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population were eliminated, as tri-allelic sites are rare within a control population.  Several samples (trio 

children) were also eliminated as mentioned in the main manuscript. 

 Tumor data (sample TCGA-06-0877) used in evaluations were obtained from The Cancer 

Genome Atlas (TCGA) (http://tcga-data.nci.nih.gov/tcga/).  Specifically, copy number aberration 

information was available via open-access, while aligned reads were available only via controlled access 

(via dbGaP).  Researchers may apply at dbGaP for access to TCGA data. 

  

http://tcga-data.nci.nih.gov/tcga/
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Supplementary Results 

Real Tumor Data with Stromal Contamination 

We consider another region at chr2:30-31Mb within the same sample possessing local 2  = 38.7 and 

local Ca = 2.50, suggesting 50% stromal contamination.  Results are displayed in Supplementary Figure 

10.  In this case, the gold standard amplified alleles were instead called by HATS on the sequence data at 

2 , as the naïve method weakens when Ca < 3 according to Figure 2B and Supplementary Figure 5, 

while HATS remains stronger.  The gap between the two methods is wide even at 2  = 30 in this region, 

supporting that a higher 2  is required for the naïve method to perform as strongly as HATS for 

mixtures with 2 < Ca < 3.  Note that the naïve empirical curve deviates from the theoretical curve, 

possibly due to an imperfect gold standard called by HATS.  To test this, we used HATS to call the 

amplified alleles on simulated data generated with 2  = 35 and Ca = 2.50.  Using these called alleles as 

the gold standard, we performed the down-sampling procedure described above on this simulated data 

and depict the deviation from the theoretical curve in Supplementary Figure 11.  This deviation, while 

smaller than that in Supplementary Figure 10, supports the culpability of the imperfect gold standard 

called at 2 , suggesting a higher 2  is needed for a stronger gold standard.  An imperfect gold 

standard for a region may also be caused by lower compatible haplotype representation in the training 

data, resulting in calls that resemble those of the naïve model; this could pull the naïve curve up from the 

theoretical curve.  To correct for this possibility, we shift both the HATS and naïve curves down in 

Supplementary Figure 10 by the mean deviation between the naïve tumor and naïve theoretical curves.  

This adjustment may better indicate HATS’ performance at this copy number.  We repeated the analysis 

on this region, this time calling the gold standard amplified alleles from 43 heterozygous sites (after 

quality control filtering) from the SNP array data.  The results are depicted in Supplementary Figure 12 

and demonstrate again HATS’ superior performance over the naïve model despite fewer sites and lesser 

LD information.   
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Supplementary Methods 

Hidden Markov Models (HMMs) 

Copy number detection on more matured platforms, such as arrays, was oftentimes performed using a key 

computational tool called the Hidden Markov Model (HMM).  HMMs have been widely used in technical 

areas, such as in speech recognition (Baker 1975) as well as in genomics (Durbin 1998; Yoon 2009).  An 

HMM is a probabilistic graphical model that enables the inference of latent causes (modeled as hidden 

“states”) given an observed sequence of events.  Each state emits probabilistic observations and 

transitions probabilistically to other such hidden states next in the sequence.  The sequence of 

observations helps identify the most likely series of hidden states.  For example, particular levels of copy 

number (the states) could be inferred via observed signal intensities (Shah et al. 2006; Wang et al. 2007; 

Korn et al. 2008; Liu et al. 2010). 

Sample-specific Polymorphic Sites 

We mentioned in Methods that the HMM model includes only those sites polymorphic in the training 

data.  This would exclude sites polymorphic in sample j that are monomorphic in D, such as sites 

possessing rare variants or somatic mutations in j.  To call the amplified allele at each such site i while 

accounting for bias, we first calculate the probability of each allele x being amplified, P(x), based on the 

observed read counts on the Poisson distribution.  In the case of a homozygous genotype at i, P(x) = Pr(rx; 

λx), where λx is calculated as defined earlier, setting component Gx = Ca.  In the case of a heterozygote at 

i,  




1

0

;Pr)(

x

xx
rxP  , in which Gx = (Ca – 1) for a particular x while 1

x
G .  The function arg-

maxx{P(x)} returns the higher probability, thus calling the amplified allele.  In the case of a tie, HATS 

designates  as the amplified allele at i to reflect this ambiguity. 

