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SUPPLEMENTARY INFORMATION
These sections supplement the main manuscript with extra detailed information relevant to HATS:
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population were eliminated, as tri-allelic sites are rare within a control population. Several samples (trio
children) were also eliminated as mentioned in the main manuscript.
Tumor data (sample TCGA-06-0877) used in evaluations were obtained from The Cancer

Genome Atlas (TCGA) (http://tcga-data.nci.nih.gov/tcga/).  Specifically, copy number aberration

information was available via open-access, while aligned reads were available only via controlled access

(via dbGaP). Researchers may apply at dbGaP for access to TCGA data.


http://tcga-data.nci.nih.gov/tcga/

Supplementary Results

Real Tumor Data with Stromal Contamination

We consider another region at chr2:30-31Mb within the same sample possessing local 2A =387 and
local C, = 2.50, suggesting 50% stromal contamination. Results are displayed in Supplementary Figure

10. In this case, the gold standard amplified alleles were instead called by HATS on the sequence data at

20 , as the naive method weakens when C, < 3 according to Figure 2B and Supplementary Figure 5,
while HATS remains stronger. The gap between the two methods is wide even at 2A = 30 in this region,
supporting that a higher 2A is required for the naive method to perform as strongly as HATS for
mixtures with 2 < C, < 3. Note that the naive empirical curve deviates from the theoretical curve,

possibly due to an imperfect gold standard called by HATS. To test this, we used HATS to call the

amplified alleles on simulated data generated with 2A =35and Ca, = 2.50. Using these called alleles as
the gold standard, we performed the down-sampling procedure described above on this simulated data
and depict the deviation from the theoretical curve in Supplementary Figure 11. This deviation, while

smaller than that in Supplementary Figure 10, supports the culpability of the imperfect gold standard

called at ZX, suggesting a higher 2A is needed for a stronger gold standard. An imperfect gold
standard for a region may also be caused by lower compatible haplotype representation in the training
data, resulting in calls that resemble those of the naive model; this could pull the naive curve up from the
theoretical curve. To correct for this possibility, we shift both the HATS and naive curves down in
Supplementary Figure 10 by the mean deviation between the naive tumor and naive theoretical curves.
This adjustment may better indicate HATS’ performance at this copy number. We repeated the analysis
on this region, this time calling the gold standard amplified alleles from 43 heterozygous sites (after
guality control filtering) from the SNP array data. The results are depicted in Supplementary Figure 12
and demonstrate again HATS’ superior performance over the naive model despite fewer sites and lesser

LD information.



Supplementary Methods
Hidden Markov Models (HMMs)

Copy number detection on more matured platforms, such as arrays, was oftentimes performed using a key
computational tool called the Hidden Markov Model (HMM). HMMs have been widely used in technical
areas, such as in speech recognition (Baker 1975) as well as in genomics (Durbin 1998; Yoon 2009). An
HMM is a probabilistic graphical model that enables the inference of latent causes (modeled as hidden
“states”) given an observed sequence of events. Each state emits probabilistic observations and
transitions probabilistically to other such hidden states next in the sequence. The sequence of
observations helps identify the most likely series of hidden states. For example, particular levels of copy
number (the states) could be inferred via observed signal intensities (Shah et al. 2006; Wang et al. 2007,

Korn et al. 2008; Liu et al. 2010).

Sample-specific Polymorphic Sites

We mentioned in Methods that the HMM model includes only those sites polymorphic in the training
data. This would exclude sites polymorphic in sample j that are monomorphic in D, such as sites
possessing rare variants or somatic mutations in j. To call the amplified allele at each such site i while
accounting for bias, we first calculate the probability of each allele x being amplified, P(x), based on the
observed read counts on the Poisson distribution. In the case of a homozygous genotype at i, P(x) = Pr(ry;

Ax), where 4, is calculated as defined earlier, setting component G, = C,. In the case of a heterozygote at

1
i, POO=T] Pr(fx ;/lx), in which G = (C, — 1) for a particular x while G, =1. The function arg-
x=0

max,{P(x)} returns the higher probability, thus calling the amplified allele. In the case of a tie, HATS
designates & as the amplified allele at i to reflect this ambiguity.

