specific shifts in 

expression levels – are likely to be enriched for genes whose expression levels were affected by 

directional selection. 

 Specifically, our alternative model is that if gene j has undergone selection on branch i, 

then the variance on branch j is Cviσj
2, where C=1 corresponds to the null model, and C>1 

implies that the gene has evolved faster than expected on branch i. Under this alternative 

model, 

 
where Z indicates the index of the branch involved for gene j, and C indicates the constant 

factor multiplied to the length of Zj. The likelihood ratio of the alternative and null models is  

 
Large values of the likelihood ratio indicate support for the alternative model that there has been 

a change in rate on branch Zj.   Standard likelihood theory suggests that twice the log likelihood 

ratio on a particular branch should be approximately Χ2-distributed so that, for example, when 

the null hypothesis is true we might expect that the log LR will exceed 2.0 with probability ~0.05.  

However, since we recognize that the Brownian motion model is an imperfect representation of 

reality, we prefer to treat the likelihood ratio as a method of ranking the genes with the most 

unusual patterns of evolution on each branch, rather than as a formal test of significance. 

 Likelihood ratios were calculated over all branches, for all genes with expression 

estimates in at least 6 species (6,494 genes). We analyzed genes based on criteria similar to 

those described in the dN/dS analysis methods. For each lineage, we considered only genes for 

which the branch in question could be isolated properly, given data availability for other species 

in the tree. We also required data to be available for at least two outgroup species (relative to 
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the branch in question) in order to increase our confidence that gene expression changes could 

be isolated to the correct branches. For each branch, we defined directional selection 

candidates as those with likelihood ratio values ≥ 10 (and estimated C > 1) on that branch and < 

5 on all other branches (Supplemental Table S6). We emphasize that these genes should be 

considered candidates for directional selection. While the predominant signal in our data is 

consistent with the known phylogeny (Figure 1b, Supplemental Figure S6) even at deep 

lineage divergences, and thus overall, the patterns observed support a robust genetic influence 

on gene regulation, our data do not allow us to distinguish between gene expression differences 

reflecting environmental versus genetic change on an individual gene basis. Specifically, 

individuals from some species in our study are more likely to have shared a similar environment 

(e.g., diets; Somel et al. 2008) than individuals from other species. Moreover, while sexes are 

known for most of the individuals in the study, ages and causes of death are not (Supplemental 

Table S8), other factors that also may influence gene expression levels (Franz et al. 2005; 

Fraser et al. 2005). If these environmental differences influence gene expression levels, then 

they may be indistinguishable from genetic effects in our study. 

 As mentioned in the main text, we excluded the bushbaby data from the gene expression 

analysis because because fewer genes (2,680) were assembled for bushbaby than for any 

other species. This possibly reflects the lower RNA quality in the bushbaby samples 

(Supplemental Fig. S2). 

 We performed functional enrichment analyses for the sets of directional selection 

candidates on each branch using the Gene Ontology database of functional annotations 

(Ashburner et al. 2000) and the Gene Set Analysis Toolkit V2 (Duncan et al. 2010), with the 

background set of genes that met the criteria for analysis described above. We observed highly 

significant enrichments for genes that function in the peroxisome in the ancestral primate 

lineage (9 genes observed; 0.5 genes expected; FDR = 7 x 10-9; genes PEX7, HACL1, IDE, 

SCP2, PEX13, LONP2, ACOX3, MGST1, and PHYH) and for those with oxygen transport 

functions in the marmoset lineage (3 genes observed; 0.03 genes expected; FDR = 0.0001; 

genes HBA2, HBB, and CYBG). We note that there is not yet strong literature support for the 

peroxisome function of MGST1, as otherwise recorded in the Gene Ontology database. It is 

notable that PHYH is a candidate positive selection gene at the amino acid sequence level in 

several ancestral lemur lineages (Supplemental Table S5), suggesting the possibility of 

adaptive evolution at multiple levels and in multiple lineages in this gene. 

 Other genes with marked lineage-specific changes in expression levels identified in 

Supplemental Table S6, or others in the dataset with unusual between-species expression 
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patterns, may also underlie species and lineage-specific adaptations of evolutionary 

significance, especially as related to diet and the metabolism and detoxification processes of the 

liver. For example, while our inability to assemble a given gene in a given species does not 

necessarily indicate that this gene is not appreciably expressed (see Transcript assembly and 

alignment of orthologs, above), we were interested to observe that we successfully 

assembled the SDR16C5 gene for slow loris only, and not any other species in the study. To 

examine this observation in more detail, we also considered the number of reads aligned to 

predicted SDR16C5 transcripts based on the reference genome sequences of human, 

chimpanzee, rhesus macaque, marmoset, mouse, and opossum. We utilized the same 

approach that was used to compare gene expression estimates based on read alignments to 

assembled genes versus alignment reference genome transcripts, presented in Supplemental 

Fig. S5. Besides slow loris, we found that SDR16C5 is only expressed at appreciable levels in 

the marmoset, but still at considerably lower levels than slow lorises (Supplemental Fig. S13). 

 SDR16C5, an epidermal retinol dehydrogenase, is involved in the first, rate-limiting step of 

retinol (Vitamin A) metabolism (Matsuzaka et al. 2002; Lee et al. 2009). Retinol is a derivative of 

isoprene, the monomer of latex. Slow lorises feed extensively on tree exudates (Tan and Drake 

2001; Swapna et al. 2010), which may include gums, saps, and latex. Exudativory is relatively 

rare among non-primate mammals, but among primates, several independent taxa including 

marmosets (and slow lorises), have apparent craniofacial adaptations for tree gouging, and 

specialize on exudates (Nash 1986; Vinyard et al. 2003). It is not known how exudates are 

digested in the primates, but this process is thought to be aided by bacterial fermentation in the 

gut (Power and Myers 2009). In this case, there may be large quantities of the digestive 

products, such as retinol, absorbed through the large intestine, which may then be filtered by 

the liver. The expression of SDR16C5 in the liver tissues of slow loris and mamoset could 

represent convergent adaptation against the fitness-reducing effects of vitamin A toxicity. Such 

hypotheses based on single-gene observations should be considered highly tenuous. Still, this 

information may be valuable if it ultimately leads to further study and a better understanding of 

diet-related adaptations and evolutionary ecology among non-human primates, especially, in 

this case, incorporating the activity and importance of the gut microbiome to diet. 
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