 One thing to note is that HATS cannot leverage the training data for such sites, as the variant is 

not present in the training data.  However, HATS may still retain a performance gain over the naïve 

method at such sites due to analysis and correction of allelic bias. 
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State Pruning and Genotyping Error Correction (GEC) 

As described in Methods, the set of states St for each t in genotype HMM V theoretically contains all 

states from the Cartesian product of haplotype states )(
U

t

A

t
SS  .  In practice, not all such states are 

viable or necessary when analyzing a particular test sample.  We can utilize the tumor genotypes provided 

as part of the input data for sample j to eliminate impossible states.   

 In particular, if genotype data is completely accurate, then a state 
t

UA
Ssss  ),(  needs to be 

considered only if the tumor genotype agrees with both of the last symbols in the contained haplotype 

labels: {
A

s
h [l(s

A
)], 

U

s
h [l(s

U
)] }.  This pruning results in a drastic reduction of states.  We enforce this 

pruning only at higher levels of coverage Λ, in which genotype calling fidelity is strong due to the greater 

density of reads supporting the call.   

 However, when coverage levels are low, fewer reads observe each site.  This may lead to 

heterozygous sites being erroneously called as homozygous, as there may be sufficient reads to support 

one allele but not the other.  We therefore cannot rely on homozygous genotype data at low Λ.  In this 

case, a state 
t

UA
Ssss  ),(  is considered only if either 

A

s
h [l(s

A
)] or 

U

s
h [l(s

U
)] agree with the tumor 

genotype.  This results in s representing either a heterozygous or compatible homozygous genotype at i.  

Including the heterozygous genotype addresses this potential genotyping error and recovers an allele at t 

for analysis.  The cost, however, is a large expansion of states, dramatically increasing execution time and 

memory usage.  This can be assuaged by deactivating GEC at particular sites that possess sufficient reads 

despite a low Λ. 

Estimating Model Bias Parameters from Data 

The site-specific bias bi,x represents a potential favoring of read counts towards one of the alleles at site i.  

During tumor tissue sequencing, overabundance of reads that observe one allele may be attributed to 

either this bias or different copy number of the two alleles, or both.  In matched normal tissues, however, 

the latter is not an issue in copy neutral regions.  This bias may therefore be estimated by analyzing the n 
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normal samples and is denoted as 
xi

b
,

ˆ .  As n increases, 
xi

b
,

ˆ  approaches the true bias bi,x.  To model this, 

we use a maximum a posteriori Bayesian approach that identifies 
xi

b
,

ˆ  as the bias value possessing the 

maximum posterior probability based on the allele specific read counts.   

xi
b

,
ˆ = arg-maxb{P(b |

xi
r

,

~ )} for 0.01 ≤ b ≤ 30, such that: 
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 We cap the range of b at 30 as the bias is unlikely to exceed this value.  The above formula makes 

use of a prior distribution on b (denoted as P(b)).  We employ a gamma distribution, with shape parameter 

k = 10.0 and scale parameter θ = 0.1.  This results in a desired mean of kθ = 1.0, which represents the 

default bias value (translating to no bias).  The distribution peak is narrow, symbolizing that most sites 

will tend not to have bias.   