One thing to note is that HATS cannot leverage the training data for such sites, as the variant is
not present in the training data. However, HATS may still retain a performance gain over the naive

method at such sites due to analysis and correction of allelic bias.



State Pruning and Genotyping Error Correction (GEC)

As described in Methods, the set of states S; for each t in genotype HMM V theoretically contains all
states from the Cartesian product of haplotype states (S, xS.). In practice, not all such states are

viable or necessary when analyzing a particular test sample. We can utilize the tumor genotypes provided

as part of the input data for sample j to eliminate impossible states.
In particular, if genotype data is completely accurate, then a state s = (s”,s”) e S, needs to be

considered only if the tumor genotype agrees with both of the last symbols in the contained haplotype
labels: {hsA [1sM1, th [I(s¥)] 3. This pruning results in a drastic reduction of states. We enforce this

pruning only at higher levels of coverage A, in which genotype calling fidelity is strong due to the greater
density of reads supporting the call.

However, when coverage levels are low, fewer reads observe each site. This may lead to
heterozygous sites being erroneously called as homozygous, as there may be sufficient reads to support

one allele but not the other. We therefore cannot rely on homozygous genotype data at low A. In this
case, a state s = (s”,s”) e S, is considered only if either h.[I(s*)] or h_ [I(s")] agree with the tumor

genotype. This results in s representing either a heterozygous or compatible homozygous genotype at i.
Including the heterozygous genotype addresses this potential genotyping error and recovers an allele at t
for analysis. The cost, however, is a large expansion of states, dramatically increasing execution time and
memory usage. This can be assuaged by deactivating GEC at particular sites that possess sufficient reads

despite a low A.

Estimating Model Bias Parameters from Data

The site-specific bias b; represents a potential favoring of read counts towards one of the alleles at site i.
During tumor tissue sequencing, overabundance of reads that observe one allele may be attributed to
either this bias or different copy number of the two alleles, or both. In matched normal tissues, however,

the latter is not an issue in copy neutral regions. This bias may therefore be estimated by analyzing the n



normal samples and is denoted as Bi,x . As n increases, Bi,x approaches the true bias bjx. To model this,
we use a maximum a posteriori Bayesian approach that identifies bAiYX as the bias value possessing the
maximum posterior probability based on the allele specific read counts.

b, , = arg-max,{P(b |T, , )} for 0.01 < b < 30, such that:

P(F;x |ﬂ’i,x)

[P (b)]

I 1
| |
_ | |
o - |
L j[P(nx|im)P(bnde
b=0.01

We cap the range of b at 30 as the bias is unlikely to exceed this value. The above formula makes
use of a prior distribution on b (denoted as P(b)). We employ a gamma distribution, with shape parameter
k = 10.0 and scale parameter # = 0.1. This results in a desired mean of k6 = 1.0, which represents the
default bias value (translating to no bias). The distribution peak is narrow, symbolizing that most sites

will tend not to have bias.

The term within the first pair of brackets on the right side of the equation above is the normalized

likelihood. The numerator of this is P(T; , | /{i,x ), which represents the probability of observing r, , reads

for allele x at i on a Poisson distribution with mean /ivx (tallied across samples). Because the average

coverage and read counts of the n samples are independent, we use the property of the Poisson

distribution in which the sum of the random variables follows a Poisson process with a parameter mean

that is equal to the sum of the individual parameter means. As such Z ﬁ, DY i« and
j=1

A = > /{i,j,x . The above posterior formula can then be modified to:

1]
-



o
I
o
S
VR
- s
N
o
—~
=
=
Rl
;(' -
N .
N—e 3
o
—~~
O
p
o
(ex
| E—— |
N — |

Recall that 4, = Kj -(Ei'j,x ‘b, ,; we substitute b;, by b from the posterior formula. The

1]
normalized likelihood term essentially adjusts the prior by adding evidence from sample read counts. The
resulting posterior distribution over varying values of b is thus expected to be a narrower, shifted version

of the prior distribution. The peak of this distribution represents the b with the maximum probability and
is assigned to b, _ .

Effect of Matched Normal Data Availability on b

Oftentimes, matched normal data is available only for a subset of the samples. HATS can still calculate
bix in this case with the drawback of potentially reduced power. If no matched normal samples are
available, HATS may still calculate b;, with corresponding copy neutral regions in the tumor sample set if
available; otherwise, bias is ignored. If b;, cannot be estimated accurately for such reasons, the genome-
wide overdispersion from the Poisson may not be accurately represented either.

Naive Method: Theoretical Estimation Details

Recall that the naive model for calling the amplified allele at site i in amplicon a simply picks arg-

max,{r«}, avoiding a call if there is a tie. The naive call can thus be interpreted as the choosing of the

allele for which the maximum likelihood estimate of 4, (denote as /ix) is greater. We are therefore able
to assess the sensitivity of this model theoretically by determining how often 1 resembles 4, rather than

A, for a heterozygous genotype at a site i. The result at i can be generalized to any site, as the model

considers each site independently of one another.



We compute this sensitivity by summing over all possible pairs of read counts at a site
[(rx - )| r. >r ] for a particular (1,4, ) pair, assuming x is amplified in truth. With z — oo, this can

be formalized as:

Pr( X amplified) = Z zl Pr(r;a, )xPr(r;1;) (10a)

r=1r'=0

Pr(amplification of x or X ambiguous) = 3" Pr(r; 2, )x Pr(r; 2, ) (10b)

r=1
Sensitivity for (4, ,4,) =1 — [Pr(x amplified) + Pr(amplification of x or X ambiguous)] (10c)
In practice, we set z to a large value appropriate for 4, and A, which themselves are calculated

for given values of A while setting b, = 1 (no bias), G, =C, -1, and G, =1. Results over a range of

values for diploid coverage 2A and C, are shown in Supplementary Figure 1.



Supplementary Tables

Supplementary Table 1. Accuracies of HATS, Naive Method, and Germline Phasing, 4 Regions, Glioblastoma
Tumor (TCGA-06-877). An alternate method to HATS entails phasing the data first using germline phasing
algorithms and then examining the read counts across each reported haplotype to deduce the amplified and non-
amplified haplotypes. This alternate approach was compared with HATS and the naive method on four regions
from the indicated glioblastoma tumor sample. Analysis was limited to sites that were both present in the sequence
data as well as typed on the SNP array for the same sample, with the gold standard amplified alleles determined by
the SNP array calls. In all four regions, HATS performs the same or better than the germline phasing alternative (in
this case, Beagle 3.0), thus supporting the relevance for HATS in phasing CNA regions.

Chr Position Range # Het Sites % Amplified Alleles at Het Sites Called Correctly by:
Start - End Germline HATS Naive
Phasing
2 20Kb - 990Kb 29 96.6% 100.0% 89.5%
2 99Mb - 10.4Mb 49 87.8% 100.0% 94.0%
2 30Mb - 31Mb 45 100.0% 100.0% 96.0%
19 | 218Mb - 2.54Mb 3 66.6% 100.0% 100.0%
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Supplementary Figures
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Supplementary Figure 1. Theoretical accuracy of the naive model across varying genome-wide coverage
levels and amplicon-specific copy number levels. The figure above displays the sensitivities for varying copy
number levels for an amplicon (3 — 5) over varying diploid coverage levels. The naive method performs quite well
theoretically at high copy number levels, except for low coverage levels. This is especially visible with the default

value of copy number 3.

11



1.000 —

0.975 Tals
0.950
0.925 .
K
0.900
0.875
. -, 0.850
@ 0.825/ $ 0825 X
3 0,800/ S 0.800 i
G 0775 Q 0.775
0.750
0.725 i
0.700
0.675 2A e 6
0,650
0,625 §
0.600 . - : 0.600 - - - - .600 5 - -
0 500 ,000 1,500 2,000 2,500 3,000 0 1,000 2000 3,000 4,000 5000 6,000 7,000 0 1,000 1,500 2,000 2,500 3,000 3,500 4,000
Number of Het Sites Number of Het Sites Number of Het Sites
oAt
0725
I o700} 2A =15
t 0675
' 0.650 |
' 0625+
0.600 - L 0.600 -
0 500 1,000 1,500 2,000 2500 3,000 3,500 0 1,000 2000 3,000 4000 5000 6000 0 500 1,000 1,500 2000 2,500 3,000
Number of Het Sites Number of Het Sites Number of Het Sites
1.000 = L ekl 1.000 peo e
075 i e 2 e e bars
0.950 LAt s 0.950
0.925 0 0.925
0.900 37 0.900
0.875 ' £ 0875 |
it i gio
o B [
S 0.800 - S 0.800 S 0.800
3 o7s 8 075 8 05|
0.750 - 0.750 0.750
725 ¢ 0.725 0.725
ool 2A =20 ool 2A =25 ora0l 2A =30
0675 0.675 0.675
0,650 0.650 0.650
0.625 - 0.625 0.625
0,600 - 0.600 0600
[] 500 1,000 1,500 2000 2500 3000 3,500 500 1,000 1,500 2000 2,500 0 2,500 5,000 7,500
Number of Het Sites Number of Het Sites Number of Het Sites
*HATS - Naive =HATS - Naive =HATS - Naive