 The term within the first pair of brackets on the right side of the equation above is the normalized 

likelihood.  The numerator of this is P(
xi

r
,

~
 | 

xi ,

~
 ), which represents the probability of observing 

xi
r

,

~
 reads 

for allele x at i on a Poisson distribution with mean 
xi ,

~
 (tallied across samples).  Because the average 

coverage and read counts of the n samples are independent, we use the property of the Poisson 

distribution in which the sum of the random variables follows a Poisson process with a parameter mean 

that is equal to the sum of the individual parameter means.  As such, 




n

j

xjixi
RR

1

,,,

~~
, 





n

j

xjixi
rr

1

,,,

~~
, and 






n

j

xjixi

1

,,,

~~
 .  The above posterior formula can then be modified to: 
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 Recall that xixjijxji
bG

,,,,,

~~~
 ; we substitute bi,x by b from the posterior formula.  The 

normalized likelihood term essentially adjusts the prior by adding evidence from sample read counts.  The 

resulting posterior distribution over varying values of b is thus expected to be a narrower, shifted version 

of the prior distribution.  The peak of this distribution represents the b with the maximum probability and 

is assigned to 
xi

b
,

ˆ . 

Effect of Matched Normal Data Availability on bi,x 

Oftentimes, matched normal data is available only for a subset of the samples.  HATS can still calculate 

bi,x in this case with the drawback of potentially reduced power.  If no matched normal samples are 

available, HATS may still calculate bi,x with corresponding copy neutral regions in the tumor sample set if 

available; otherwise, bias is ignored.  If bi,x cannot be estimated accurately for such reasons, the genome-

wide overdispersion from the Poisson may not be accurately represented either. 

Naïve Method: Theoretical Estimation Details 

Recall that the naïve model for calling the amplified allele at site i in amplicon a simply picks arg-

maxx{rx}, avoiding a call if there is a tie.  The naïve call can thus be interpreted as the choosing of the 

allele for which the maximum likelihood estimate of 
x

  (denote as 
x

̂ ) is greater.  We are therefore able 

to assess the sensitivity of this model theoretically by determining how often 
x

̂  resembles 
x

  rather than 

x
 for a heterozygous genotype at a site i.  The result at i can be generalized to any site, as the model 

considers each site independently of one another. 
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 We compute this sensitivity by summing over all possible pairs of read counts at a site 

  ]|,[
xxxx

rrrr   for a particular (
x

 ,
x

 ) pair, assuming x is amplified in truth.  With z → ∞, this can 

be formalized as: 

Pr( x amplified) =     








z

r

r

r

xx
rr

1

1

0

;Pr;Pr                                                 (10a) 

Pr(amplification of x or x  ambiguous) =    




z

r

xx
rr

1

;Pr;Pr                   (10b) 

Sensitivity for (
x

 ,
x

 ) = 1 – [Pr( x amplified) + Pr(amplification of x or x  ambiguous)]  (10c) 

 In practice, we set z to a large value appropriate for 
x

 and
x

 , which themselves are calculated 

for given values of Λ while setting bx = 1 (no bias), 1
ax

CG , and 1
x

G .  Results over a range of 

values for diploid coverage 2Λ and Ca are shown in Supplementary Figure 1. 
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Supplementary Tables 

 

Supplementary Table 1. Accuracies of HATS, Naïve Method, and Germline Phasing, 4 Regions, Glioblastoma 

Tumor (TCGA-06-877).  An alternate method to HATS entails phasing the data first using germline phasing 

algorithms and then examining the read counts across each reported haplotype to deduce the amplified and non-

amplified haplotypes.  This alternate approach was compared with HATS and the naïve method on four regions 

from the indicated glioblastoma tumor sample.  Analysis was limited to sites that were both present in the sequence 

data as well as typed on the SNP array for the same sample, with the gold standard amplified alleles determined by 

the SNP array calls.  In all four regions, HATS performs the same or better than the germline phasing alternative (in 

this case, Beagle 3.0), thus supporting the relevance for HATS in phasing CNA regions. 

Chr Position Range # Het Sites % Amplified Alleles at Het Sites Called Correctly by: 

 Start - End  Germline 

Phasing 

HATS Naive 