3,500

10,000

Supplementary Figure 2: Accuracy Plots over Varying Coverage Levels for HATS and the Naive Method
from Simulations, European (CEU) Training Dataset. The above nine accuracy plots depict the accuracies for
both methods over hundreds of trial runs over varying levels of diploid coverage (2A). Each point in an accuracy
dot plot represents the accuracy for a method in a particular amplicon a in sample j per trial. As the number of
heterozygous sites in a increases, the accuracies converge to a peak for each method. Even when the number of
heterozygous sites is low within an amplicon a, HATS consistently outperforms the naive method in that amplicon.
The training dataset was obtained from the 1000 Genomes Project (http://www.1000genomes.org/).
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Supplementary Figure 3: Sensitivity of HATS and the Naive Model for Breakdown of Reads Observing a Site
vs. Diploid Coverage Simulated, with Copy Number of 3. The first two plots (A) and (B) depict the sensitivity
for each y-axis bin, where each bin represents a particular number of total reads observing a site. The reads in a bin
are generated by a Poisson distribution with diploid mean 2A. A range of values for 2A are displayed on the x-axis.
This figure is generated from simulated data with amplicon copy number of 3. Blank bins represent read counts not
generated from a particular 2A. Sensitivity spans from low (green) to high (red) and is scaled for both methods
together. Note that the naive method possesses periodicity — namely, even numbered bins perform poorer than
adjacent odd numbered bins. The reason is that even numbered bins can result in ties in allelic counts, which disable
the naive method from making a call. Odd numbered bins cannot result in ties by definition. (C) This plot
represents the differences in sensitivities between HATS and the naive method. The cells are shaded in a gradient
corresponding to the sensitivity differences: green (negative difference, naive is better) to off-white (no difference,
labeled as “.0”) to blue (positive difference, HATS is better). Note that the periodicity of the naive model is
reflected in the sensitivity differences. This figure depicts HATS generally outperforming the naive especially when
2A is low or the bin numbers are low. The training dataset was obtained from the 1000 Genomes Project
(http://www.1000genomes.org/).
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Supplementary Figure 4. Sensitivity of HATS and the Naive model from simulations, Yoruban (YRI) and
Japanese and Chinese (JPTCHB) Training Datasets. This figure displays the sensitivity results for HATS
(without Genotyping Error Correction) and the naive model from the simulation runs. Since the naive curves for
both populations are congruent with each other and the theoretical curve, the same naive simulation curve is
displayed here. The HATS curves for the two populations are also nearly congruent and outperform the naive model
until the latter catches up past a diploid coverage of 40. The training datasets were obtained from the 1000 Genomes
Project (http://www.1000genomes.org/).
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Supplementary Figure 5. Sensitivity of HATS and the Naive model from simulations with stromal
contamination, European (CEU) Training Dataset, Copy Number 2.8. This figure displays the simulation
sensitivity results for HATS as well as for the naive model given a copy number of 2.8, which represents a tumor of
copy number 3 with 20% stromal contamination of copy neutral healthy cells. Note that the performance gap
between the two methods remains wide, and the naive method does not catch up to HATS even at a high diploid
coverage of 60. The training dataset was obtained from the 1000 Genomes Project (http://www.1000genomes.org/).
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Supplementary Figure 6: Sensitivity of HATS and the Naive Model for Breakdown of Reads Observing a Site
vs. Diploid Coverage Simulated, with Copy Number of 2.5. The first two plots (A) and (B) depict the sensitivity
for each y-axis bin, where each bin represents a particular number of total reads observing a site. The reads in a bin
are generated by a Poisson distribution with diploid mean 2A. A range of values for 2A are displayed on the x-axis.
This figure is generated from simulated data with amplicon copy number of 2.5. Blank bins represent read counts
not generated from a particular 2A. Sensitivity spans from low (green) to high (red) and is scaled for both methods
together. Note that the naive method possesses periodicity — namely, even numbered bins perform poorer than
adjacent odd numbered bins. The reason is that even numbered bins can result in ties in allelic counts, which disable
the naive method from making a call. Odd numbered bins cannot result in ties by definition. (C) This plot
represents the differences in sensitivities between HATS and the naive method. The cells are shaded in a gradient
corresponding to the sensitivity differences: green (negative difference, naive is better) to off-white (no difference,
labeled as “.0”) to blue (positive difference, HATS 1is better). Note that the periodicity of the naive model is
reflected in the sensitivity differences. This figure depicts HATS generally outperforming the naive method when
stromal contamination is present, even at high 2A or when the bin numbers are high. The training dataset was
obtained from the 1000 Genomes Project (http://www.1000genomes.org/).
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Supplementary Figure 7. Sensitivity of HATS and the Naive model from simulations, CEU Training Dataset,
Copy number 1.9. This figure displays the simulation sensitivity results for HATS and the naive model with copy
number of 1.9, representing a heterozygous deletion mixture. While performance between the two methods remains
similar at very low coverage, increasing coverage slightly results in a tremendous performance difference between
the two. The training dataset was obtained from the 1000 Genomes Project (http://www.1000genomes.org/).