2 20Kb - 990Kb 29 96.6% 100.0% 89.5% 

2 9.9Mb - 10.4Mb 49 87.8% 100.0% 94.0% 

2 30Mb - 31Mb 45 100.0% 100.0% 96.0% 

19 2.18Mb - 2.54Mb 3 66.6% 100.0% 100.0% 
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Supplementary Figures 

 

Supplementary Figure 1.  Theoretical accuracy of the naïve model across varying genome-wide coverage 

levels and amplicon-specific copy number levels.  The figure above displays the sensitivities for varying copy 

number levels for an amplicon (3 – 5) over varying diploid coverage levels.  The naïve method performs quite well 

theoretically at high copy number levels, except for low coverage levels.  This is especially visible with the default 

value of copy number 3. 
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Supplementary Figure 2: Accuracy Plots over Varying Coverage Levels for HATS and the Naïve Method 

from Simulations, European (CEU) Training Dataset.  The above nine accuracy plots depict the accuracies for 

both methods over hundreds of trial runs over varying levels of diploid coverage (2).  Each point in an accuracy 

dot plot represents the accuracy for a method in a particular amplicon a in sample j per trial.  As the number of 

heterozygous sites in a increases, the accuracies converge to a peak for each method.  Even when the number of 

heterozygous sites is low within an amplicon a, HATS consistently outperforms the naïve method in that amplicon.  

The training dataset was obtained from the 1000 Genomes Project (http://www.1000genomes.org/). 

2 = 2 

2 = 4 

2 = 6 

2 = 8 2 = 10 2 = 15 

2 = 20 2 = 25 2 = 30 

http://www.1000genomes.org/
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Supplementary Figure 3: Sensitivity of HATS and the Naïve Model for Breakdown of Reads Observing a Site 

vs. Diploid Coverage Simulated, with Copy Number of 3.  The first two plots (A) and (B) depict the sensitivity 

for each y-axis bin, where each bin represents a particular number of total reads observing a site.  The reads in a bin 

are generated by a Poisson distribution with diploid mean 2.  A range of values for 2 are displayed on the x-axis.  

This figure is generated from simulated data with amplicon copy number of 3.  Blank bins represent read counts not 

generated from a particular 2.  Sensitivity spans from low (green) to high (red) and is scaled for both methods 

together.  Note that the naïve method possesses periodicity – namely, even numbered bins perform poorer than 

adjacent odd numbered bins.  The reason is that even numbered bins can result in ties in allelic counts, which disable 

the naïve method from making a call.  Odd numbered bins cannot result in ties by definition.  (C)  This plot 

represents the differences in sensitivities between HATS and the naïve method.  The cells are shaded in a gradient 

corresponding to the sensitivity differences: green (negative difference, naïve is better) to off-white (no difference, 

labeled as “.0”) to blue (positive difference, HATS is better).  Note that the periodicity of the naïve model is 

reflected in the sensitivity differences.  This figure depicts HATS generally outperforming the naïve especially when 

2 is low or the bin numbers are low.  The training dataset was obtained from the 1000 Genomes Project 

(http://www.1000genomes.org/). 

 

 

Supplementary Figure 4.  Sensitivity of HATS and the Naïve model from simulations, Yoruban (YRI) and 

Japanese and Chinese (JPTCHB) Training Datasets.  This figure displays the sensitivity results for HATS 

(without Genotyping Error Correction) and the naïve model from the simulation runs.  Since the naïve curves for 

both populations are congruent with each other and the theoretical curve, the same naïve simulation curve is 

displayed here.  The HATS curves for the two populations are also nearly congruent and outperform the naïve model 

until the latter catches up past a diploid coverage of 40.  The training datasets were obtained from the 1000 Genomes 

Project (http://www.1000genomes.org/). 

 

http://www.1000genomes.org/
http://www.1000genomes.org/
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Supplementary Figure 5.  Sensitivity of HATS and the Naïve model from simulations with stromal 

contamination, European (CEU) Training Dataset, Copy Number 2.8.  This figure displays the simulation 

sensitivity results for HATS as well as for the naïve model given a copy number of 2.8, which represents a tumor of 