17


http://www.1000genomes.org/
http://www.1000genomes.org/

Wwo o000 00 0 0 0 W-0 0 0 20e0p0 e Wwe o 20 0 0 0 0 a0 k000000 0 0¢
00 W WIWIWIWOo Wo Wwi-0 0 0 0 0 W--0 102 v0 €0 9 9 L0 €0 [0 L0 100 €0 #0-#0 0 € 0 0 0 .o. 0 14
00 0 0 0 0 W W 0 W W W W Wi 00 0 2 0 v0 €0 8 0 60 0 80 L0 p0 E0- L0 €0- 200 90- 500 98- B 0 07
00 0 0 0 0 0 0 0 0 0 W0 W LW I We L ¢ LW er L Lo ¢ e L0 e ¢ 5 ¢ 60 ¥00 90 G0 00 L0 200 [0- ¢0- €= sl
00 0 0 0 0 0 €0 ¢ 0 €0 ¢0 0 ¢0 W0 €0 0 €0 W ¥v0 ¢0 ¥0°0 20 SO0 20 90 €00 80° KO .mo. () [ 0l

0000 .o. 0 L0 0 0 00 W0 80 W €0 20 ¥0O ¢0 w00 L0 900 00 90 ¥O 80 E0° 60" #O° i 6

00 0 0 800 0 0 0 L0-20 W €0 ¢0 €0 W0 ¥0° €0 90° ¥O° 90" ¥O° L0 vO' 6O PO [ 8

0 0 0 0 0 0 0 2 W W e 0 v L0 v0 €0 9 ¢0 80 €0 b L

0 0 0 0 0 0 € 0 <0 v0 S0 20 vO 20 90 200 [0 €0 b 9

00 0 0 0 90 0 W 20-80° 10-60° ¢0° L0 20 §

00 0 0 S0-0 $0 L0 €0 L0 ¥O° 00 14

000 .No. Wl ¢

00 0 .3. -k W [

696 GL6 wmm..._.ha. 686" mhm..rwa.._bm. 1y 668 668 126 V6 6 02

h_wm..wm. 86 €96 €96 956 [96 ¢6 €6 ¢6 G506 199 [S6° 6 606 869 v6 6 956 LE6 14

€86 /86 66° GBG 8/6'66° €/0 /96 PLO GBG 1.6 LBG LG 880 870 GYO 199° GEG LGB IV LB OPG 9ES° EVO 998" L0G 681 6.6 G06 07

E 86 986 886 /86 /86 06 86 /.6 /96 6.6 96 GG 996 €.6 96 P96 CP6 956 L¢6 Cr6 L68 CE6 LPY 06 ¥98° 1/8 B9L 68 C¢GL G98 GGL 5B sl

€16 696" B8O /06 €80° £80° /56 /B6° 956 /96 €96 967 Y6 896 66 LSO L06 <56 687 €6 9G9° 968" 808 898 6LL ¥ Il viE &L 9L 0l

/58" £€6° 856 8.6 €6 ¢L6 m@m.m@m ¢l6 886 /56 ¥E6 LGG [€6 656 906 BY6 668 €26 998 €L6 L28 €8 GeL PEY €L vve <89 LvL 6
LV 786 656 vG6 8/6° 9P 296 VGG C96° L6 GG 906 vEG PO 26 8/8" 106 968" 188" GLL £FY €8 €6/ 88G & |8

Cv6 /6 ¢l6 ¢L6 8v6 |L6° LE6 [G6 Ge6 [€6°6° LG 899 €I6 128 GI8 LI/ 99§ L h%.-nﬁ. L

€16 pE6 16 GEG GOG CY6 v88 €66 L/ ¥I6 LEB 898" 18 659 pOL 808 819 88/ 9

6 €€ [G6 ¢v6 L96 €06 596 €06 /86 899 ¥eb ¥8 €69 6L ¢98 LeL 118 le9 9EL | g

€56 56 L6 €88 PE6 <99 v06 S8 289 808 9% ¢ol €8 .wmh. 7

Ll 126 199 6c6 EF €83 €8 [98° LEL ¢8° 8€9 9L 'R

9 606 669 vi8 956 GL €8 ¥9 ELL 7

156 [P 668 668 €6 |¥6 02

186" /86 /86 686" vE6 590 P16 626 926 P06 PG 956 996" 5

€86 786 2.6 86" G/6° 980
]  ¢66 9.6 986 /67 186 9.6 886 996 /.6 €96 9.6 0686 G86 P96 GG6 188" LL6 9/9 L/8 93 LG ¢%6 EF9 PLL 0z
186 886" 286 /L6 196" 9.6 GL6 996 996 956 |96 206" YOO' BEG' CG 626 P26 GG 206 GBL 86L GEL ] sl
€86 196 €66 986 8.6 880 5.6 C.6 P86 C/6 €6 96 /96 LG6 56 PO GEG 26 L6 68 989 S8 ¥BL BCLESIEFI & 0L
E 956 8.6 986 0k G596 €96 180 8.6 G/6 ¢/6 G/6 L6 £96 €906 956 96 PvG 9PG 806 LLG ¢L8 /9 8BS CG8 €8L GL .m.._.. 3
786 BY6 86 €86 186 8.6 GB6 6.6 G806 L6 <£96 C.6 BGG 8G6 8¥6 8E6 9¢6 €26 ¢68 G0 6¢8 IEB Lyl EEL 69 [99° 8
796 696 986 9.6 9.6 9.6 186 L96 /6 L6 V96 PGG €56 LPE L6 PLG EO6 FIG €98 CL8 98L VEL €I . L
638" 916 196" 166 6V6 /96 ¥PG 8G6 ¢¥6 LvG 6C6 26 vl6 806 199 [¥R 618 /€3 989 9LL 9
6 699 8.6 /56 96 €86 [G6 €56 GG6 GE6 yv6 956 ¥Cb vI6 666 €88 999 L9 ELB £¢L 199 §
G06 /56 956 156 GF6 926 ¥G 616 L6 G06 €067 G99 /8 GC3 108 6OL 139 ¥
606 156 £96 96 916 669 £68° 960 999 €58 818 G6L Lol L1 €
¢ GPG €69 16 P98 BGY 9v8 F8L 96/ 669 L19

8 Iy 9 G ¢ CF Tv LP Ob 68 B LC 96 G0 ¥E €0 6 M OC 6 80 L0 9¢ &% Y7 €0 € M2 02 6L 8L L 9L SL #L €L @ M oOL 6B B L 9§ ¥ € T 1,