copy number 3 with 20% stromal contamination of copy neutral healthy cells.  Note that the performance gap 

between the two methods remains wide, and the naïve method does not catch up to HATS even at a high diploid 

coverage of 60.  The training dataset was obtained from the 1000 Genomes Project (http://www.1000genomes.org/). 

http://www.1000genomes.org/
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Supplementary Figure 6: Sensitivity of HATS and the Naïve Model for Breakdown of Reads Observing a Site 

vs. Diploid Coverage Simulated, with Copy Number of 2.5.  The first two plots (A) and (B) depict the sensitivity 

for each y-axis bin, where each bin represents a particular number of total reads observing a site.  The reads in a bin 

are generated by a Poisson distribution with diploid mean 2.  A range of values for 2 are displayed on the x-axis.  

This figure is generated from simulated data with amplicon copy number of 2.5.  Blank bins represent read counts 

not generated from a particular 2.  Sensitivity spans from low (green) to high (red) and is scaled for both methods 

together.  Note that the naïve method possesses periodicity – namely, even numbered bins perform poorer than 

adjacent odd numbered bins.  The reason is that even numbered bins can result in ties in allelic counts, which disable 

the naïve method from making a call.  Odd numbered bins cannot result in ties by definition.  (C)  This plot 

represents the differences in sensitivities between HATS and the naïve method.  The cells are shaded in a gradient 

corresponding to the sensitivity differences: green (negative difference, naïve is better) to off-white (no difference, 

labeled as “.0”) to blue (positive difference, HATS is better).  Note that the periodicity of the naïve model is 

reflected in the sensitivity differences.  This figure depicts HATS generally outperforming the naïve method when 

stromal contamination is present, even at high 2 or when the bin numbers are high.  The training dataset was 

obtained from the 1000 Genomes Project (http://www.1000genomes.org/). 

 

 

Supplementary Figure 7. Sensitivity of HATS and the Naïve model from simulations, CEU Training Dataset, 

Copy number 1.9.  This figure displays the simulation sensitivity results for HATS and the naïve model with copy 

number of 1.9, representing a heterozygous deletion mixture.  While performance between the two methods remains 

similar at very low coverage, increasing coverage slightly results in a tremendous performance difference between 

the two.  The training dataset was obtained from the 1000 Genomes Project (http://www.1000genomes.org/). 

http://www.1000genomes.org/
http://www.1000genomes.org/
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Supplementary Figure 8: Sensitivity of HATS and the Naïve Model for Breakdown of Reads Observing a Site 

vs. Downsampled Diploid Coverage on a Real Tumor Amplicon, with Copy Number of 3.18.  This figure is 

generated from real data with amplicon copy number of 3.18 undergoing the downsampling evaluation procedure.  

The first two plots (A) and (B) depict the sensitivity for each y-axis bin, where each bin represents a particular 

number of total reads observing a site.  The reads in a bin result from a Poisson distribution with diploid mean 2.  

A range of values for 2 are displayed on the x-axis.  Blank bins represent read counts not resulting from a 

particular 2.  Sensitivity spans from low (green) to high (red) and is scaled for both methods together.  Note that 

the naïve method possesses periodicity – namely, even numbered bins perform poorer than adjacent odd numbered 

bins.  The reason is that even numbered bins can result in ties in allelic counts, which disable the naïve method from 

making a call.  Odd numbered bins cannot result in ties by definition.  (C)  This plot represents the differences in 

sensitivities between HATS and the naïve method.  The cells are shaded in a gradient corresponding to the 

sensitivity differences: green (negative difference, naïve is better) to off-white (no difference, labeled as “.0”) to 

blue (positive difference, HATS is better).  Note that the periodicity of the naïve model is reflected in the sensitivity 

differences.  This figure depicts HATS generally outperforming the naïve especially when 2 is low or the bin 

numbers are low.  However, there are a handful of cases in which the naïve method performs better.  Also note that 

the HATS sensitivities for a bin are not consistent across coverage levels; this is due to the effect of the training data 

being incorporated.  The TCGA data for this patient was obtained from http://tcga-data.nci.nih.gov/tcga/ (with tumor 

and alignment files obtained from dbGaP with accession number: phs000178.v4.p4). 

 

Supplementary Figure 9:  Empirical Sensitivity of HATS and the Naïve Model, TCGA Glioblastoma sample 

(TCGA-06-0877), Chr 19, SNP Array Gold Standard.  This figure displays the sensitivity results for HATS and 

the naïve method on an amplified region (Chromosome 19: 2,181,615 – 2,541,253) in a glioblastoma patient 

(TCGA-06-0877) obtained from TCGA with local copy number of 3.18.   The naïve theoretical curve is included for 

comparison purposes.  The gold standard amplified alleles were obtained via the amplified allelic calls made on SNP 

array data for the same region from the same sample.  Only three heterozygous gold standard sites remained after 

quality control filtering. The sequencing data read counts were then randomly down-sampled to result in varying 

coverage levels as displayed on the x-axis (with 400 trials of down-sampling performed per coverage level).  The 

down-sampled read counts were passed to both HATS and the naïve method.  The reported amplified alleles were 

compared with the gold standard to indicate sensitivity.  Note that for higher coverages, the performance of both 

HATS and the naïve method is strong, which is expected as this was observed in the simulations.  As coverage 

decreases, HATS maintains a marked performance improvement over the naïve method. What is further remarkable 

http://tcga-data.nci.nih.gov/tcga/
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is that HATS maintains this advantage over the naïve model even with such few heterozygous sites (three).  Another 

thing to note is that the naïve method performs better on sites with an odd number of reads versus an even number, 

as there is no chance of ties in the former.  This explains the slight step effect in the naïve model’s sensitivity at 2 

= 5.  The TCGA data for this patient was obtained from http://tcga-data.nci.nih.gov/tcga/ (with tumor and alignment 

files obtained from dbGaP with accession number: phs000178.v4.p4). 

 

 

Supplementary Figure 10.  Empirical sensitivity of HATS and the Naïve model, TCGA Glioblastoma sample 

(TCGA-06-0877), Chr 2.  This figure displays the sensitivity results for HATS and the naïve method on an 

amplified sub-region (Chromosome 2: 30,117,665 – 31,000,001) in a glioblastoma patient obtained from TCGA 

with copy number of 2.50.   The empirical curves only extend to a diploid coverage of 30, as the original diploid 

coverage in the data was ~38.7x for this region.  The theoretical curve extends past this to display that very high 

coverage is necessary in order for the naïve method to theoretically match the performance of HATS.  Note that the 

naïve curve deviates from the theoretical curve, likely due to an imperfect gold standard called by HATS at 38.7x.  

To correct for this, the average deviation is calculated between the naïve curve and naïve theoretical curve.  Both the 

naïve and HATS curves are then shifted down by this amount to result in the respective adjusted curves, which more 

accurately indicate HATS’ performance at this copy number.  The TCGA data for this patient was obtained from 

http://tcga-data.nci.nih.gov/tcga/ (with tumor and alignment files obtained from dbGaP with accession number: 

phs000178.v4.p4). 

http://tcga-data.nci.nih.gov/tcga/
http://tcga-data.nci.nih.gov/tcga/
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Supplementary Figure 11.  Sensitivity of HATS and the naïve model, simulated data with gold standard 

called on high coverage (emulating Real Data tumor evaluation).  HATS called the amplified alleles (assigned as 

the gold standard) on simulated data generated at 35x diploid coverage with copy number of 2.5.  This simulated 

data is then analyzed as real data would be evaluated, via a down-sampling procedure that uses the called gold 

standard alleles.  The figure displays the results, indicating the deviation of the naïve emulated curve from the 

theoretical curve.  This suggests that the imperfect gold standard used is a cause of this deviation.  The training 

dataset (CEU) was obtained from the 1000 Genomes Project (http://www.1000genomes.org/). 

 

http://www.1000genomes.org/