311S e BUIAIBSQO Speay #

Downsampled Diploid Coverage (2A), C, = 3.18

(C) HATS vs. Naive

(B) Naive

(A) HATS

18



Supplementary Figure 8: Sensitivity of HATS and the Naive Model for Breakdown of Reads Observing a Site
vs. Downsampled Diploid Coverage on a Real Tumor Amplicon, with Copy Number of 3.18. This figure is
generated from real data with amplicon copy number of 3.18 undergoing the downsampling evaluation procedure.
The first two plots (A) and (B) depict the sensitivity for each y-axis bin, where each bin represents a particular
number of total reads observing a site. The reads in a bin result from a Poisson distribution with diploid mean 2A.
A range of values for 2A are displayed on the x-axis. Blank bins represent read counts not resulting from a
particular 2A. Sensitivity spans from low (green) to high (red) and is scaled for both methods together. Note that
the naive method possesses periodicity — namely, even numbered bins perform poorer than adjacent odd numbered
bins. The reason is that even numbered bins can result in ties in allelic counts, which disable the naive method from
making a call. Odd numbered bins cannot result in ties by definition. (C) This plot represents the differences in
sensitivities between HATS and the naive method. The cells are shaded in a gradient corresponding to the
sensitivity differences: green (negative difference, naive is better) to off-white (no difference, labeled as “.0”) to
blue (positive difference, HATS is better). Note that the periodicity of the naive model is reflected in the sensitivity
differences. This figure depicts HATS generally outperforming the naive especially when 2A is low or the bin
numbers are low. However, there are a handful of cases in which the naive method performs better. Also note that
the HATS sensitivities for a bin are not consistent across coverage levels; this is due to the effect of the training data
being incorporated. The TCGA data for this patient was obtained from http://tcga-data.nci.nih.gov/tcga/ (with tumor
and alignment files obtained from dbGaP with accession number: phs000178.v4.p4).
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Supplementary Figure 9: Empirical Sensitivity of HATS and the Naive Model, TCGA Glioblastoma sample
(TCGA-06-0877), Chr 19, SNP Array Gold Standard. This figure displays the sensitivity results for HATS and
the naive method on an amplified region (Chromosome 19: 2,181,615 — 2,541,253) in a glioblastoma patient
(TCGA-06-0877) obtained from TCGA with local copy number of 3.18. The naive theoretical curve is included for
comparison purposes. The gold standard amplified alleles were obtained via the amplified allelic calls made on SNP
array data for the same region from the same sample. Only three heterozygous gold standard sites remained after
quality control filtering. The sequencing data read counts were then randomly down-sampled to result in varying
coverage levels as displayed on the x-axis (with 400 trials of down-sampling performed per coverage level). The
down-sampled read counts were passed to both HATS and the naive method. The reported amplified alleles were
compared with the gold standard to indicate sensitivity. Note that for higher coverages, the performance of both
HATS and the naive method is strong, which is expected as this was observed in the simulations. As coverage
decreases, HATS maintains a marked performance improvement over the naive method. What is further remarkable
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is that HATS maintains this advantage over the naive model even with such few heterozygous sites (three). Another
thing to note is that the naive method performs better on sites with an odd number of reads versus an even number,
as there is no chance of ties in the former. This explains the slight step effect in the naive model’s sensitivity at 2A
= 5. The TCGA data for this patient was obtained from http://tcga-data.nci.nih.gov/tcga/ (with tumor and alignment
files obtained from dbGaP with accession number: phs000178.v4.p4).
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Supplementary Figure 10. Empirical sensitivity of HATS and the Naive model, TCGA Glioblastoma sample
(TCGA-06-0877), Chr 2. This figure displays the sensitivity results for HATS and the naive method on an
amplified sub-region (Chromosome 2: 30,117,665 — 31,000,001) in a glioblastoma patient obtained from TCGA
with copy number of 2.50. The empirical curves only extend to a diploid coverage of 30, as the original diploid
coverage in the data was ~38.7x for this region. The theoretical curve extends past this to display that very high
coverage is necessary in order for the naive method to theoretically match the performance of HATS. Note that the
naive curve deviates from the theoretical curve, likely due to an imperfect gold standard called by HATS at 38.7x.
To correct for this, the average deviation is calculated between the naive curve and naive theoretical curve. Both the
naive and HATS curves are then shifted down by this amount to result in the respective adjusted curves, which more
accurately indicate HATS’ performance at this copy number. The TCGA data for this patient was obtained from
http://tcga-data.nci.nih.gov/tcga/ (with tumor and alignment files obtained from dbGaP with accession number:
phs000178.v4.p4).
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Supplementary Figure 11. Sensitivity of HATS and the naive model, simulated data with gold standard
called on high coverage (emulating Real Data tumor evaluation). HATS called the amplified alleles (assigned as
the gold standard) on simulated data generated at 35x diploid coverage with copy number of 2.5. This simulated
data is then analyzed as real data would be evaluated, via a down-sampling procedure that uses the called gold
standard alleles. The figure displays the results, indicating the deviation of the naive emulated curve from the
theoretical curve. This suggests that the imperfect gold standard used is a cause of this deviation. The training
dataset (CEU) was obtained from the 1000 Genomes Project (http://www.1000genomes.org/).
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Supplementary Figure 12: Empirical sensitivity of HATS and the Naive model, TCGA Glioblastoma sample
(TCGA-06-0877), Chr 2, SNP Array Gold Standard. This figure displays the sensitivity results for HATS and
the naive method on an amplified sub-region (Chromosome 2: 30,117,665 — 31,000,001) in a glioblastoma patient
obtained from TCGA with copy number of 2.50. The empirical curves only extend to a diploid coverage of 30, as
the original diploid coverage in the data was ~38.7x for this region. The theoretical curve extends past this to
display that very high coverage is necessary in order for the naive method to theoretically match the performance of
HATS. The gold standard amplified alleles were obtained via the amplified allelic calls made on SNP array data for
the same region from the same sample. Only 43 heterozygous gold standard sites remained after quality control
filtering. The sequencing data read counts were then randomly down-sampled to result in varying coverage levels as
displayed on the x-axis (with 400 trials of down-sampling performed per coverage level). With this stromal
contamination present, HATS outperforms the naive method at all diploid coverage levels. The TCGA data for this
patient was obtained from http://tcga-data.nci.nih.gov/tcga/ (with tumor and alignment files obtained from dbGaP
with accession number: phs000178.v4.p4).
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Supplementary Figure 13: Sensitivity of HATS and the Naive Model for Breakdown of Reads Observing a
Site vs. Downsampled Diploid Coverage on a Real Tumor Amplicon, with Copy Number of 2.50. This figure
is generated from real data with amplicon copy number of 2.50 undergoing the downsampling evaluation procedure.
The first two plots (A) and (B) depict the sensitivity for each y-axis bin, where each bin represents a particular
number of total reads observing a site. The reads in a bin result from a Poisson distribution with diploid mean 2A.
A range of values for 2A are displayed on the x-axis. Blank bins represent read counts not resulting from a
particular 2A. Sensitivity spans from low (green) to high (red) and is scaled for both methods together. Note that
the naive method possesses periodicity — namely, even numbered bins perform poorer than adjacent odd numbered
bins. The reason is that even numbered bins can result in ties in allelic counts, which disable the naive method from
making a call. Odd numbered bins cannot result in ties by definition. (C) This plot represents the differences in
sensitivities between HATS and the naive method. The cells are shaded in a gradient corresponding to the
sensitivity differences: green (negative difference, naive is better) to off-white (no difference, labeled as “.0”) to
blue (positive difference, HATS is better). Note that the periodicity of the naive model is reflected in the sensitivity
differences. This figure depicts HATS generally outperforming the naive method when stromal contamination is
present, even at high 2A or large bin number. Also note that the HATS sensitivities for a bin are not consistent
across coverage levels; this is due to the effect of the training data being incorporated. The TCGA data for this
patient was obtained from http://tcga-data.nci.nih.gov/tcga/ (with tumor and alignment files obtained from dbGaP
with accession number: phs000178.v4.p4).
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Software

HATS was implemented in the Java programming language. The source code is available at:

https://sourceforge.net/projects/tumorhats/. We recommend using JRE 1.6 or higher.

While a non-trivial amount of time might be required of the user to organize data into HATS’ input file
format (described at the linked site), processing the data itself is very fast. On short regions, HATS takes
several seconds to process the regions (including time to load the training data files), as was measured on
a Core 2 Duo 2.4 GHz machine with 6 GB RAM. Wider regions will take proportionally longer (when
ignoring the overhead of loading the training data). HATS is memory intensive, and as such, a 64-bit
machine with 4+ GB of RAM is recommended, depending on the width of regions being analyzed and

whether the especially memory intensive Genotype Error Correction feature is activated.
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