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Supplementary Figure 12: Empirical sensitivity of HATS and the Naïve model, TCGA Glioblastoma sample 

(TCGA-06-0877), Chr 2, SNP Array Gold Standard.  This figure displays the sensitivity results for HATS and 

the naïve method on an amplified sub-region (Chromosome 2: 30,117,665 – 31,000,001) in a glioblastoma patient 

obtained from TCGA with copy number of 2.50.   The empirical curves only extend to a diploid coverage of 30, as 

the original diploid coverage in the data was ~38.7x for this region.  The theoretical curve extends past this to 

display that very high coverage is necessary in order for the naïve method to theoretically match the performance of 

HATS.  The gold standard amplified alleles were obtained via the amplified allelic calls made on SNP array data for 

the same region from the same sample.  Only 43 heterozygous gold standard sites remained after quality control 

filtering.  The sequencing data read counts were then randomly down-sampled to result in varying coverage levels as 

displayed on the x-axis (with 400 trials of down-sampling performed per coverage level).  With this stromal 

contamination present, HATS outperforms the naïve method at all diploid coverage levels.  The TCGA data for this 

patient was obtained from http://tcga-data.nci.nih.gov/tcga/ (with tumor and alignment files obtained from dbGaP 

with accession number: phs000178.v4.p4). 

 

 

  

http://tcga-data.nci.nih.gov/tcga/
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Supplementary Figure 13: Sensitivity of HATS and the Naïve Model for Breakdown of Reads Observing a 

Site vs. Downsampled Diploid Coverage on a Real Tumor Amplicon, with Copy Number of 2.50.  This figure 

is generated from real data with amplicon copy number of 2.50 undergoing the downsampling evaluation procedure.  

The first two plots (A) and (B) depict the sensitivity for each y-axis bin, where each bin represents a particular 

number of total reads observing a site.  The reads in a bin result from a Poisson distribution with diploid mean 2.  

A range of values for 2 are displayed on the x-axis.  Blank bins represent read counts not resulting from a 

particular 2.  Sensitivity spans from low (green) to high (red) and is scaled for both methods together.  Note that 

the naïve method possesses periodicity – namely, even numbered bins perform poorer than adjacent odd numbered 

bins.  The reason is that even numbered bins can result in ties in allelic counts, which disable the naïve method from 

making a call.  Odd numbered bins cannot result in ties by definition.  (C)  This plot represents the differences in 

sensitivities between HATS and the naïve method.  The cells are shaded in a gradient corresponding to the 

sensitivity differences: green (negative difference, naïve is better) to off-white (no difference, labeled as “.0”) to 

blue (positive difference, HATS is better).  Note that the periodicity of the naïve model is reflected in the sensitivity 

differences.  This figure depicts HATS generally outperforming the naïve method when stromal contamination is 

present, even at high 2 or large bin number.  Also note that the HATS sensitivities for a bin are not consistent 

across coverage levels; this is due to the effect of the training data being incorporated.  The TCGA data for this 

patient was obtained from http://tcga-data.nci.nih.gov/tcga/ (with tumor and alignment files obtained from dbGaP 

with accession number: phs000178.v4.p4). 
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Software 

HATS was implemented in the Java programming language.  The source code is available at: 

https://sourceforge.net/projects/tumorhats/.  We recommend using JRE 1.6 or higher. 

While a non-trivial amount of time might be required of the user to organize data into HATS’ input file 

format (described at the linked site), processing the data itself is very fast.  On short regions, HATS takes 

several seconds to process the regions (including time to load the training data files), as was measured on 

a Core 2 Duo 2.4 GHz machine with 6 GB RAM.  Wider regions will take proportionally longer (when 

ignoring the overhead of loading the training data).  HATS is memory intensive, and as such, a 64-bit 

machine with 4+ GB of RAM is recommended, depending on the width of regions being analyzed and 

whether the especially memory intensive Genotype Error Correction feature is activated. 
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